Physiological and morphological responses of the temperate seagrass Zostera muelleri to multiple stressors: investigating the interactive effects of light and temperature
York, Paul H., Gruber, Renee K., Hill, Ross, Ralph, Peter J., Booth, David J., and Macreadie, Peter I. (2013) Physiological and morphological responses of the temperate seagrass Zostera muelleri to multiple stressors: investigating the interactive effects of light and temperature. PLoS ONE, 8 (10). e76377. pp. 1-12.
|
PDF (Published Version)
- Published Version
Available under License Creative Commons Attribution. Download (1MB) |
Abstract
Understanding how multiple environmental stressors interact to affect seagrass health (measured as morphological and physiological responses) is important for responding to global declines in seagrass populations. We investigated the interactive effects of temperature stress (24, 27, 30 and 32°C) and shading stress (75, 50, 25 and 0% shade treatments) on the seagrass Zostera muelleri over a 3-month period in laboratory mesocosms. Z. muelleri is widely distributed throughout the temperate and tropical waters of south and east coasts of Australia, and is regarded as a regionally significant species. Optimal growth was observed at 27°C, whereas rapid loss of living shoots and leaf mass occurred at 32°C. We found no difference in the concentration of photosynthetic pigments among temperature treatments by the end of the experiment; however, up-regulation of photoprotective pigments was observed at 30°C. Greater levels of shade resulting in high photochemical efficiencies, while elevated irradiance suppressed effective quantum yield (ΔF/FM'). Chlorophyll fluorescence fast induction curves (FIC) revealed that the J step amplitude was significantly higher in the 0% shade treatment after 8 weeks, indicating a closure of PSII reaction centres, which likely contributed to the decline in ΔF/FM' and photoinhibition under higher irradiance. Effective quantum yield of PSII (ΔF/FM') declined steadily in 32°C treatments, indicating thermal damage. Higher temperatures (30°C) resulted in reduced above-ground biomass ratio and smaller leaves, while reduced light led to a reduction in leaf and shoot density, above-ground biomass ratio, shoot biomass and an increase in leaf senescence. Surprisingly, light and temperature had few interactive effects on seagrass health, even though these two stressors had strong effects on seagrass health when tested in isolation. In summary, these results demonstrate that populations of Z. muelleri in south-eastern Australia are sensitive to small chronic temperature increases and light decreases that are predicted under future climate change scenarios.
Item ID: | 30399 |
---|---|
Item Type: | Article (Research - C1) |
ISSN: | 1932-6203 |
Additional Information: | © 2013 York et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
Funders: | Australian Research Council (ARC), University of Technology, Sydney, NSW Office of Environment and the Heritage, NSW Department of Primary Industries, Hornsby Shire Council, Gosford City Council |
Projects and Grants: | ARC DECRA Fellowship DE130101084 |
Research Data: | https://research.jcu.edu.au/researchdata/default/detail/f790117b05fdd500b8e4e5263bb0b01d/ |
Date Deposited: | 27 Nov 2013 05:30 |
FoR Codes: | 05 ENVIRONMENTAL SCIENCES > 0501 Ecological Applications > 050102 Ecosystem Function @ 40% 06 BIOLOGICAL SCIENCES > 0602 Ecology > 060205 Marine and Estuarine Ecology (incl Marine Ichthyology) @ 40% 06 BIOLOGICAL SCIENCES > 0607 Plant Biology > 060701 Phycology (incl Marine Grasses) @ 20% |
SEO Codes: | 96 ENVIRONMENT > 9608 Flora, Fauna and Biodiversity > 960808 Marine Flora, Fauna and Biodiversity @ 70% 96 ENVIRONMENT > 9603 Climate and Climate Change > 960305 Ecosystem Adaptation to Climate Change @ 30% |
Downloads: |
Total: 965 Last 12 Months: 7 |
More Statistics |