Long-term preconditioning of the coral Pocillopora acuta does not restore performance in future ocean conditions

Roper, C.D., Donelson, J.M., Ferguson, S., van Oppen, M.J.H., and Cantin, N.E. (2023) Long-term preconditioning of the coral Pocillopora acuta does not restore performance in future ocean conditions. Coral Reefs, 42. pp. 1079-1096.

[img]
Preview
PDF (Published Version) - Published Version
Available under License Creative Commons Attribution.

Download (2MB) | Preview
View at Publisher Website: https://doi.org/10.1007/s00338-023-02401...
 
6


Abstract

There is overwhelming evidence that tropical coral reefs are severely impacted by human induced climate change. Assessing the capability of reef-building corals to expand their tolerance limits to survive projected climate trajectories is critical for their protection and management. Acclimation mechanisms such as developmental plasticity may provide one means by which corals could cope with projected ocean warming and acidification. To assess the potential of preconditioning to enhance thermal tolerance in the coral Pocillopora acuta, colonies were kept under three different scenarios from settlement to 17 months old: present day (0.9 °C-weeks (Degree Heating Weeks), + 0.75 °C annual, 400 ppm pCO2) mid-century (2.5 °C-weeks, + 1.5 °C annual, 685 ppm pCO2) and end of century (5 °C-weeks, + 2 °C annual, 900 ppm pCO2) conditions. Colonies from the present-day scenario were subsequently introduced to the mid-century and end of century conditions for six weeks during summer thermal maxima to examine if preconditioned colonies (reared under these elevated conditions) had a higher physiological performance compared to naive individuals. Symbiodiniaceae density and chlorophyll a concentrations were significantly lower in mid-century and end of century preconditioned groups, and declines in symbiont density were observed over the six-week accumulated heat stress in all treatments. Maximum photosynthetic rate was significantly suppressed in mid-century and end of century preconditioned groups, while minimum saturating irradiances were highest for 2050 pre-exposed individuals with parents originating from specific populations. The results of this study indicate preconditioning to elevated temperature and pCO2 for 17 months did not enhance the physiological performance in P. acuta. However, variations in trait responses and effects on tolerance found among treatment groups provides evidence for differential capacity for phenotypic plasticity among populations which could have valuable applications for future restoration efforts.

Item ID: 80368
Item Type: Article (Research - C1)
ISSN: 1432-0975
Keywords: Acclimatization, Coral, Ocean acidification, Phenotypic plasticity, Preconditioning, Thermal stress
Copyright Information: © The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Funders: Australian Research Council (ARC)
Projects and Grants: ARC FL180100036
Date Deposited: 06 Feb 2024 23:20
FoR Codes: 31 BIOLOGICAL SCIENCES > 3103 Ecology > 310305 Marine and estuarine ecology (incl. marine ichthyology) @ 50%
41 ENVIRONMENTAL SCIENCES > 4101 Climate change impacts and adaptation > 410102 Ecological impacts of climate change and ecological adaptation @ 50%
SEO Codes: 19 ENVIRONMENTAL POLICY, CLIMATE CHANGE AND NATURAL HAZARDS > 1901 Adaptation to climate change > 190102 Ecosystem adaptation to climate change @ 100%
Downloads: Total: 6
Last 12 Months: 6
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page