Shift towards pro-inflammatory intestinal bacteria aggravates acute murine colitis via toll-like receptors 2 and 4

Heimesaat, Markus M., Fischer, André, Siegmund, Britta, Kupz, Andreas, Niebergall, Julia, Fuchs, David, Jahn, Hannah-Katharina, Freudenberg, Marina, Loddenkemper, Christoph, Batra, Arvind, Lehr, Hans-Anton, Liesenfeld, Oliver, Blaut, Michael, Göbel, Ulf B., Schumann, Ralf R., and Bereswill, Stefan (2007) Shift towards pro-inflammatory intestinal bacteria aggravates acute murine colitis via toll-like receptors 2 and 4. PLoS ONE, 2 (7). e662. pp. 1-7.

[img]
Preview
PDF (Published Version) - Published Version
Available under License Creative Commons Attribution.

Download (356kB) | Preview
View at Publisher Website: http://doi.org/10.1371/journal.pone.0000...
 
166


Abstract

Background: Gut bacteria trigger colitis in animal models and are suspected to aggravate inflammatory bowel diseases. We have recently reported that Escherichia coli accumulates in murine ileitis and exacerbates small intestinal inflammation via Toll-like receptor (TLR) signaling.

Methodology and principal findings: Because knowledge on shifts in the intestinal microflora during colitis is limited, we performed a global survey of the colon flora of C57BL/10 wild-type (wt), TLR2(-/-), TLR4(-/-), and TLR2/4(-/-) mice treated for seven days with 3.5% dextrane-sulfate-sodium (DSS). As compared to wt animals, TLR2(-/-), TLR4(-/-), and TLR2/4(-/-) mice displayed reduced macroscopic signs of acute colitis and the amelioration of inflammation was associated with reduced IFN-gamma levels in mesenteric lymph nodes, lower amounts of neutrophils, and less FOXP3-positive T-cells in the colon in situ. During acute colitis E. coli increased in wt and TLR-deficient mice (P<0.05), but the final numbers reached were significantly lower in TLR2(-/-), TLR4(-/-) and TLR2/4(-/-) animals, as compared to wt controls (P<0.01). Concentrations of Bacteroides/ Prevotella spp., and enterococci did not increase during colitis, but their numbers were significantly reduced in the colon of DSS-treated TLR2/4(-/-) animals (P<0.01). Numbers of lactobacilli and clostridia remained unaffected by colitis, irrespective of the TLR-genotype of mice. Culture-independent molecular analyses confirmed the microflora shifts towards enterobacteria during colitis and showed that the gut flora composition was similar in both, healthy wt and TLR-deficient animals.

Conclusions and significance: DSS-induced colitis is characterized by a shift in the intestinal microflora towards pro-inflammatory Gram-negative bacteria. Bacterial products exacerbate acute inflammation via TLR2- and TLR4-signaling and direct the recruitment of neutrophils and regulatory T-cells to intestinal sites. E. coli may serve as a biomarker for colitis severity and DSS-induced barrier damage seems to be a valuable model to further identify bacterial factors involved in maintaining intestinal homeostasis and to test therapeutic interventions based upon anti-TLR strategies.

Item ID: 49881
Item Type: Article (Research - C1)
ISSN: 1932-6203
Additional Information:

© 2007 Heimesaat et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funders: Deutsche Forschungsgemeinschaft (DFG), Sonnenfeld Foundation Berlin
Date Deposited: 21 Aug 2017 22:28
FoR Codes: 06 BIOLOGICAL SCIENCES > 0605 Microbiology > 060502 Infectious Agents @ 40%
11 MEDICAL AND HEALTH SCIENCES > 1103 Clinical Sciences > 110309 Infectious Diseases @ 40%
11 MEDICAL AND HEALTH SCIENCES > 1107 Immunology > 110707 Innate Immunity @ 20%
SEO Codes: 97 EXPANDING KNOWLEDGE > 970106 Expanding Knowledge in the Biological Sciences @ 65%
92 HEALTH > 9201 Clinical Health (Organs, Diseases and Abnormal Conditions) > 920109 Infectious Diseases @ 35%
Downloads: Total: 166
Last 12 Months: 11
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page