The bioeroding sponge Cliona orientalis will not tolerate future projected ocean warming

Ramsby, Blake D., Hoogenboom, Mia O., Smith, Hillary A., Whalan, Steve, and Webster, Nicole S. (2018) The bioeroding sponge Cliona orientalis will not tolerate future projected ocean warming. Scientific Reports, 8. 8302.

PDF (Published Version) - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview
View at Publisher Website:


Coral reefs face many stressors associated with global climate change, including increasing sea surface temperature and ocean acidification. Excavating sponges, such as Cliona spp., are expected to break down reef substrata more quickly as seawater becomes more acidic. However, increased bioerosion requires that Cliona spp. maintain physiological performance and health under continuing ocean warming. In this study, we exposed C. orientalis to temperature increments increasing from 23 to 32 °C. At 32 °C, or 3 °C above the maximum monthly mean (MMM) temperature, sponges bleached and the photosynthetic capacity of Symbiodinium was compromised, consistent with sympatric corals. Cliona orientalis demonstrated little capacity to recover from thermal stress, remaining bleached with reduced Symbiodinium density and energy reserves after one month at reduced temperature. In comparison, C. orientalis was not observed to bleach during the 2017 coral bleaching event on the Great Barrier Reef, when temperatures did not reach the 32 °C threshold. While C. orientalis can withstand current temperature extremes (<3 °C above MMM) under laboratory and natural conditions, this species would not survive ocean temperatures projected for 2100 without acclimatisation or adaptation (≥3 °C above MMM). Hence, as ocean temperatures increase above local thermal thresholds, C. orientalis will have a negligible impact on reef erosion.

Item ID: 57227
Item Type: Article (Research - C1)
ISSN: 2045-2322
Related URLs:
Copyright Information: Open Access: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit
Additional Information:

A version of this publication was included as Chapter 3 of the following PhD thesis: Ramsby, Blake Donald (2018) The effects of a changing marine environment on the bioeroding sponge Cliona orientalis. PhD thesis, James Cook University, which is available Open Access in ResearchOnline@JCU. Please see the Related URLs for access.

Funders: Australian Research Council (ARC)
Projects and Grants: ARC Future Fellowship FT120100480
Date Deposited: 07 Mar 2019 00:37
FoR Codes: 31 BIOLOGICAL SCIENCES > 3104 Evolutionary biology > 310406 Evolutionary impacts of climate change @ 100%
SEO Codes: 96 ENVIRONMENT > 9603 Climate and Climate Change > 960305 Ecosystem Adaptation to Climate Change @ 100%
Downloads: Total: 914
Last 12 Months: 93
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page