Synthesis of transcriptomic studies reveals a core response to heat stress in abalone (genus Haliotis)

Barkan, Roy, Cooke, Ira, Watson, Sue Ann, and Strugnell, Jan M. (2025) Synthesis of transcriptomic studies reveals a core response to heat stress in abalone (genus Haliotis). BMC Genomics, 26 (1). 474.

[img]
Preview
PDF (Published Version) - Published Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (4MB) | Preview
View at Publisher Website: https://doi.org/10.1186/s12864-025-11680...
 
1


Abstract

Background: As climate change causes marine heat waves to become more intense and frequent, marine species increasingly suffer from heat stress. This stress can result in reduced growth, disrupted breeding cycles, vulnerability to diseases and pathogens, and increased mortality rates. Abalone (genus Haliotis) are an ecologically significant group of marine gastropods and are among the most highly valued seafood products. However, heat stress events have had devastating impacts on both farmed and wild populations. Members of this genus are among the most susceptible marine species to climate change impacts, with over 40% of all abalone species listed as threatened with extinction. This has motivated researchers to explore the genetics linked to heat stress in abalone. A substantial portion of publicly available studies has employed transcriptomic approaches to investigate abalone genetic response to heat stress. However, to date, no meta-analysis has been conducted to determine the common response to heat stress (i.e. the core response) across the genus. This study uses a standardized bioinformatic pipeline to reanalyze and compare publicly available RNA-seq datasets from different heat stress studies on abalone. Results: Nine publicly available RNA-seq datasets from nine different heat-stress studies on abalone from seven different abalone species and three hybrids were included in the meta-analysis. We identified a core set of 74 differentially expressed genes (DEGs) in response to heat stress in at least seven out of nine studies. This core set of DEGs mainly included genes associated with alternative splicing, heat shock proteins (HSPs), Ubiquitin–Proteasome System (UPS), and other protein folding and protein processing pathways. Conclusions: The detection of a consistent set of genes that respond to heat stress across various studies, despite differences in experimental design (e.g. stress intensity, species studied—geographical distribution, preferred temperature range, etc.), strengthens our proposal that these genes are key elements of the heat stress response in abalone. The identification of the core response to heat stress in abalone lays an important foundation for future research. Ultimately, this study will aid conservation efforts and aquaculture through the identification of resilient populations, genetic-based breeding programs, possible manipulations such as early exposure to stress, gene editing and the use of immunostimulants to enhance thermal tolerance.

Item ID: 87688
Item Type: Article (Research - C1)
ISSN: 1471-2164
Keywords: Climate change, Gene expression, Meta-analysis, RNA-seq, Thermal stress
Copyright Information: © The Author(s) 2025. This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
Date Deposited: 16 Jan 2026 06:28
FoR Codes: 31 BIOLOGICAL SCIENCES > 3105 Genetics > 310509 Genomics @ 50%
31 BIOLOGICAL SCIENCES > 3103 Ecology > 310305 Marine and estuarine ecology (incl. marine ichthyology) @ 50%
SEO Codes: 18 ENVIRONMENTAL MANAGEMENT > 1805 Marine systems and management > 180504 Marine biodiversity @ 100%
Downloads: Total: 1
Last 12 Months: 1
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page