Transport properties of electron swarms in gaseous neon at low values ofE/N

Boyle, G.J., Casey, M.J.E., White, R.D., Cheng, Y., and Mitroy, J. (2014) Transport properties of electron swarms in gaseous neon at low values ofE/N. Journal of Physics D: applied physics, 47 (34). pp. 1-9.

[img] PDF (Published Version) - Published Version
Restricted to Repository staff only

View at Publisher Website: http://dx.doi.org/10.1088/0022-3727/47/3...
 
2
3


Abstract

A detailed analysis of electron swarm transport through neon gas at applied reduced electric fields of E/N < 2 Td is presented. The root mean square difference of transport parameters calculated from a recent all-order many-body perturbation theory treatment (Cheng et al 2014 Phys. Rev. A 89 012701) with drift velocity measurements by the Australian National University group (Robertson 1972 J. Phys. B 5 648) is less than 1%. Differences of about 3% exist with characteristic energies, DT/μ, (Koizumi et al 1984 J. Phys. B 17 4387) indicating an incompatibility at the 3% level between drift velocity and transverse diffusion coefficient measurements. Multi-term solutions of the Boltzmann equation indicate that the two-term approximation gives transport parameters accurate to better than 0.01%. The diffusion constant at thermal energies is found to be sensitive to the numerical representation of the cross section. A recommended elastic momentum transfer cross section has been constructed that has a maximum difference of 0.5% with all ANU drift velocity data for E/N < 1.6 Td and a root mean square difference that is about a factor of 2 smaller.

Item ID: 34578
Item Type: Article (Refereed Research - C1)
ISSN: 1361-6463
Funders: Australian Research Council (ARC)
Date Deposited: 14 Aug 2014 04:27
FoR Codes: 02 PHYSICAL SCIENCES > 0202 Atomic, Molecular, Nuclear, Particle and Plasma Physics > 020201 Atomic and Molecular Physics @ 80%
02 PHYSICAL SCIENCES > 0204 Condensed Matter Physics > 020404 Electronic and Magnetic Properties of Condensed Matter; Superconductivity @ 20%
SEO Codes: 97 EXPANDING KNOWLEDGE > 970102 Expanding Knowledge in the Physical Sciences @ 100%
Downloads: Total: 3
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page