The differential importance of deep and shallow seagrass to Nekton assemblages of The Great Barrier Reef

Hayes, Matthew A., McClure, Eva C., York, Paul H., Jinks, Kristin I., Rasheed, Michael A., Sheaves, Marcus, and Connolly, Rod M. (2020) The differential importance of deep and shallow seagrass to Nekton assemblages of The Great Barrier Reef. Diversity, 12 (8). 292.

PDF (Published Version) - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview
View at Publisher Website:


Seagrass meadows are an important habitat for a variety of animals, including ecologically and socioeconomically important species. Seagrass meadows are recognised as providing species with nursery grounds, and as a migratory pathway to adjacent habitats. Despite their recognised importance, little is known about the species assemblages that occupy seagrass meadows of different depths in the coastal zone. Understanding differences in the distribution of species in seagrass at different depths, and differences in species diversity, abundance, biomass, and size spectra, is important to fully appreciate both the ecological significance and economic importance of these seagrass meadows. Here, we assess differences in the assemblage characteristics of fish, crustacea, and cephalopods (collectively, nekton) between deep ( > 9 m; Halophila spinulosa dominant) and shallow water ( < 2 m; Halodule uninervis and/or Zostera muelleri dominant) seagrass meadows of the central Great Barrier Reef coast of Queensland, Australia. Nekton assemblage structure differed between deep and shallow seagrass. Deeper meadows were typified by juvenile emperors (e.g., Lethrinus genivittatus), hairfinned leatherjacket (Paramonacanthus japonicus) and rabbitfish (e.g., Siganus fuscescens) in both biomass per unit effort (BPUE) and catch per unit effort (CPUE), whereas shallow meadows were typified by the green tiger prawn (Penaeus semisulcatus) and pugnose ponyfish (Secutor insidiator) in both BPUE and CPUE. Both meadow depths were distinct in their nekton assemblage, particularly for socioeconomically important species, with 11 species unique to both shallow and deep meadows. However, both meadow depths also included juveniles of socioeconomically important species found in adjacent habitats as adults. The total nekton CPUE was not different between deep and shallow seagrass, but the BPUE and body mass of individual animals were greater in deep than shallow seagrass. Size spectra analysis indicated that in both deep and shallow meadows, smaller animals predominated, even more so than theoretically expected for size spectra. Our findings highlight the unique attributes of both shallow and deeper water seagrass meadows, and identify the distinct and critically important role of deep seagrass meadows within the Great Barrier Reef World Heritage Area (GBRWHA) as a habitat for small and juvenile species, including those of local fisheries value.

Item ID: 63882
Item Type: Article (Research - C1)
ISSN: 1424-2818
Keywords: seagrass; species assemblage; size spectra; Great Barrier Reef; nursery habitat; marine ecosystem; penaeid; fisheries
Copyright Information: © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (
Funders: Australian Research Council (ARC)
Projects and Grants: ARC Linkage Grant LP160100492, Global Wetlands Project, Holsworth Wildlife Research Endowment, Ecological Society of Australia
Date Deposited: 28 Jul 2020 00:29
FoR Codes: 31 BIOLOGICAL SCIENCES > 3103 Ecology > 310302 Community ecology (excl. invasive species ecology) @ 50%
31 BIOLOGICAL SCIENCES > 3103 Ecology > 310305 Marine and estuarine ecology (incl. marine ichthyology) @ 50%
SEO Codes: 96 ENVIRONMENT > 9608 Flora, Fauna and Biodiversity > 960802 Coastal and Estuarine Flora, Fauna and Biodiversity @ 30%
96 ENVIRONMENT > 9605 Ecosystem Assessment and Management > 960507 Ecosystem Assessment and Management of Marine Environments @ 40%
96 ENVIRONMENT > 9608 Flora, Fauna and Biodiversity > 960808 Marine Flora, Fauna and Biodiversity @ 30%
Downloads: Total: 866
Last 12 Months: 26
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page