A novel decoupled model predictive control-based motion cueing algorithm for driving simulators

Asadi, Houshyar, Bellmann, Tobias, Chalak Qazani, Mohamad Reza, Mohamed, Shady, Lim, Chee Peng, and Nahavandi, Saeid (2023) A novel decoupled model predictive control-based motion cueing algorithm for driving simulators. IEEE Transactions on Vehicular Technology, 72 (6). pp. 7024-7034.

[img] PDF (Published Version) - Published Version
Restricted to Repository staff only

View at Publisher Website: https://doi.org/10.1109/TVT.2023.3237317
 
1


Abstract

The motion cueing algorithm (MCA) is used to reproduce the driving/flying motion sensation of the real land or air vehicles for the users of motion simulator. Highly accurate MCAs are required for the motion simulators to create realistic sensation for the simulator users, otherwise, they might cause motion sickness and user discomfort. Model predictive control (MPC) is a popular technique in development of the high-fidelity MCAs as it is able to consider the motion sensation as well as the workspace constraints of the simulator platform. Tilt coordination in MCA is in charge of creating sustained linear acceleration feeling through tilting the platform cabin and exploiting gravitational acceleration under human motion threshold, to not allow the user to perceive this as a rotational motion. However, the existing MPC-based MCAs have not considered the rate limit to constrain the tilt motion under human threshold which causes violations of the rotational sensation threshold during generating sustained acceleration feeling. Instead, some researchers increase the penalty weights of rotational motions in order to slow down rotational motions. Using this strategy slows down all the simulator rotational motions not only the ones coming from tilt coordination, to generate sustained acceleration feeling, but also from rotational channel (due to real vehicle rotation) which causes motion sensation error and consequently motion sickness. Therefore, as the existing MPC-based MCAs cannot differentiate the rotations of tilt coordination channel (due to sustained acceleration feeling generation), from rotational channel (due to vehicle rotational motions), they are not able to produce accurate rotational motion sensations because of insufficient rotational motions. In this research, a novel decoupled MPC-based MCA is developed to systematically address the issues related to the existing MPC-based MCAs, in terms of inaccurate motion generation, by redesigning the MPC-based MCA using a series of vestibular system-based MPC models and considering tilt rate limit in tilt coordination. The simulation study using MATLAB software is used to verify and validate the proposed MCA compared to the existing MCAs. The proposed decoupled MPC-based MCA is able to generate accurate motion cues compared to those of the existing MCAs.

Item ID: 86732
Item Type: Article (Research - C1)
ISSN: 1939-9359
Copyright Information: © 2023 IEEE.
Date Deposited: 16 Sep 2025 02:37
FoR Codes: 40 ENGINEERING > 4007 Control engineering, mechatronics and robotics > 400705 Control engineering @ 70%
40 ENGINEERING > 4007 Control engineering, mechatronics and robotics > 400711 Simulation, modelling, and programming of mechatronics systems @ 30%
SEO Codes: 28 EXPANDING KNOWLEDGE > 2801 Expanding knowledge > 280110 Expanding knowledge in engineering @ 100%
Downloads: Total: 1
Last 12 Months: 1
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page