Angiosperm leaf vein evolution was physiologically and environmentally transformative

Boyce, C. Kevin, Brodribb, Tim J., Feild, Taylor S., and Zwieniecki, Maciej A. (2009) Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proceedings of the Royal Society of London Series B, Biological Sciences, 276 (1663). pp. 1771-1776.

[img] PDF (Published Version) - Published Version
Restricted to Repository staff only

View at Publisher Website: http://dx.doi.org/10.1098/rspb.2008.1919
 
310
4


Abstract

The veins that irrigate leaves during photosynthesis are demonstrated to be strikingly more abundant in flowering plants than in any other vascular plant lineage. Angiosperm vein densities average 8 mm of vein per mm2 of leaf area and can reach 25 mm mm−2, whereas such high densities are absent from all other plants, living or extinct. Leaves of non-angiosperms have consistently averaged close to 2 mm mm−2 throughout 380 million years of evolution despite a complex history that has involved four or more independent origins of laminate leaves with many veins and dramatic changes in climate and atmospheric composition. We further demonstrate that the high leaf vein densities unique to the angiosperms enable unparalleled transpiration rates, extending previous work indicating a strong correlation between vein density and assimilation rates. Because vein density is directly measurable in fossils, these correlations provide new access to the physiology of extinct plants and how they may have impacted their environments. First, the high assimilation rates currently confined to the angiosperms among living plants are likely to have been unique throughout evolutionary history. Second, the transpiration-driven recycling of water that is important for bolstering precipitation in modern tropical rainforests might have been significantly less in a world before the angiosperms.

Item ID: 35644
Item Type: Article (Research - C1)
ISSN: 1471-2954
Keywords: venation, transpiration, assimilation, tropical rainforest, tracheophyte
Funders: NSF, Australian Research Fellowship
Date Deposited: 01 Oct 2014 15:56
FoR Codes: 06 BIOLOGICAL SCIENCES > 0607 Plant Biology > 060705 Plant Physiology @ 100%
SEO Codes: 97 EXPANDING KNOWLEDGE > 970106 Expanding Knowledge in the Biological Sciences @ 100%
Downloads: Total: 4
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page