Age-dependent change and intraskeletal variability in secondary osteons of elderly Australians

Pedersen, Lucille T., Miszkiewicz, Justyna, Cheah, Lit Chien, Willis, Anna, and Domett, Kate M. (2024) Age-dependent change and intraskeletal variability in secondary osteons of elderly Australians. Journal of Anatomy, 244 (6). pp. 1078-1092.

[img]
Preview
PDF (Publisher Accepted Version) - Published Version
Available under License Creative Commons Attribution Non-commercial.

Download (4MB) | Preview
View at Publisher Website: https://doi.org/10.1111/joa.14010
 
43


Abstract

There is a need to fully understand intra-skeletal variability within different populations to develop and improve age-at-death estimation methods. This study evaluates age-related histomorphometric changes in three different bones intra-individually in a modern Australian sample. Four female and 13 male elderly Australian adult donors (67–93 years) were examined for osteon population density (OPD), osteon area (On.Ar), and Haversian canal area (H.Ar) of secondary osteons to compare between femora, ribs, and humeri and assess against age. In the pooled sex sample, no statistically significant correlations were observed between age and each histological variable. In the males, OPD of the femur increased significantly with age, as did porosity in the rib. In the male humeri, OPD increased moderately with age, while H.Ar was decreased moderately with age. Intra-bone comparisons showed that males had significantly higher osteon counts in their ribs compared to their femora, while their ribs showed statistically significantly less porosity than their humeri. When bone size was accounted for, by adjusting the femur and humerus histology data by robusticity indices, histology values were found to be similar between bones within the same individual. This is despite the upper and lower limbs receiving different ranges and types of biomechanical load. Our findings demonstrate that bone size influences histomorphometry, and this could confound age-at-death estimations that have not been adjusted for robusticity. Future studies would benefit from examining bone histomorphometry within a larger sample size and incorporating bone robusticity measures into histology analyses.

Item ID: 82074
Item Type: Article (Research - C1)
ISSN: 1469-7580
Keywords: age-related histomorphometry, intra-skeletal variation, osteon, remodelling, robusticity index
Related URLs:
Copyright Information: This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. © 2024 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.
Date Deposited: 06 Mar 2024 23:10
FoR Codes: 44 HUMAN SOCIETY > 4401 Anthropology > 440103 Biological (physical) anthropology @ 30%
31 BIOLOGICAL SCIENCES > 3199 Other biological sciences > 319999 Other biological sciences not elsewhere classified @ 70%
SEO Codes: 28 EXPANDING KNOWLEDGE > 2801 Expanding knowledge > 280102 Expanding knowledge in the biological sciences @ 100%
Downloads: Total: 43
Last 12 Months: 10
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page