3D photogrammetry quantifies growth and external erosion of individual coral colonies and skeletons

Ferrari, Renata, Figueira, Will F., Pratchett, Morgan S., Boube, Tatiana, Adam, Arne, Kobelkowsky-Vidrio, Tania, Doo, Steve S., Atwood, Trisha Brooke, and Byrne, Maria (2017) 3D photogrammetry quantifies growth and external erosion of individual coral colonies and skeletons. Scientific Reports, 7.

[img]
Preview
PDF (Pubilshed Version) - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview
View at Publisher Website: http://dx.doi.org/10.1038/s41598-017-164...
 
8
17


Abstract

Growth and contraction of ecosystem engineers, such as trees, influence ecosystem structure and function. On coral reefs, methods to measure small changes in the structure of microhabitats, driven by growth of coral colonies and contraction of skeletons, are extremely limited. We used 3D reconstructions to quantify changes in the external structure of coral colonies of tabular Acropora spp., the dominant habitat-forming corals in shallow exposed reefs across the Pacific. The volume and surface area of live colonies increased by 21% and 22%, respectively, in 12 months, corresponding to a mean annual linear extension of 5.62 cm/yr (+/- 1.81 SE). The volume and surface area of dead skeletons decreased by 52% and 47%, respectively, corresponding to a mean decline in linear extension of -29.56 cm/yr (+/- 7.08 SE), which accounted for both erosion and fragmentation of dead colonies. This is the first study to use 3D photogrammetry to assess fine-scale structural changes of entire individual colonies in situ, quantifying coral growth and contraction. The high-resolution of the technique allows for detection of changes on reef structure faster than other non-intrusive approaches. These results improve our capacity to measure the drivers underpinning ecosystem biodiversity, status and trajectory.

Item ID: 51844
Item Type: Article (Research - C1)
ISSN: 2045-2322
Additional Information:

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Funders: Great Barrier Reef Foundation, Australian Department of Education, Ian Potter Foundation
Date Deposited: 20 Dec 2017 07:50
FoR Codes: 06 BIOLOGICAL SCIENCES > 0602 Ecology > 060205 Marine and Estuarine Ecology (incl Marine Ichthyology) @ 50%
05 ENVIRONMENTAL SCIENCES > 0501 Ecological Applications > 050101 Ecological Impacts of Climate Change @ 50%
SEO Codes: 97 EXPANDING KNOWLEDGE > 970106 Expanding Knowledge in the Biological Sciences @ 50%
96 ENVIRONMENT > 9605 Ecosystem Assessment and Management > 960503 Ecosystem Assessment and Management of Coastal and Estuarine Environments @ 50%
Downloads: Total: 17
Last 12 Months: 12
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page