Methods matter: considering locomotory mode and respirometry technique when estimating metabolic rates of fishes
Rummer, Jodie L., Binning, Sandra A., Roche, Dominique G., and Johansen, Jacob L. (2016) Methods matter: considering locomotory mode and respirometry technique when estimating metabolic rates of fishes. Conservation Physiology, 4 (1). cow008. pp. 1-13.
|
PDF (Published Version)
- Published Version
Available under License Creative Commons Attribution. Download (3MB) | Preview |
Abstract
Respirometry is frequently used to estimate metabolic rates and examine organismal responses to environmental change. Although a range of methodologies exists, it remains unclear whether differences in chamber design and exercise (type and duration) produce comparable results within individuals and whether the most appropriate method differs across taxa. We used a repeated-measures design to compare estimates of maximal and standard metabolic rates (MMR and SMR) in four coral reef fish species using the following three methods: (i) prolonged swimming in a traditional swimming respirometer; (ii) short-duration exhaustive chase with air exposure followed by resting respirometry; and (iii) short-duration exhaustive swimming in a circular chamber. We chose species that are steady/prolonged swimmers, using either a body–caudal fin or a median–paired fin swimming mode during routine swimming. Individual MMR estimates differed significantly depending on the method used. Swimming respirometry consistently provided the best (i.e. highest) estimate of MMR in all four species irrespective of swimming mode. Both short-duration protocols (exhaustive chase and swimming in a circular chamber) produced similar MMR estimates, which were up to 38% lower than those obtained during prolonged swimming. Furthermore, underestimates were not consistent across swimming modes or species, indicating that a general correction factor cannot be used. However, SMR estimates (upon recovery from both of the exhausting swimming methods) were consistent across both short-duration methods. Given the increasing use of metabolic data to assess organismal responses to environmental stressors, we recommend carefully considering respirometry protocols before experimentation. Specifically, results should not readily be compared across methods; discrepancies could result in misinterpretation of MMR and aerobic scope.
Item ID: | 45323 |
---|---|
Item Type: | Article (Research - C1) |
ISSN: | 2051-1434 |
Keywords: | body–caudal fin swimming, carangiform, circular swimming chamber, labriform, median–paired fin swimming, oxygen consumption rate |
Additional Information: | © The Author 2016. Published by Oxford University Press and the Society for Experimental Biology. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
Date Deposited: | 28 Aug 2016 22:01 |
FoR Codes: | 31 BIOLOGICAL SCIENCES > 3104 Evolutionary biology > 310410 Phylogeny and comparative analysis @ 50% 31 BIOLOGICAL SCIENCES > 3109 Zoology > 310910 Animal physiology - systems @ 50% |
SEO Codes: | 97 EXPANDING KNOWLEDGE > 970106 Expanding Knowledge in the Biological Sciences @ 100% |
Downloads: |
Total: 1162 Last 12 Months: 1 |
More Statistics |