Parasite attractants: identifying trap baits for parasite management in aquaculture

Skilton, Dylan C., Saunders, Richard J., and Hutson, Kate S. (2020) Parasite attractants: identifying trap baits for parasite management in aquaculture. Aquaculture, 516. 734557.

[img] PDF (Published Version) - Published Version
Restricted to Repository staff only

View at Publisher Website:


Aquatic parasites may respond to various attractants and cues to find and infect a host. Traps that use these attractants as 'bait' have potential to reduce the number of pathogenic agents in aquaculture environments. This study examined four potential attractants (i.e., urea, host mucus, parasite conspecifics and light) and the response of two problematic marine parasite species, to identify the most suitable bait for trap development in finfish aquaculture. Two globally distributed parasite species (i.e., Neobenedenia girellae, (Hargis, 1955); and Cryptocaryon irritans, Brown, 1951) were chosen as models. A chemotaxis experiment was used to compare the attractiveness of each species' infectious life stage to urea, host mucus, parasite conspecifics and a seawater control, while a phototaxis experiment was used to identify phototactic responses of the parasites to light or dark. We found that urea and light attracted more than twice the number of infective protozoans and flukes (monogeneans), respectively, compared to other attractants/controls. Cryptocaryon irritans theronts were positively chemotactic to urea (Beta Regression Analysis; Odds Ratio (OR) 2.69, p = 0.00017), while Neobendenia girellae was positively phototactic to light (Mixed Effect Logistic Regression; OR 2.5, p = 0.0014). A final experiment examined the emergence of C. irritans over a 24-hour period and identified that the vast majority excysted at night (ANOVA; p-value < 0.001). In contrast, previous studies have shown that the majority of N. girellae oncomiracidia hatch in the morning. This indicated that the best time to deploy traps to capture infective C. irritans theronts and N. girellae oncomiracidia would be prior to sunset and sunrise, respectively. The manipulation of urea and light and other potential attractants combined with strategic deployment of traps to coincide with the emergence of infectious life stages may prove useful in aquaculture where parasite epidemics can compromise production and animal welfare.

Item ID: 61428
Item Type: Article (Research - C1)
ISSN: 1873-5622
Keywords: Neobenedenia girellae, Cryptocaryon irritans, chemotaxis, Phototaxis, Parasite, Disease management
Copyright Information: © 2019 Published by Elsevier B.V
Funders: James Cook University (JCU)
Projects and Grants: JCU Development Grant
Date Deposited: 15 Jan 2020 07:40
FoR Codes: 30 AGRICULTURAL, VETERINARY AND FOOD SCIENCES > 3005 Fisheries sciences > 300501 Aquaculture @ 100%
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page