Gut Immune System and the Implications of Oral-Administered Immunoprophylaxis in Finfish Aquaculture

Lee, Po-Tsang, Yamamoto, Fernando Y., Low, Chen-Fei, Loh, Jiun Yan, and Chong, Chou-Min (2021) Gut Immune System and the Implications of Oral-Administered Immunoprophylaxis in Finfish Aquaculture. Frontiers in Immunology, 12. 773193.

[img]
Preview
PDF (Published Version) - Published Version
Available under License Creative Commons Attribution.

Download (2MB) | Preview
View at Publisher Website: https://doi.org/10.3389/fimmu.2021.77319...
 
11


Abstract

The gastrointestinal immune system plays an important role in immune homeostasis regulation. It regulates the symbiotic host-microbiome interactions by training and developing the host’s innate and adaptive immunity. This interaction plays a vital role in host defence mechanisms and at the same time, balancing the endogenous perturbations of the host immune homeostasis. The fish gastrointestinal immune system is armed with intricate diffused gut-associated lymphoid tissues (GALTs) that establish tolerance toward the enormous commensal gut microbiome while preserving immune responses against the intrusion of enteric pathogens. A comprehensive understanding of the intestinal immune system is a prerequisite for developing an oral vaccine and immunostimulants in aquaculture, particularly in cultured fish species. In this review, we outline the remarkable features of gut immunity and the essential components of gut-associated lymphoid tissue. The mechanistic principles underlying the antigen absorption and uptake through the intestinal epithelial, and the subsequent immune activation through a series of molecular events are reviewed. The emphasis is on the significance of gut immunity in oral administration of immunoprophylactics, and the different potential adjuvants that circumvent intestinal immune tolerance. Comprehension of the intestinal immune system is pivotal for developing effective fish vaccines that can be delivered orally, which is less labour-intensive and could improve fish health and facilitate disease management in the aquaculture industry.

Item ID: 83184
Item Type: Article (Research - C1)
ISSN: 1664-3224
Copyright Information: Copyright © 2021 Lee, Yamamoto, Low, Loh and Chong. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Date Deposited: 23 Jul 2024 03:47
FoR Codes: 30 AGRICULTURAL, VETERINARY AND FOOD SCIENCES > 3005 Fisheries sciences > 300501 Aquaculture @ 100%
SEO Codes: 10 ANIMAL PRODUCTION AND ANIMAL PRIMARY PRODUCTS > 1002 Fisheries - aquaculture > 100299 Fisheries - aquaculture not elsewhere classified @ 100%
Downloads: Total: 11
Last 12 Months: 8
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page