The evolution of fast-growing coral reef fishes

Siqueira, Alexandre C., Yan, Helen F., Morais, Renato A., and Bellwood, David R. (2023) The evolution of fast-growing coral reef fishes. Nature, 618. pp. 322-327.

[img] PDF (Published Version) - Published Version
Restricted to Repository staff only

View at Publisher Website: https://doi.org/10.1038/s41586-023-06070...
 
1
3


Abstract

Individual growth is a fundamental life history trait1–4, yet its macroevolutionary trajectories have rarely been investigated for entire animal assemblages. Here we analyse the evolution of growth in a highly diverse vertebrate assemblage—coral reef fishes. We combine state-of-the-art extreme gradient boosted regression trees with phylogenetic comparative methods to detect the timing, number, location and magnitude of shifts in the adaptive regime of somatic growth. We also explored the evolution of the allometric relationship between body size and growth. Our results show that the evolution of fast growth trajectories in reef fishes has been considerably more common than the evolution of slow growth trajectories. Many reef fish lineages shifted towards faster growth and smaller body size evolutionary optima in the Eocene (56–33.9 million years ago), pointing to a major expansion of life history strategies in this Epoch. Of all lineages examined, the small-bodied, high-turnover cryptobenthic fishes shifted most towards extremely high growth optima, even after accounting for body size allometry. These results suggest that the high global temperatures of the Eocene5 and subsequent habitat reconfigurations6 might have been critical for the rise and retention of the highly productive, high-turnover fish faunas that characterize modern coral reef ecosystems.

Item ID: 79001
Item Type: Article (Research - C1)
ISSN: 1476-4687
Copyright Information: © The Author(s), under exclusive licence to Springer Nature Limited 2023
Funders: Australian Research Council (ARC)
Projects and Grants: ARC LF190100062
Date Deposited: 07 Nov 2023 03:02
FoR Codes: 31 BIOLOGICAL SCIENCES > 3104 Evolutionary biology > 310499 Evolutionary biology not elsewhere classified @ 50%
31 BIOLOGICAL SCIENCES > 3103 Ecology > 310305 Marine and estuarine ecology (incl. marine ichthyology) @ 50%
SEO Codes: 28 EXPANDING KNOWLEDGE > 2801 Expanding knowledge > 280102 Expanding knowledge in the biological sciences @ 100%
Downloads: Total: 3
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page