Unravelling seascape patterns of cryptic life stages: non-reef habitat use in juvenile parrotfishes
Sievers, Katie T., Abesamis, Rene A., Bucol, Abner A., and Russ, Garry R. (2020) Unravelling seascape patterns of cryptic life stages: non-reef habitat use in juvenile parrotfishes. Diversity, 12 (10). 376.
|
PDF (Published Version)
- Published Version
Available under License Creative Commons Attribution. Download (1MB) | Preview |
Abstract
Juvenile fish often use alternative habitats distinct from their adult phases. Parrotfishes are an integral group of coral reef fish assemblages, are targeted in fisheries, are sensitive to reef disturbances, and have been documented as multiple-habitat users. Considering the abundance of research conducted on parrotfishes, very little is known about their juvenile ecology at the species level due to their cryptic and variable coloration patterns. We collected juvenile parrotfishes in non-reef habitats (macroalgal beds, seagrass beds, and lagoons) in the Philippines and used DNA analysis to determine species composition. The results were then compared with data on adult parrotfish abundance from underwater visual census (UVC) surveys in coral reef and non-reef habitats. Collections identified 15 species of juvenile parrotfishes in non-reef habitats, and of these, 10 were also recorded in UVCs as adults. Informed by adult surveys, 42% of the 19 parrotfish species observed as adults were classified as multi-habitat users based on their presence in coral reef and non-reef habitats. When accounting for the occurrence of species as juveniles in non-reef habitats, 93% of the species collected as juveniles would be considered multi-habitat users. Species identified as juveniles in non-reef habitats comprised 50% of the average adult parrotfish density on coral reefs and 58–94% in non-reef habitats. The species richness of juveniles in non-reef habitats was greater than that of adults occupying the same habitats, and the most common adult species observed in UVCs was not collected as juveniles in non-reef habitats. Finally, UVC suggested that 97% of juvenile parrotfish <10-cm total length was present in non-reef habitats compared to coral reefs. These results provide further evidence for ontogenetic movement across habitat boundaries for parrotfish species in a diverse and highly connected tropical seascape. This is one of the few studies to quantify links between nursery and adult habitat in parrotfishes, highlighting the importance of including non-reef habitats in ecological studies of an iconic group of coral reef fish.
Item ID: | 66684 |
---|---|
Item Type: | Article (Research - C1) |
ISSN: | 1424-2818 |
Keywords: | Coral reefs, Juveniles, Nursery habitat, Ontogeny, Parrotfish, Seascape |
Related URLs: | |
Copyright Information: | © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open accessarticle distributed under the terms and conditions of the Creative Commons Attribution(CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
Additional Information: | A version of this publication was included as Chapter 4 of the following PhD thesis: Sievers, Katie T. (2021) Non-reef habitats in a tropical seascape: the effects of the surrounding seascape on coral reef fishes. PhD thesis, James Cook University, which is available Open Access in ResearchOnline@JCU. Please see the Related URLs for access. |
Funders: | ARC Centre of Excellence for Coral Reef Studies, PADI Foundation, National Academy of Science, James Cook University Postgraduate Research Scholarship |
Projects and Grants: | PADI grant number 32841 |
Date Deposited: | 05 May 2021 03:54 |
FoR Codes: | 31 BIOLOGICAL SCIENCES > 3103 Ecology > 310305 Marine and estuarine ecology (incl. marine ichthyology) @ 100% |
Downloads: |
Total: 925 Last 12 Months: 15 |
More Statistics |