The indirect effects of ocean acidification on corals and coral communities

Hill, Tessa S., and Hoogenboom, Mia O. (2022) The indirect effects of ocean acidification on corals and coral communities. Coral Reefs, 41. pp. 1557-1583.

[img]
Preview
PDF (Published Version) - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview
View at Publisher Website: https://doi.org/10.1007/s00338-022-02286...
 
3
515


Abstract

Ocean acidification (OA) is a major threat to marine calcifying organisms. This manuscript gives an overview of the physiological effects of acidification on reef-building corals from a cellular to population scale. In addition, we present the first review of the indirect effects resulting from altered species interactions. We find that the direct effects of acidification are more consistently negative at larger spatial scales, suggesting an accumulation of sub-lethal physiological effects can result in notable changes at a population and an ecosystem level. We identify that the indirect effects of acidification also have the potential to contribute to declines in coral cover under future acidified conditions. Of particular concern for reef persistence are declines in the abundance of crustose coralline algae which can result in loss of stable substrate and settlement cues for corals, potentially compounding the direct negative effects on coral recruitment rates. In addition, an increase in the abundance of bioeroders and bioerosive capacity may compound declines in calcification and result in a shift towards net dissolution. There are significant knowledge gaps around many indirect effects, including changes in herbivory and associated coral–macroalgal interactions, and changes in habitat provision of corals to fish, invertebrates and plankton, and the impact of changes to these interactions for both individual corals and reef biodiversity as structural complexity declines. This research highlights the potential of indirect effects to contribute to alterations in reef ecosystem functions and processes. Such knowledge will be critical for scaling-up the impacts of OA from individual corals to reef ecosystems and for understanding the effects of OA on reef-dependent human societies.

Item ID: 75718
Item Type: Article (Research - C1)
ISSN: 1432-0975
Keywords: Coral, CO2, Indirect effects, Ecological interactions, Ecosystem, Review
Copyright Information: © The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Date Deposited: 10 Aug 2022 07:40
FoR Codes: 31 BIOLOGICAL SCIENCES > 3103 Ecology > 310305 Marine and estuarine ecology (incl. marine ichthyology) @ 100%
SEO Codes: 18 ENVIRONMENTAL MANAGEMENT > 1805 Marine systems and management > 180504 Marine biodiversity @ 50%
28 EXPANDING KNOWLEDGE > 2801 Expanding knowledge > 280102 Expanding knowledge in the biological sciences @ 50%
Downloads: Total: 515
Last 12 Months: 2
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page