Upscaling the contribution of crab burrows to mangrove ecosystem functioning in French Guiana (South America)

Michaud, Emma, Aschenbroich, Adelaide, Stieglitz, Thomas, Brunier, Guillaume, Aller, Robert Curwood, Anthony, Edward, Fromard, François, and Thouzeau, Gérard (2024) Upscaling the contribution of crab burrows to mangrove ecosystem functioning in French Guiana (South America). Regional Environmental Change, 24. 165.

[img]
Preview
PDF (Punlished Version) - Published Version
Available under License Creative Commons Attribution.

Download (4MB) | Preview
View at Publisher Website: https://doi.org/10.1007/s10113-024-02319...


Abstract

Burrow characteristics and bioturbation activities of benthic organisms play a key role in mangrove ecosystem biogeochemical and sedimentary functioning. In this study, we aimed to understand how small-scale topographic variations in a mud bank might influence burrow morphology and distribution in a French Guiana pioneer mangrove system (Sinnamary estuary), and to upscale spatial patterns using remote sensing. We used burrow resin casting and sediment conductivity measurements to depict subsurface 3D burrow structures. We found that the spatial heterogeneity of burrow sizes (small, medium, large) and morphologies (simple I- and J-shape, complex geometries) depended on the geomorphic units within mudflats (platform, channel, depression). The aperture areas of burrow casts were used to predict the volume and complexity of each burrow type, enabling us to use drone-derived burrow opening distribution maps to calculate burrow volumes and complexity at the mudflat scale. There are clear associations between tidal channels and depressions and voluminous, multi-aperture, complex and multi-species burrows. In contrast, simple I- and J-shaped burrows inhabited by single species were mainly found on platforms. These relationships lead to a comparatively large volume of tidal-irrigated and deeply aerated sediments connected to channels and depressions compared to platform areas. We suggest that, depending on their morphology and connectivity with the topography, burrows may exhibit differences in biogeochemical functioning depending on the geomorphic unit. We warn against generalizing the functioning of mangrove ecosystems across geomorphic units where impacts may differ. Further studies are needed to understand how different burrow morphologies and life cycles may alter hydrological, sedimentary and biogeochemical functioning.

Item ID: 84850
Item Type: Article (Research - C1)
ISSN: 1436-378X
Copyright Information: Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Date Deposited: 11 Mar 2025 03:17
FoR Codes: 31 BIOLOGICAL SCIENCES > 3103 Ecology > 310305 Marine and estuarine ecology (incl. marine ichthyology) @ 100%
SEO Codes: 18 ENVIRONMENTAL MANAGEMENT > 1802 Coastal and estuarine systems and management > 180299 Coastal and estuarine systems and management not elsewhere classified @ 100%
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page