Raccoon contact networks predict seasonal susceptibility to rabies outbreaks and limitations of vaccination
Reynolds, Jennifer J.H., Hirsch, Ben T., Gehrt, Stanley D., and Craft, Meggan E. (2015) Raccoon contact networks predict seasonal susceptibility to rabies outbreaks and limitations of vaccination. Journal of Animal Ecology, 84 (6). pp. 1720-1731.
PDF (Published Version)
- Published Version
Restricted to Repository staff only |
Abstract
1. Infectious disease transmission often depends on the contact structure of host populations. Although it is often challenging to capture the contact structure in wild animals, new technology has enabled biologists to obtain detailed temporal information on wildlife social contacts. In this study, we investigated the effects of raccoon contact patterns on rabies spread using network modelling.
2. Raccoons (Procyon lotor) play an important role in the maintenance of rabies in the United States. It is crucial to understand how contact patterns influence the spread of rabies in raccoon populations in order to design effective control measures and to prevent transmission to human populations and other animals.
3. We constructed a dynamic system of contact networks based on empirical data from proximity logging collars on a wild suburban raccoon population and then simulated rabies spread across these networks. Our contact networks incorporated the number and duration of raccoon interactions. We included differences in contacts according to sex and season, and both short-term acquaintances and long-term associations. Raccoons may display different behaviours when infectious, including aggression (furious behaviour) and impaired mobility (dumb behaviour); the network model was used to assess the impact of potential behavioural changes in rabid raccoons. We also tested the effectiveness of different vaccination coverage levels.
4. Our results demonstrate that when rabies enters a suburban raccoon population, the likelihood of a disease outbreak affecting the majority of the population is high. Both the magnitude of rabies outbreaks and the speed of rabies spread depend strongly on the time of year that rabies is introduced into the population. When there is a combination of dumb and furious behaviours in the rabid raccoon population, there are similar outbreak sizes and speed of spread to when there are no behavioural changes due to rabies infection.
5. By incorporating detailed data describing the variation in raccoon contact rates into a network modelling approach, we were able to show that suburban raccoon populations are highly susceptible to rabies outbreaks, that the risk of large outbreaks varies seasonally and that current vaccination target levels may be inadequate to prevent the spread of rabies within these populations. Our findings provide new insights into rabies dynamics in raccoon populations and have important implications for disease control.
Item ID: | 44217 |
---|---|
Item Type: | Article (Research - C1) |
ISSN: | 1365-2656 |
Keywords: | contact network, epidemiological modelling, host–pathogen interactions, infectious disease management, network modelling, proximity logging collar, rabies, raccoon,transmission, wildlife disease |
Funders: | University of Minnesota, Cook County Animal and Rabies Control, Max McGraw Wildlife Foundation, National Science Foundation (NSF) |
Projects and Grants: | NSF EF-0425203, NSF DEB-1413925 |
Date Deposited: | 02 Jun 2016 05:42 |
FoR Codes: | 05 ENVIRONMENTAL SCIENCES > 0502 Environmental Science and Management > 050211 Wildlife and Habitat Management @ 100% |
SEO Codes: | 97 EXPANDING KNOWLEDGE > 970106 Expanding Knowledge in the Biological Sciences @ 100% |
Downloads: |
Total: 4 |
More Statistics |