Specific Heat Capacity Extraction of Soybean Oil/MXene Nanofluids Using Optimized Long Short-Term Memory
Chalak Qazani, Mohammad Reza, Aslfattahi, Navid, Kulish, Vladimir, Asadi, Houshyar, Schmirler, Michal, Zakarya, Muhammad, Alizadehsani, Roohallah, Haleem, Muhammad, and Kadirgama, K. (2024) Specific Heat Capacity Extraction of Soybean Oil/MXene Nanofluids Using Optimized Long Short-Term Memory. IEEE Access, 12. pp. 59049-59062.
|
PDF (Published Version)
- Published Version
Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (2MB) | Preview |
Abstract
Researchers are turning to nanofluids in PV/T hybrid systems for enhanced efficiency due to nanoparticle dispersion, improving thermal and optical properties over conventional fluids. Three different concentrations of formulated soybean oil based MXene nanofluids are considered 0.025, 0.075 and 0.125 wt.%. Maximum specific heat capacity nanofluids ( cpNF ) augmentation is 24.49% at 0.125 wt.% loading of Ti3C2 in the base oil. The calculation of the cpNF based on the temperature and nanoflakes concentration is very expensive and time-consuming as it should be calculated via the practical test investigation. This study employs a long short-term memory (LSTM) as an efficient machine learning method to extract the surrogate model for calculating the cpNF based on the temperature and nanoflakes concentration. In addition, a couple of other machines learning methods, including support vector regression (SVR), group method of data handling (GMDH), and multi-layer perceptron (MLP), are developed to prove the higher efficiency of the recently proposed LSTM model in the calculation of the cpNF . In addition, the Bayesian optimization technique is employed to calculate the optimal hyperparameters of the developed SVR, GMDH, MLP and LSTM to reach the highest efficiency of the system in predicting the cpNF based on temperature and nanoflakes concentration. Notably, 95% of the recorded data via differential scanning calorimetry (DSC) is used for training machine learning techniques. In comparison, 5% is used for testing and validation purposes of the developed algorithm. The newly proposed optimized SVR, GMDH, MLP, and LSTM are modelled in MATLAB software. The results show that the newly proposed optimized LSTM model can reduce the mean square error in calculating the cpNF by 99%, 99% and 91% compared with SVM, GMDH and MLP, respectively. The proposed methodology can be used to calculate other thermophysical properties of nanofluids.
Item ID: | 86713 |
---|---|
Item Type: | Article (Research - C1) |
ISSN: | 2169-3536 |
Keywords: | Nanofluids, MXene, deep learning, machine learning, specific heat capacity, Bayesian optimization |
Copyright Information: | 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ |
Date Deposited: | 30 Sep 2025 02:50 |
FoR Codes: | 40 ENGINEERING > 4012 Fluid mechanics and thermal engineering > 401210 Microfluidics and nanofluidics @ 70% 46 INFORMATION AND COMPUTING SCIENCES > 4611 Machine learning > 461103 Deep learning @ 30% |
SEO Codes: | 24 MANUFACTURING > 2406 Environmentally sustainable manufacturing activities > 240699 Environmentally sustainable manufacturing activities not elsewhere classified @ 75% 22 INFORMATION AND COMMUNICATION SERVICES > 2204 Information systems, technologies and services > 220404 Computer systems @ 25% |
Downloads: |
Total: 1 Last 12 Months: 1 |
More Statistics |