Phosphorus nutrition in farmed Atlantic salmon (Salmo salar): life stage and temperature effects on bone pathologies

Fraser, Thomas W. K., Witten, P. Eckhard, Albrektsen, Sissel, Breck, Olav, Fontanillas, Roman, Nankervis, Leo, Thomsen, Tårn Helgøy, Koppe, Wolfgang, Sambraus, Florian, and Fjelldal, Per Gunnar (2019) Phosphorus nutrition in farmed Atlantic salmon (Salmo salar): life stage and temperature effects on bone pathologies. Aquaculture, 511. 734246.

PDF (Published version) - Published Version
Available under License Creative Commons Attribution.

Download (617kB) | Preview
View at Publisher Website:


Bone health is important for a viable and ethically sound Atlantic salmon aquaculture industry. Two important risk factors for vertebral deformities are dietary phosphorus and water temperature. Here, we explore the interplay between these two factors during a full production of Atlantic salmon. Salmon were fed one of three diets (low 4.4–5.0 g kg−1, medium 7.1–7.6 g kg−1, or high 9.0–9.7 g kg−1 soluble phosphorus) from 3 to 500 g body weight, followed by a common diet of 7.3 g kg−1 soluble phosphorus until harvest size at 4 kg. Additional groups were included to investigate the effects of water temperatures of 10 vs 16 °C (low and high diets only) and the switching of dietary phosphorus levels (from low to medium or high, from medium to low or high, from high to low or medium), starting at seawater transfer (~100 g body weight) and lasting for 4 months (~500 g body weight). During the experimental feeding period, the low phosphorus diet caused reduced bone mineralization and stiffness and a greater prevalence of vertebral deformities, compared to the medium and high phosphorus diets. However, the prevalence of severely deformed fish at harvest was reduced by switching from the low to either the medium or high phosphorus diets for 4 months after seawater transfer, followed by rearing on the standard commercial feed. Concurrently, switching from either the medium or high to a low phosphorus diet for the same period following seawater transfer had no effect on vertebral deformities at harvest. The higher water temperature for 4 months following seawater transfer increased the severity of deformities at harvest, irrespective of dietary phosphorus. Finally, low dietary phosphorus was associated with increased fillet damage, due to ectopic connective tissue around the spine, at harvest. In conclusion, dietary phosphorus levels of 5 g kg−1 for the initial 4 months in seawater are more of a risk factor for vertebral pathologies if preceded by low, but not medium or high, dietary phosphorus in freshwater. However, dietary phosphorus levels may not play a role in temperature induced radiologically detectable vertebral pathologies. Under the reported growing conditions and diet compositions, a combination of 7.5–7.6 g kg−1 soluble phosphorus during freshwater and 5.0 g kg−1 f

Item ID: 62098
Item Type: Article (Research - C1)
ISSN: 1873-5622
Keywords: Aquaculture, nutrition, phosphorous, deformity
Copyright Information: © 2019 The Authors. Published by Elsevier B.V. This is an Open Access article, distributed under the Creative Commons Attribution license.
Funders: Fiskeri- og Havbruksnæringens Forskningsfond ([FHF] Fisheries and Aquaculture Industry Research Fund
Projects and Grants: FHF project number 900798
Research Data:
Date Deposited: 05 Feb 2020 04:06
FoR Codes: 30 AGRICULTURAL, VETERINARY AND FOOD SCIENCES > 3003 Animal production > 300303 Animal nutrition @ 100%
SEO Codes: 83 ANIMAL PRODUCTION AND ANIMAL PRIMARY PRODUCTS > 8301 Fisheries - Aquaculture > 830102 Aquaculture Fin Fish (excl. Tuna) @ 100%
Downloads: Total: 717
Last 12 Months: 79
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page