Winter temperatures decrease swimming performance and limit distributions of tropical damselfishes
Johansen, Jacob L., Steffensen, John F., and Jones, Geoffrey P. (2015) Winter temperatures decrease swimming performance and limit distributions of tropical damselfishes. Conservation Physiology, 3 (1). cov039. pp. 1-12.
|
PDF (Published Version)
- Published Version
Available under License Creative Commons Attribution. Download (1MB) | Preview |
Abstract
Coral reefs within 10° of the equator generally experience ≤ 3°C seasonal variation in water temperature. Ectotherms that have evolved in these conditions are therefore expected to exhibit narrow thermal optima and be very sensitive to the greater thermal variability (>6°C) experienced at higher latitudes (≥10°N/S). The impact of increased thermal variability on the fitness and distribution of thermally sensitive reef ectotherms is currently unknown. Here, we examine site-attached planktivorous coral reef damselfishes that rely on their physiological capacity to swim and forage in the water column year round. We focus on 10 species spanning four evolutionarily distinct genera from a region of the Great Barrier Reef that experiences ≥6°C difference between seasons. Four ecologically important indicators showed reduced performance during the winter low (23°C) compared with the summer peak (29°C), with effect sizes varying among species and genera, as follows: (i) the energy available for activity (aerobic scope) was reduced by 35–45% in five species and three genera; (ii) the energetically most efficient swimming speed was reduced by 17% across all species; and (iii) the maximal critical swimming speed and (iv) the gait transition speed (the swimming mode predominantly used for foraging) were reduced by 16–42% in six species spanning all four genera. Comparisons with field surveys within and across latitudes showed that species-specific distributions were strongly correlated with these performance indicators. Species occupy habitats where they can swim faster than prevailing habitat currents year round, and >95% of individuals were observed only in habitats where the gait transition speed can be maintained at or above habitat currents. Thermal fluctuation at higher latitudes appears to reduce performance as well as the possible distribution of species and genera within and among coral reef habitats. Ultimately, thermal variability across latitudes may progressively cause sublethal changes to species performance and lead to a contraction of biogeographical range.
Item ID: | 43073 |
---|---|
Item Type: | Article (Research - C1) |
ISSN: | 2051-1434 |
Keywords: | abundance, distribution, metabolism, thermal window, tropical teleosts, temperature |
Additional Information: | © The Author 2015. Published by Oxford University Press and the Society for Experimental Biology. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/ by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
Funders: | ARC CoE for Coral Reef Studies, James Cook University, Danish Research Council |
Date Deposited: | 07 Mar 2016 23:10 |
FoR Codes: | 05 ENVIRONMENTAL SCIENCES > 0501 Ecological Applications > 050101 Ecological Impacts of Climate Change @ 34% 06 BIOLOGICAL SCIENCES > 0602 Ecology > 060205 Marine and Estuarine Ecology (incl Marine Ichthyology) @ 33% 05 ENVIRONMENTAL SCIENCES > 0502 Environmental Science and Management > 050202 Conservation and Biodiversity @ 33% |
SEO Codes: | 96 ENVIRONMENT > 9608 Flora, Fauna and Biodiversity > 960808 Marine Flora, Fauna and Biodiversity @ 50% 96 ENVIRONMENT > 9699 Other Environment > 969902 Marine Oceanic Processes (excl. Climate Related) @ 50% |
Downloads: |
Total: 1098 Last 12 Months: 8 |
More Statistics |