Soundscape phenology: The effect of environmental and climatic factors on birds and insects in a subtropical woodland

Scarpelli, Marina D.A., Roe, Paul, Tucker, David, and Fuller, Susan (2023) Soundscape phenology: The effect of environmental and climatic factors on birds and insects in a subtropical woodland. Science of the Total Environment, 878. 163080.

[img]
Preview
PDF (Published Version) - Published Version
Available under License Creative Commons Attribution Non-commercial.

Download (5MB) | Preview
View at Publisher Website: https://doi.org/10.1016/j.scitotenv.2023...
10


Abstract

Climate change and biodiversity loss are significant global environmental issues. However, to understand their impacts we need to know how fauna respond to environmental and climatic variation over time. In this study, remote sensing techniques (satellite imagery and passive acoustic recorders) were used to investigate the variation in biophony over different timescales, ranging from one day to one year, in a sub-tropical woodland in eastern Australia. The prominent sources of biophony were birds at dawn and during the day, nocturnal insects at dusk and during the night, and diurnal birds and insects (mainly cicadas) over the summer period of December, January, and February. While different environmental factors were found to be key drivers of phenological response in different faunal groups, temperature, humidity and the interactions between temperature, humidity, moon illumination and vegetation greenness were most important factors overall. Using observed temperatures relative to the historical mean for each day of the year, we evaluated the impact of higher-than-average temperatures on calling activity. We found that nocturnal insects call less frequently on days when the temperature was hotter than average in winter months (June, July, and August), and birds call less frequently in hot spring days (September, October, and November) meaning these groups can be susceptible to temperature increase as consequence, for example, of climate change. This study demonstrates how animal calling behaviour is affected by different environmental variables over different temporal scales. This study also demonstrates the utility of remote sensing techniques for assessing the impacts of climate change on biodiversity. It is highly recommended that monitoring schemes and impact assessments account for phenological changes and environmental variability, as these are complex and important processes shaping animal communities.

Item ID: 87094
Item Type: Article (Research - C1)
ISSN: 1879-1026
Keywords: Acoustic indices, Biophony, Climate change, Ecoacoustics, Remote sensing, Temporal scales
Copyright Information: © 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
Date Deposited: 17 Sep 2025 02:24
FoR Codes: 31 BIOLOGICAL SCIENCES > 3103 Ecology > 310308 Terrestrial ecology @ 50%
41 ENVIRONMENTAL SCIENCES > 4104 Environmental management > 410401 Conservation and biodiversity @ 50%
SEO Codes: 18 ENVIRONMENTAL MANAGEMENT > 1806 Terrestrial systems and management > 180606 Terrestrial biodiversity @ 100%
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page