Climate change implications for the Arafura and Timor Seas region: assessing vulnerability of marine systems to inform management and conservation

Johnson, Johanna E., Welch, David J., van Hooidonk, Ruben, Tracey, Dieter, Chandrasa, Ganesha, Molinari, Bianca, Triani, Deti, Tania, Casandra, and Susanto, Handoko (2023) Climate change implications for the Arafura and Timor Seas region: assessing vulnerability of marine systems to inform management and conservation. Climatic Change, 176. 88.

[img]
Preview
PDF (Published Version) - Published Version
Available under License Creative Commons Attribution.

Download (4MB) | Preview
View at Publisher Website: https://doi.org/10.1007/s10584-023-03554...
 
1
8


Abstract

The Arafura and Timor Seas region is shared by Indonesia, Timor Leste, Australia, and Papua New Guinea (PNG), and is at the intersection of the Pacific and Indian oceans. High coastal population densities, degraded habitats, overexploited fisheries, low profile coasts, shallow continental shelves and macro-tidal conditions mean that coastal and marine environments in the region are currently facing multiple pressures. Climate change is expected to exacerbate these pressures and have profound effects on the status and distribution of coastal and marine habitats, the fish and invertebrates they support and, therefore, dependent communities and industries. Downscaled climate change projections for 2041–2070 for air and sea temperature, ocean chemistry and rainfall were modelled to provide spatially relevant regional data for a structured semi-quantitative vulnerability assessment. Results of the assessment were spatially variable and identified shallow coral reefs as highly vulnerable, particularly in the Timor-Leste and Indonesia-Arafura sub-regions. Seagrass meadows were most vulnerable in the Gulf of Carpentaria, Indonesia-Arafura, and Timor-Leste sub-regions. Mangrove habitats were most vulnerable in Timor-Leste and Western PNG sub-regions. Drivers of vulnerability include poor habitat condition, non-climate pressures, low connectivity, and limited formal management. Marine species vulnerability was also spatially variable, with highly vulnerable and priority species identified for each sub-region, including finfish and marine invertebrates. A key driver of species vulnerability was their stock status, with many species in Timor-Leste, Western PNG and Indonesia, and several in northern Australia, overfished or potentially overfished. Limited management in some sub-regions, as well as non-climate pressures such as habitat decline, poor water quality and illegal, unregulated and unreported fishing were also key drivers. Species of conservation interest (dugong and marine turtles) were also highly vulnerable to climate change, driven by their threatened status and the fact that they are low productivity species that take years to recover from impacts. Priority species and habitats for local action were identified and current pressures that undermine condition and/or resilience, with strategic recommendations aimed at minimising climate change vulnerability.

Item ID: 79491
Item Type: Article (Research - C1)
ISSN: 1573-1480
Keywords: Adaptation, Climate change, Marine ecosystems, Resilience, Vulnerability
Copyright Information: © The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
Date Deposited: 21 Feb 2024 00:40
FoR Codes: 41 ENVIRONMENTAL SCIENCES > 4101 Climate change impacts and adaptation > 410102 Ecological impacts of climate change and ecological adaptation @ 50%
31 BIOLOGICAL SCIENCES > 3103 Ecology > 310305 Marine and estuarine ecology (incl. marine ichthyology) @ 50%
SEO Codes: 19 ENVIRONMENTAL POLICY, CLIMATE CHANGE AND NATURAL HAZARDS > 1901 Adaptation to climate change > 190102 Ecosystem adaptation to climate change @ 100%
Downloads: Total: 8
Last 12 Months: 8
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page