The pulsating soft coral Xenia umbellata shows high resistance to warming when nitrate concentrations are low

Thobor, Bianca, Tilstra, Arjen, Bourne, David G, Springer, Karin, Mezger, Selma Deborah, Struck, Ulrich, Bockelmann, Franziska, Zimmermann, Lisa, Yánez Suárez, Ana Belen, Klinke, Annabell, and Wild, Christian (2022) The pulsating soft coral Xenia umbellata shows high resistance to warming when nitrate concentrations are low. Scientific Reports, 12 (1). 16788.

[img]
Preview
PDF (Published Version) - Published Version
Available under License Creative Commons Attribution.

Download (6MB) | Preview
View at Publisher Website: https://doi.org/10.1038/s41598-022-21110...
 
5
607


Abstract

The resistance of hard corals to warming can be negatively affected by nitrate eutrophication, but related knowledge for soft corals is scarce. We thus investigated the ecophysiological response of the pulsating soft coral Xenia umbellata to different levels of nitrate eutrophication (control = 0.6, medium = 6, high = 37 μM nitrate) in a laboratory experiment, with additional warming (27.7 to 32.8 °C) from days 17 to 37. High nitrate eutrophication enhanced cellular chlorophyll a content of Symbiodiniaceae by 168%, while it reduced gross photosynthesis by 56%. After additional warming, polyp pulsation rate was reduced by 100% in both nitrate eutrophication treatments, and additional polyp loss of 7% d−1 and total fragment mortality of 26% was observed in the high nitrate eutrophication treatment. Warming alone did not affect any of the investigated response parameters. These results suggest that X. umbellata exhibits resistance to warming, which may facilitate ecological dominance over some hard corals as ocean temperatures warm, though a clear negative physiological response occurs when combined with nitrate eutrophication. This study thus confirms the importance of investigating combinations of global and local factors to understand and manage changing coral reefs.

Item ID: 76341
Item Type: Article (Research - C1)
ISSN: 2045-2322
Copyright Information: © The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Date Deposited: 20 Oct 2022 00:34
FoR Codes: 31 BIOLOGICAL SCIENCES > 3103 Ecology > 310305 Marine and estuarine ecology (incl. marine ichthyology) @ 50%
31 BIOLOGICAL SCIENCES > 3199 Other biological sciences > 319999 Other biological sciences not elsewhere classified @ 50%
SEO Codes: 28 EXPANDING KNOWLEDGE > 2801 Expanding knowledge > 280102 Expanding knowledge in the biological sciences @ 100%
Downloads: Total: 607
Last 12 Months: 6
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page