A groundwater-fed coastal inlet as habitat for the Caribbean queen conch Lobatus gigas—an acoustic telemetry and space use analysis

Stieglitz, Thomas C., and Dujon, Antoine M. (2017) A groundwater-fed coastal inlet as habitat for the Caribbean queen conch Lobatus gigas—an acoustic telemetry and space use analysis. Marine Ecology Progress Series, 571. pp. 139-152.

PDF (Published Version) - Published Version
Available under License Creative Commons Attribution.

Download (471kB) | Preview
View at Publisher Website: http://dx.doi.org/10.3354/meps12123


The queen conch Lobatus (Strombus) gigas, a marine snail, is among the most important fisheries resources of the Caribbean region. To provide effective protection in marine reserves, a good understanding of its habitat usage is essential. Queen conches commonly inhabit marine habitats. In this study, its activity space in a marginal estuarine-like habitat, the groundwater-fed inlet of Xel-Há (Mexico) was determined using high-resolution acoustic telemetry (VEMCO Positioning System). Thirty-eight animals with syphonal lengths ranging from 80 to 200 mm were tagged, 1 of them with an accelerometer tag. Their trajectories were recorded for 20 mo at 5 m resolution in a closely spaced array of 12 receivers. Space–time kernel home ranges ranged from 1000 to 18500 m2 with an ontogenetically increasing trend. Juveniles, subadults and most adults displayed continuous, non-patchy home ranges consistent with the typical intensive feeding activity by this fast-growing gastropod. In some adults, Lévy flight-like fragmentation of home ranges was observed that may be related to feeding range expansion or other ecological drivers such as the breeding cycle. The observed small home ranges indicate that the space use of queen conch in this estuarine-like habitat is not conditioned by food availability, and despite environmental stress due to daily low-oxygen conditions, space use is comparable to that observed in more typical marine habitats. In a marine reserve context, the groundwater-fed inlet provides adequate protection of this inshore queen conch population. Such marginal habitats may play an increasingly important role in conservation management as pressure on populations increase.

Item ID: 49077
Item Type: Article (Research - C1)
ISSN: 1616-1599
Keywords: Lobatus gigas, queen conch, acoustic telemetry, home range, marine protected area, marginal habitat, accelerometer, VEMCO, positioning system
Additional Information:

© The authors 2017. Open Access under Creative Commons by Attribution Licence. Use, distribution and reproduction are un-restricted. Authors and original publication must be credited.

Funders: European Union FP7 People Program, Europole Mer, Laboratoire des sciences de l’environnement marin (LEMAR), Parque Xel-Ha, Marie Curie International Incoming Fellowship
Date Deposited: 27 Jun 2017 01:49
FoR Codes: 31 BIOLOGICAL SCIENCES > 3103 Ecology > 310301 Behavioural ecology @ 50%
31 BIOLOGICAL SCIENCES > 3103 Ecology > 310305 Marine and estuarine ecology (incl. marine ichthyology) @ 50%
SEO Codes: 96 ENVIRONMENT > 9605 Ecosystem Assessment and Management > 960503 Ecosystem Assessment and Management of Coastal and Estuarine Environments @ 40%
96 ENVIRONMENT > 9608 Flora, Fauna and Biodiversity > 960802 Coastal and Estuarine Flora, Fauna and Biodiversity @ 30%
96 ENVIRONMENT > 9613 Remnant Vegetation and Protected Conservation Areas > 961303 Protected Conservation Areas in Marine Environments @ 30%
Downloads: Total: 1066
Last 12 Months: 5
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page