Use of Particle Tracking to Determine Optimal Release Dates and Locations for Rehabilitated Neonate Sea Turtles

Robson, Natalie, Hetzel, Yasha, Whiting, Scott, Wijeratne, Sarath, Pattiaratchi, Charitha B., Withers, Philip, and Thums, Michele (2017) Use of Particle Tracking to Determine Optimal Release Dates and Locations for Rehabilitated Neonate Sea Turtles. Frontiers in Marine Science, 4. 173.

[img]
Preview
PDF (Published Version) - Published Version
Available under License Creative Commons Attribution.

Download (3MB) | Preview
View at Publisher Website: https://doi.org/10.3389/fmars.2017.00173
 
1


Abstract

Sea turtles found stranded on beaches are often rehabilitated before being released back into the wild. The location and date of release is largely selected on an informal basis, which may not maximize the chance of survival. As oceanic conditions have a large influence on the movements of neonate sea turtles, this study aimed to identify the best locations and months to release rehabilitated sea turtles that would assist in their transport by ocean currents to the habitat and thermal conditions required for their survival. A particle tracking model, forced by ocean surface velocity fields, was used to simulate the dispersal pathways of millions of passively drifting particles released from different locations in Western Australia. The particles represented rehabilitated, neonate turtles requiring oceanic habitats [green (Chelonia mydas), hawksbill (Eretmochelys imbricata) and loggerheads (Caretta caretta)] and flatback turtles (Natator depressus) which require neritic habitats. The results clearly identified regions and months where ocean currents were more favorable for transport to suitable habitats. Tantabiddi, near Exmouth on the north-west coast, was consistently the best location for release for the oceanic species, with dominant offshore-directed currents and a very narrow continental shelf reducing the time taken for particles to be transported into deep water. In contrast, release locations with more enclosed geography, wide continental shelves, and/or proximity to cooler ocean temperatures were less successful. Our results produced a decision support system for the release of neonate marine turtles in Western Australia and our particle tracking approach has global transferability.

Item ID: 89503
Item Type: Article (Research - C1)
ISSN: 2296-7745
Copyright Information: © 2017 Robson, Hetzel, Whiting, Wijeratne, Pattiaratchi, Withers and Thums. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Date Deposited: 12 Nov 2025 05:16
FoR Codes: 31 BIOLOGICAL SCIENCES > 3103 Ecology > 310305 Marine and estuarine ecology (incl. marine ichthyology) @ 100%
SEO Codes: 18 ENVIRONMENTAL MANAGEMENT > 1802 Coastal and estuarine systems and management > 180299 Coastal and estuarine systems and management not elsewhere classified @ 20%
18 ENVIRONMENTAL MANAGEMENT > 1805 Marine systems and management > 180506 Oceanic processes (excl. in the Antarctic and Southern Ocean) @ 80%
Downloads: Total: 1
Last 12 Months: 1
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page