Trophic ecology shapes spatial ecology of two sympatric predators, the great hammerhead shark (Sphyrna mokarran) and bull shark (Carcharhinus leucas)

Lubitz, Nicolas, Abrantes, Kátya, Crook, Kevin, Currey-Randall, Leanne M., Chin, Andrew, Sheaves, Marcus, Fitzpatrick, Richard, Barbosa Martins, Ana, Bierwagen, Stacy, Miller, Ingo B., and Barnett, Adam (2023) Trophic ecology shapes spatial ecology of two sympatric predators, the great hammerhead shark (Sphyrna mokarran) and bull shark (Carcharhinus leucas). Frontiers in Marine Science, 10. 1274275.

PDF (Published Version) - Published Version
Available under License Creative Commons Attribution.

Download (9MB) | Preview
View at Publisher Website:


Information on how the trophic ecology of predators shapes their movement patterns and space-use is fundamental to understanding ecological processes across organisational levels. Despite this, studies combining spatial and trophic ecology to determine how prey preference and/or resource availability shape space use are lacking in marine predators as these can occur at low density and are often difficult to track over extended periods. Furthermore, many exhibit behavioural variability within species and among closely related, sympatric species adding further complexity. We applied a context-focused, multi-method approach to the understudied great hammerhead shark (Sphyrna mokarran) to test if movement and home ranges relate to prey preference and availability. Movement data from satellite and acoustic telemetry in Queensland, Australia, were combined with stable-isotope analysis, drone surveys, and videos of hunting behaviour. Limited dispersal, and small home ranges in S. mokarran were linked to trophic specialisation on stingray prey. Drone surveys and videos showed predation events on stingrays and demonstrated high, year-round availability of this prey in shallow, inshore habitats, which may allow the majority of S. mokarran to remain resident. This affinity for inshore habitats suggests that critical life-history requirements are performed over local or regional scales, although some larger movements were evident. These results were interpreted in comparison to the well-studied bull shark (Carcharhinus leucas), which showed reliance on pelagic food webs. Carcharhinus leucas had high individual variability in movement, with both large-scale migrations and residency. This could indicate that only some individuals are locally sustained on dynamic, pelagic food webs, while others undergo large-scale excursions over distant habitats. The specialised foraging of S. mokarran indicates they play an apex predator role in shallow, inshore habitats, potentially shaping space-use, and foraging behaviour of batoids. As inshore habitats are disproportionately affected by anthropogenic stressors, S. mokarran’s trophic specialisation and limited demographic connectivity may make the species particularly vulnerable to anthropogenic threats.

Item ID: 81446
Item Type: Article (Research - C1)
ISSN: 2296-7745
Keywords: context, feeding specialisation, habitat use, inshore habitats, marine predators, movement ecology, predator-prey, telemetry
Copyright Information: © 2023 Lubitz, Abrantes, Crook, Currey-Randall, Chin, Sheaves, Fitzpatrick, Barbosa Martins, Bierwagen, Miller and Barnett. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Date Deposited: 11 Mar 2024 06:25
FoR Codes: 31 BIOLOGICAL SCIENCES > 3103 Ecology > 310305 Marine and estuarine ecology (incl. marine ichthyology) @ 100%
SEO Codes: 18 ENVIRONMENTAL MANAGEMENT > 1805 Marine systems and management > 180504 Marine biodiversity @ 100%
Downloads: Total: 34
Last 12 Months: 34
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page