Obligate biotrophy features unraveled by the genomic analysis of rust fungi

Duplessis, Sébastien, Cuomo, Christina A., Lin, Yao-Cheng, Aerts, Andrea, Tisserant, Emilie, Veneault-Fourrey, Claire, Joly, David L., Hacquard, Stéphane, Amselem, Joëlle, Cantarel, Brandi L., Chiu, Readman, Coutinho, Pedro M., Feau, Nicolas, Field, Matt, Frey, Pascal, Gelhaye, Eric, Goldberg, Jonathan, Grabherr, Manfred G., Kodira, Chinnappa D., Kohler, Annegret, Kües, Ursula, Lindquist, Erika A., Lucas, Susan M., Mago, Rohit, Mauceli, Evan, Morin, Emmanuelle, Murat, Claude, Pangilinan, Jasmyn L., Park, Robert, Pearson, Matthew, Quesneville, Hadi, Rouhier, Nicolas, Sakthikumar, Sharadha, Salamov, Asaf A., Schmutz, Jeremy, Selles, Benjamin, Shapiro, Harris, Tanguay, Philippe, Tuskan, Gerald A., Henrissat, Bernard, Van de Peer, Yves, Rouzé, Pierre, Ellis, Jeffrey G., Dodds, Peter N., Schein, Jacqueline E., Zhong, Shaobin, Hamelin, Richard C., Grigoriev, Igor V., Szabo, Les J., and Martin, Francis (2011) Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proceedings of the National Academy of Sciences, 108 (22). pp. 9166-9171.

[img] PDF (Published Version) - Published Version
Restricted to Repository staff only

View at Publisher Website: http://dx.doi.org/10.1073/pnas.101931510...
 
516
1


Abstract

Rust fungi are some of the most devastating pathogens of crop plants. They are obligate biotrophs, which extract nutrients only from living plant tissues and cannot grow apart from their hosts. Their lifestyle has slowed the dissection of molecular mechanisms underlying host invasion and avoidance or suppression of plant innate immunity. We sequenced the 101-Mb genome of Melampsora larici-populina, the causal agent of poplar leaf rust, and the 89-Mb genome of Puccinia graminis f. sp. tritici, the causal agent of wheat and barley stem rust. We then compared the 16,399 predicted proteins of M. larici-populina with the 17,773 predicted proteins of P. graminis f. sp tritici. Genomic features related to their obligate biotrophic lifestyle include expanded lineage-specific gene families, a large repertoire of effector-like small secreted proteins, impaired nitrogen and sulfur assimilation pathways, and expanded families of amino acid and oligopeptide membrane transporters. The dramatic up-regulation of transcripts coding for small secreted proteins, secreted hydrolytic enzymes, and transporters in planta suggests that they play a role in host infection and nutrient acquisition. Some of these genomic hallmarks are mirrored in the genomes of other microbial eukaryotes that have independently evolved to infect plants, indicating convergent adaptation to a biotrophic existence inside plant cells.

Item ID: 43194
Item Type: Article (Research - C1)
ISSN: 1091-6490
Keywords: comparative genomics, plant pathogen, basidiomycete, evolution, rust disease
Additional Information:

Freely available online through the PNAS open access option.

Funders: US Department of Energy (DE), Institut National de la Recherche Agronomique (INRA), Région Lorraine Council (RLC), Natural Resources Canada (NRC), US National Science Foundation (NSF), Interuniversity Attraction Pole (IAP)
Projects and Grants: DE DE-AC02-05CH11231, IAP P6/25 (BioMaGNet)
Date Deposited: 08 Sep 2016 01:25
FoR Codes: 06 BIOLOGICAL SCIENCES > 0601 Biochemistry and Cell Biology > 060102 Bioinformatics @ 25%
06 BIOLOGICAL SCIENCES > 0604 Genetics > 060408 Genomics @ 50%
06 BIOLOGICAL SCIENCES > 0603 Evolutionary Biology > 060307 Host-Parasite Interactions @ 25%
SEO Codes: 97 EXPANDING KNOWLEDGE > 970106 Expanding Knowledge in the Biological Sciences @ 100%
Downloads: Total: 1
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page