Relationships between suspended particulate material, light attenuation and Secchi depth in UK marine waters

Devlin, M.J., Barry, J., Mills, D.K., Gowen, R.J., Foden, J., Sivyer, D., and Tett, P. (2008) Relationships between suspended particulate material, light attenuation and Secchi depth in UK marine waters. Estuarine, Coastal and Shelf Science , 79 (3). pp. 429-439.

[img] PDF (Published Version)
Restricted to Repository staff only

View at Publisher Website: http://dx.doi.org/10.1016/j.ecss.2008.04...
 
120
1


Abstract

Measurements of sub-surface light attenuation (Kd), Secchi depth and suspended particulate material (SPM) were made at 382 locations in transitional, coastal and offshore waters around the United Kingdom (hereafter UK) between August 2004 and December 2005. Data were analysed statistically in relation to a marine water typology characterised by differences in tidal range, mixing and salinity. There was a strong statistically significant linear relationship between SPM and Kd for the full data set. We show that slightly better results are obtained by fitting separate models to data from transitional waters and coastal and offshore waters combined. These linear models were used to predict Kd from SPM. Using a statistic (D) to quantify the error of prediction of Kd from SPM, we found an overall prediction error rate of 23.1%. Statistically significant linear relationships were also evident between the log of Secchi depth and the log of Kd in waters around the UK. Again, statistically significant improvements were obtained by fitting separate models to estuarine and combined coastal/offshore data – however, the prediction error was improved only marginally, from 31.6% to 29.7%. Prediction was poor in transitional waters (D = 39.5%) but relatively good in coastal/offshore waters (D = 26.9%).

SPM data were extracted from long term monitoring data sites held by the UK Environment Agency. The appropriate linear models (estuarine or combined coastal/offshore) were applied to the SPM data to obtain representative Kd values from estuarine, coastal and offshore sites. Estuarine waters typically had higher concentrations of SPM (8.2–73.8 mg l−1) compared to coastal waters (3.0–24.1 mg l−1) and offshore waters (9.3 mg l−1). The higher SPM values in estuarine waters corresponded to higher values of Kd (0.8–5.6 m−1). Water types that were identified by large tidal ranges and exposure typically had the highest Kd ranges in both estuarine and coastal waters. In terms of susceptibility to eutrophication, large macrotidal, well mixed estuarine waters, such as the Thames embayment and the Humber estuary were identified at least risk from eutrophic conditions due to light-limiting conditions of the water type.

Item ID: 6292
Item Type: Article (Research - C1)
ISSN: 1096-0015
Keywords: light attenuation; suspended particulate matter; chlorophyll; CDOM; Water Framework Directive; Secchi depth
Date Deposited: 21 Jan 2010 06:02
FoR Codes: 04 EARTH SCIENCES > 0405 Oceanography > 040501 Biological Oceanography @ 50%
06 BIOLOGICAL SCIENCES > 0602 Ecology > 060205 Marine and Estuarine Ecology (incl Marine Ichthyology) @ 50%
SEO Codes: 96 ENVIRONMENT > 9606 Environmental and Natural Resource Evaluation > 960699 Environmental and Natural Resource Evaluation not elsewhere classified @ 50%
96 ENVIRONMENT > 9605 Ecosystem Assessment and Management > 960508 Ecosystem Assessment and Management of Mining Environments @ 50%
Downloads: Total: 1
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page