Low light intensity increased survival of coral spat in aquaculture

Ramsby, B.D., Emonnot, F., Flores, F., Schipper, S., Diaz-Pulido, G., Abdul Wahab, M.A., Severati, A., and Negri, A.P. (2024) Low light intensity increased survival of coral spat in aquaculture. Coral Reefs, 43. pp. 627-640.

[img]
Preview
PDF (Published Version) - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview
View at Publisher Website: https://doi.org/10.1007/s00338-024-02489...
 
1


Abstract

Coral reef ecosystems are declining and may not recover under future climate scenarios without intervention. Seeding reefs with corals bred in aquaculture is a promising restoration intervention; however, early coral recruits (spat) are vulnerable to overgrowth by benthic algae and maximizing their survival is essential for the feasibility of large-scale breeding operations. This study investigated the optimal light quality and intensity for spat survival and growth in the presence of algal communities typically used in coral aquaculture to induce larval settlement, but which might also outcompete spat and reduce survival during the grow-out period. Spat were exposed to two light spectra (blue and a full spectrum) at four light intensities (5–160 µmol m−2 s−1) over 12-week post-settlement. Survival was reduced under the highest intensity by nearly 40% compared to the lowest intensity. Light spectrum only affected survival at 60 µmol m−2 s−1—where survival was higher under blue compared to full spectrum light. Light treatments did not affect final spat size but spat were 33% smaller at the highest light intensity in weeks 6 and 8 due to overgrowth by crustose coralline algae (CCA), which was most abundant under these conditions. Low light intensity, on the other hand, favored green and brown algae, potentially due to their respective physiologies or less competition from crustose coralline algae. These results indicate that low light intensity presents several advantages for maintaining spat in coral aquaculture, including maximizing survival without significantly affecting growth, as well as minimizing husbandry and operating expenses.

Item ID: 83303
Item Type: Article (Research - C1)
ISSN: 1432-0975
Copyright Information: © Crown 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Date Deposited: 15 Apr 2025 04:44
FoR Codes: 31 BIOLOGICAL SCIENCES > 3103 Ecology > 310305 Marine and estuarine ecology (incl. marine ichthyology) @ 100%
SEO Codes: 18 ENVIRONMENTAL MANAGEMENT > 1805 Marine systems and management > 180501 Assessment and management of benthic marine ecosystems @ 100%
Downloads: Total: 1
Last 12 Months: 1
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page