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A detailed analysis of electron swarm transport through neon gas at applied reduced electric fields
of E/N < 2 Td is presented. The root mean square difference of transport parameters calculated
from a recent all-order many-body perturbation theory treatment (Y. Cheng et al., Phys. Rev. A
891, 012701 (2014)) with drift velocity measurements by the Australian National University group
(A. G. Robertson, J. Phys. B 5, 648 (1972)) is less than 1%. Differences of about 3% exist with
characteristic energies, DT /µ, (T. Koizumi et al., J. Phys. B 17, 4387 (1984)) indicating an incom-
patibility at the 3% level between drift velocity and transverse diffusion coefficient measurements.
Multi-term solutions of the Boltzmann equation indicate that the two-term approximation gives
transport parameters accurate to better than 0.01%. Attention was paid to the numerical repre-
sentation of the cross section. A recommended elastic momentum transfer cross section has been
constructed that has a maximum difference of 0.5% with all ANU drift velocity data for E/N < 1.6
Td and a root mean square difference that is about a factor of 2 smaller.

PACS numbers: 34.85.+x, 34.80.Bm, 31.25.Jf, 03.65.Nk,51.50.+v; 52.25.Fi;

I. INTRODUCTION

The electron-helium system is the most thoroughly in-
vestigated electron-atom collision system. There have
been numerous experiments and calculations that have
studied practically every important reaction channel for
this system [1–4]. The quality of agreement between the-
ory and experiment is now very good and for many prac-
tical applications the calculation of the electron-helium
collision properties can be regarded as a solved problem.
Indeed, electron-helium cross sections computed with the
Kohn variational method at energies below the first exci-
tation threshold are often adopted as a benchmark cross
section [5, 6].

The present investigation is focussed on the electron-
neon system. A recent study of electron-neon cross sec-
tion sets concluded that they were adequate for the pur-
poses of plasma modelling where an overall accuracy of
10% is needed [3]. Furthermore, it was noted that the-
oretical cross section sets from B-spline R-matrix calcu-
lations [3, 7, 8] could reproduce swarm parameters in
good agreement with cross section over a range of E/N
(where E is the applied electric field and N is the density
of the neon gas) varying from 10−2 to 103 Td [3]. Coinci-
dent with this work, a state of the art method for atomic
structure, the relativistic all-order many body perturba-
tion theory with single and double excitations (SDpT)
[9, 10], was adapted to describe low energy electron neon
scattering [11]. The derived cross sections were able to
reproduce most existing elastic and momentum transfer
cross section data to an accuracy of better than 5%.

Accordingly, it is now appropriate to perform a strin-
gent analysis of the low energy cross section with particu-
lar emphasis on a detailed comparison with swarm exper-
iments at low values of E/N . There have been measure-

ments of the drift velocity, vdr, [12–16] and the charac-
teristic energy (the ratio of the transverse diffusion coef-
ficient DT to the mobility µ = vdr/E, DT /µ) [17]. These
measurements have been used to generate estimates of
the momentum transfer cross section [15, 17–21]. Other
transport parameters that have been measured include
the diffusion coefficient at thermal energies [22–26] and
the longitudinal diffusion coefficient [27].

In the present work, we initially introduce the cross
section sets that are adopted and detail the procedure
to compute the transport parameters. Attention is given
to the fine details of the analysis such as the numerical
representation of the cross section and the validity of the
two-term solution to the Boltzmann equation [28, 29].
An assessment of a number of empirically derived mo-
mentum transfer cross sections is also made. Calcula-
tions provide evidence that the transverse diffusion co-
efficients measured by the Rikkyo group and the drift
velocity measurements of the Australian National Uni-
versity (ANU) are incompatible at a level equivalent to
3% in the transport parameters.

II. CROSS SECTIONS

This work is reliant on three different types of low en-
ergy cross section. These are the elastic cross section,
σT, the momentum transfer cross section, σMT, and the
viscosity cross section, σV. The viscosity cross section
is needed for solutions of the Boltzmann equation that
go beyond the two-term approximation (see Section III).
All can be defined in terms of angular integrals of the
differential cross section σ(θ) where θ is the scattering
angle. Furthermore, expressions in terms of phase shifts
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are also known. These cross sections are defined

σT = 2π

∫

σ(θ) sin(θ) dθ

=
4π

k2

∑

ℓ=0

(

(ℓ+ 1) sin2(δ+ℓ ) + ℓ sin2(δ−ℓ )
)

, (1)

σMT = 2π

∫

(1− cos θ)σ(θ) sin(θ) dθ

=
4π

k2

∑

ℓ=0

((ℓ + 1)(ℓ+ 2)

(2ℓ+ 3)
sin2(δ+ℓ − δ+ℓ+1)

+
ℓ(ℓ+ 1)

(2ℓ+ 1)
sin2(δ−ℓ − δ−ℓ+1)

+
(ℓ+ 1)

(2ℓ+ 1)(2ℓ+ 3)
sin2(δ+ℓ − δ−ℓ+1)

)

. (2)

σV = 2π

∫

(1 − cos2 θ) σ(θ) sin(θ) dθ

=
4π

k2

∑

ℓ=0

( 2ℓ(ℓ+ 1)

(2ℓ− 1)(2ℓ+ 1)(2ℓ+ 3)
sin2(δ+ℓ − δ−ℓ )

+
(ℓ+ 1)(ℓ+ 2)(ℓ+ 3)

(2ℓ+ 3)(2ℓ+ 5)
sin2(δ+ℓ − δ+ℓ+2)

+
ℓ(ℓ+ 1)(ℓ+ 2)

(2ℓ+ 1)(2ℓ+ 3)
sin2(δ−ℓ − δ−ℓ+2)

+
2(ℓ+ 1)(ℓ+ 2)

(2ℓ+ 1)(2ℓ+ 3)(2ℓ+ 5)
sin2(δ+ℓ − δ−ℓ+2)

)

. (3)

In these equations, δ+ℓ refers to the phase shift with j =

ℓ + 1
2 and δ−ℓ refers to the phase shift with j = ℓ − 1

2 .
The expression for the momentum transfer cross section
is compatible with that previously given by McEachran
[30].
The ℓ = 0, 1 and 2 phase shifts were obtained from a

recent calculation using relativistic many-body perturba-
tion theory [11]. This SDpT calculation iterates many-
body perturbation theory for an excitation space allow-
ing for all possible single and double excitations until
convergence is reached. The effects of triple excitations
are included perturbatively [10].
The SDpT phase shifts cover an energy range from

k = 0 to k = 0.80 a−1
0 . These phase shifts are extended

to higher energies using a central field model. The effec-
tive Hamiltonian (in atomic units) for the electron with
coordinate r0 moving in the field of the atom is written

H = −
1

2
∇2

0 + Vdir(r0) + Vexc(r0) + V ℓ,j
pol (r0) . (4)

In Eq. (4), Vdir(r0) and Vexc(r0) are the direct and ex-
change interactions of the scattering electron with the
neon target which is represented by a Hartree-Fock wave-
function. The angular momentum dependent polariza-
tion potential is given the form

V ℓ,j
pol (r0) = −

αd(1− exp
(

−r60/ρ
6
ℓ,j

)

)

2r40
, (5)

where αd is the static dipole polarizability which is set to
2.669 a30 [11]. The adjustable parameters, ρℓ,j are fixed
by reference to the value of the phase shifts near k ≈ 0.80
a−1
0 .
Higher ℓ phase shifts are given by the modified effective

range theory (MERT) formula [31–33],

tan(δℓ) =
παdk

2

(2ℓ− 1)(2ℓ+ 1)(2ℓ+ 3)
. (6)

The SDpT cross sections, with the model potential ex-
tension to higher energies are tabulated in the supple-
mentary material [34]. The cross sections are tabulated
on a dense momentum grid, with spacings of ∆k = 0.001
a−1
0 at the lowest momenta and a spacing of ∆k = 0.01

a−1
0 at the higher momenta. The net number of points in

the tabulation is 139. A momentum grid provides a bet-
ter representation of the variations in the cross section at
low energies than a similarly sized energy grid.
One characteristic of the e−-neon σMT is its abnor-

mally small size of ≈ 0.17 × 10−20 m2 at zero energy
(ǫ = 0). The cross section increases rapidly as the en-
ergy increases and is about three times larger at thermal
energies.

A. Cross section sets

Besides the present cross section set, there were two
other theoretical cross section sets used to calculate the
transport parameters. One set is the momentum transfer
cross section from the ab-initio B-spline R-matrix (BSR)
calculations [7, 8]. The basis used in this calculation was
large. The BSR calculation does not report the viscosity
cross section (or phase shifts) that would allow a solution
of the Boltzmann equation to go beyond the two-term ap-
proximation. However, the BSR calculation gave elastic,
excitation and ionization cross sections that extend to
high energy and therefore can be used in simulations of
electron transport at high E/N .
Another theoretical cross section is that from the

multi-configuration Hartree-Fock (MCHF) calculations
[35]. One limitation with the MCHF data is that the
data is restricted to energies with ǫ ≤ 7 eV and further
only the elastic and momentum transfer cross sections are
given. The MCHF σMT was set to its 7 eV value for all
energies greater than 7 eV when solving the Boltzmann
equation.
Other momentum transfer cross sections are essentially

derived from experiment. The cross section of Robert-
son [15] was determined by solving the two-term Boltz-
mann equation and iteratively adjusting the momentum
transfer cross section. The same approach was used
by the Rikkyo group [17], except in this case the mo-
mentum transfer cross section was tuned by fitting to
the characteristic energy DT /µ. Another approach by
O’Malley and Crompton used modified effective range
theory (MERT) to help derive expressions of the scatter-
ing phase shifts at low energy [21] by fitting the ANU
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drift velocity measurements. The scattering length de-
rived from the O’Malley fit was 0.214 ± 0.005 a0. Most
of the electron-Ne momentum transfer cross sections in
the LXcat database [3, 36] incorporate elements of the
Robertson [15] or O’Malley [21] σMT.
The recommended cross section published by Buckman

and Elford [37, 38] is an amalgam of the Robertson and
O’Malley cross sections for ǫ < 4 eV. The zero energy
cross section of 0.163×10−20 m2 is slightly larger than
that of O’Malley. At higher energies this cross section
was derived from crossbeam measurements [39, 40] and
the MCHF calculations [35, 41].
The cross section of Morgan [3, 42] is essentially the

Buckman cross section up to 4 eV, but has omitted
many energies from the Buckman tabulation below 0.03
eV. The Morgan cross section starts to deviate from the
Buckman cross section for ǫ > 4 eV.
The SIGLO database [3, 43, 44] uses the Robertson

σMT [15] data from 0.03 to 6.0 eV. The zero energy
cross section of 0.161 × 10−20 m2 was computed using
the O’Malley scattering length [21]. The cross section at
energies greater than 6 eV is different from the Robertson
cross section and is taken from Shimamura [45].
The Biagi σMT is stated to be taken from version 8.9

of the Magboltz Monte Carlo program [3, 46–48]. At low
energies, the momentum transfer cross section is based on
the MERT fitting formulae of O’Malley [21]. Examina-
tion of the source code of the Magboltz program indicates
no values below 1 eV, but values below 1 eV are tabulated
in the LXcat database. The ǫ = 0 cross section was fixed
to the value at 0.0001 eV, but this is about 8% larger
than expected from the O’Malley scattering length.
The Puech data for neon was initially described in

[49, 50]. It is stated that this cross section was taken
from Robertson [15] for ǫ < 7 eV while the cross section
of Hayashi is used at higher energies. Examination of
the tabulation reveals differences of a few percent with
the Robertson σMT across the energy range for which
Robertson tabulate the cross section.
A new empirical cross section was constructed from the

SDpT by multiplying it by a simple energy dependent
scaling factor of the form, A = 1/(1+α exp(−ǫ/β)). The
choice of α = 0.08 and β = 0.089 eV gave a σMT that
gave a superior fit to the ANU vdr data for E/N < 0.01
Td. This cross section is identified in all subsequent text
as the SDpTv2 cross section. The scattering length of
the SDpTv2 cross section is 0.2158 a0. The SDpTv2 cross
sections are tabulated in the supplementary material [34].
All of the cross sections have been tested by comput-

ing drift velocities and transverse diffusion coefficients.
Detailed comparisons of transport parameters computed
with the SDpT, BSR, SDpTv2 and Buckman are given
as a function of the applied reduced electric field, E/N .
The Buckman cross section was chosen as a represen-
tative example of the empirically derived cross sections.
Some summary assessments, e.g. the root mean square
differences from experiment, where all cross sections are
tested against available transport data are also made.

III. MULTI-TERM SOLUTION OF

BOLTZMANN’S EQUATION

The transport of a swarm of electrons in neon driven
out of thermal equilibrium by a low applied electric field
can be described by the steady-state spatially homoge-
neous Boltzmann’s equation for the velocity distribution
function f(v) [51]:

eE

me

·
∂f

∂v
= J(f, F ) , (7)

where v and e denote the velocity and charge of the elec-
tron respectively. The collision operator J(f, F ) takes
into account binary interactions between the electrons of
massme and the neon atoms of massM , where F (V ) de-
notes the background gas velocity (V ) distribution func-
tion, which is assumed to be Maxwellian at the gas tem-
perature T . For the applied electric fields considered in
this manuscript, the only scattering processes operative
in neon are elastic in nature.
Solution of eq. (7) requires decomposition of f(v) in

velocity space through an expansion in Legendre polyno-
mials:

f(v) =

∞
∑

l=0

f (l)(v)Pl(cos θ) , (8)

where Pl(cos θ) are Legendre polynomials and θ denotes
the angle relative to the electric field direction (taken
to be the z-axis). Setting the upper bound of the l-
summation in eq. (8) to 1 leads to the well-known two-
term approximation. This restriction assumes a priori

that the velocity distribution is quasi-isotropic. In best
practice, the integer lmax is successively incremented un-
til a prescribed accuracy criterion is met and this is the
avenue pursued in this study. This is a multi-term solu-
tion of Boltzmann’s equation. Using the orthogonality of
Legendre polynomials, combining eqs. (7) and (8) leads
to the following system of coupled equations for f (l):

J lf (l) −
eE

me

{

l+ 1

2l+ 3

[

d

dv
+

l + 2

v

]

f (l+1)

−
l

2l− 1

[

d

dv
−

l − 1

v

]

f (l−1)

}

= 0. (9)

For electrons in gaseous neon it is sufficient to exploit
the small mass ratio and utilise the Davydov operator to
describe elastic collisions:

J0f (0) =
me

Mv2
∂

∂v

{

vνm(v)

[

vf (0) +
kBT

me

∂

∂v
f (0)

]}

(10)

J lf (l) = νl(v)f
(l) for l≥1, (11)

and

νl(v) = Nv2π

∫ π

0

σ(v, θ) [1− Pl(cos θ)] sin θdθ. (12)
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We note for l = 1, ν1 = νm = NvσMT is the momentum
transfer collision frequency for elastic collisions, while for
l = 2, ν2 = νV = 3

2NvσV which samples the viscosity
cross section. We enforce the normalisation condition:

4π

∫

∞

0

f (0)(v)v2dv = 1 . (13)

Details of the numerical solution of the system of equa-
tions can be found in [52].
The measured drift velocity vdr in this reduced field

regime is related to the velocity distribution function via:

vdr =
4π

3

∫

∞

0

vf (1)(v)v2dv, (14)

while the mean energy of the electron swarm is given by:

〈ǫ〉 = 4π

∫

∞

0

1

2
mev

2f (0)(v)v2dv. (15)

Of note for this particular study, is the characteristic
energy, defined as the ratio of the transverse diffusion
coefficient DT to the electron mobility µ(= vdr/E) [28]:

DT

µ
= 0.1

(

E

N

)

Td

∫

∞

0
v

σMT

f (0)(v)v2dv
∫

∞

0 vf (1)(v)v2dv
, (16)

where the reduced electric field is in Townsend (Td) and
σMT is in units of 10−20 m2.

IV. COMPARISON WITH TRANSPORT DATA

Comparisons are made with four sets of experimen-
tal data. First there are the drift velocities of the ANU
group [15]. Drift velocities at applied electric fields rang-
ing from 0.001594 Td to 2.003 Td have been made at
77 K and 293 K. The stated uncertainty for this set of
drift velocities is ±1%. In addition, there are the char-
acteristic energies from the university of Rikkyo group
[17]. They were obtained at 293 K using values of E/N
ranging from 0.014 Td to 0.40 Td and are reported with
a stated uncertainty of ±3%. Finally, the diffusion coef-
ficient at thermal energies has been measured [23–26].
The mass of the neon atom in the solution of the Boltz-

mann equation was taken as 20.1797 amu [53].

A. Validity of the two-term approximation

Two different solutions of the Boltzmann equation
were made using the SDpT cross section. One of the
solutions was made using the two-term approximation.
The other solution was a four-term solution which in-
cluded the viscosity cross section, σV. The differences
in the drift velocity and diffusion coefficients due to the
two-term and four-term solutions was always less than
0.01% at all values of E/N < 2 Td. This is a reflection

of the isotropic nature of the velocity distribution func-
tion at these reduced electric fields. This is a consequence
of the dominance of elastic scattering which is essentially
isotropic nature, and as such collisions act to randomize
the velocities with minimal changes in the speeds. This
level of precision justifies the use of the two-term ap-
proximation in this reduced electric field regime, and all
transport parameters quoted in this paper, unless stated
otherwise, were computed with the two-term approxima-
tion.

B. Numerical representation of the cross section

As the present work is focussed on the comparisons
with swarm parameters at a level of accuracy approach-
ing 1% it is desirable to test the accuracy of the numerical
representation of the cross sections. The cross sections
used in the solution of the Boltzmann equation are typi-
cally given as a set of discrete points tabulated on a nu-
merical grid [15, 17]. The density of grid points, and the
approach used to interpolate between those points will
have an impact upon the calculated transport parame-
ters. This is evidenced by the fact that the improved nu-
merical representations of vibrational cross sections did
go some way towards reducing the discrepancies between
vibrational cross sections derived from swarm and beam
experiments [54].
The importance of the numerical representation of the

cross section was tested by solving the Boltzmann equa-
tion with different tabulations of the same SDpT cross
section. The SDpT cross sections use a high density tab-
ulation with velocity increments of 0.001 a−1

0 near the
ǫ = 0 threshold. The SIGLO cross section has no cross
section values below 0.030 eV. Removing all points below
0.03 eV from the SDpT tabulated cross section results in
the 77 K vdr at E/N = 0.001594 Td decreasing by 0.2%
and the 77 K DT /µ characteristic energy increasing by
8%. The characteristic energy is potentially much more
sensitive to the numerical representation of the cross sec-
tion than the drift velocity.

C. Comparison with drift velocities

Drift velocities at T = 77 K computed with the SDpT,
SDpTv2, BSR and Buckman cross sections are compared
with the measured ANU drift velocities in Table I. The
SDpT vdr utilized a multi-term solution of the Boltzmann
equation and natural cubic spline interpolation was used
to convert the tabulated values into a continuous func-
tion. All other calculations were done using the two-term
approximation and linear interpolation. Table II com-
pares the ANU T = 293 K vdr [15] with those computed
with the SDpT, SDpTv2, BSR and Buckman cross sec-
tions. The mean energy of the swarm at 77 K and 293 K
is depicted in Figure 1 for applied reduced electric fields
ranging from approximately 0.001 Td to 2.0 Td. The
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TABLE I: Drift velocities, in units of 103 ms−1, as a function
of the reduced electric field, for electrons in neon at T = 77
K. The stated uncertainty for the ANU experimental drift
velocities citerobertson72a is 1%.

E/N (Td) SDpT SDpTv2 BSR Buckman ANU

[11] [3, 7, 8] [37] [15]

0.001594 0.4177 0.4258 0.3998 0.4245 0.424

0.002390 0.4994 0.5070 0.4884 0.5055 0.508

0.003187 0.5639 0.5700 0.5563 0.5693 0.572

0.003984 0.6180 0.6245 0.6117 0.6227 0.625

0.004781 0.6651 0.6711 0.6590 0.6691 0.671

0.005578 0.7072 0.7127 0.7007 0.7106 0.712

0.006374 0.7454 0.7504 0.7381 0.7481 0.751

0.007171 0.7805 0.7851 0.7724 0.7827 0.785

0.007968 0.8131 0.8173 0.8041 0.8148 0.817

0.01195 0.9499 0.9525 0.9354 0.9497 0.953

0.01594 1.060 1.061 1.040 1.058 1.062

0.01992 1.153 1.154 1.129 1.150 1.154

0.02390 1.235 1.236 1.208 1.232 1.235

0.03187 1.378 1.378 1.347 1.374 1.378

0.03984 1.501 1.501 1.468 1.496 1.500

0.04781 1.611 1.611 1.576 1.605 1.609

0.05578 1.711 1.711 1.674 1.704 1.707

0.06374 1.803 1.803 1.765 1.795 1.800

0.07171 1.889 1.889 1.850 1.881 1.885

0.07968 1.970 1.970 1.931 1.962 1.965

0.1195 2.325 2.324 2.281 2.315 2.320

0.1594 2.624 2.624 2.577 2.616 2.618

0.1992 2.888 2.888 2.839 2.883 2.883

0.2104 2.957 2.957 2.907 2.953 2.953

0.2390 3.126 3.126 3.075 3.125 3.125

0.3187 3.550 3.550 3.492 3.555 3.55

0.3984 3.921 3.921 3.856 3.932 3.92

0.4781 4.250 4.250 4.182 4.269 4.25

0.5259 4.432 4.432 4.362 4.455 4.44

0.5578 4.548 4.548 4.477 4.574 4.55

0.6374 4.819 4.819 4.746 4.853 4.82

mean energies and swarm parameters for the two differ-
ent temperatures are almost the same for E/N > 0.03
Td. The lowest mean energy for the 77 K data set oc-
curs at 0.001594 Td and was 0.031 eV.

The SDpT vdr tend to be slightly smaller (about 0.5-
2%) than the 77 K ANU drift velocities for E/N < 0.010
Td. For larger values of E/N there are no instances
of differences exceeding 1%. The SDpTv2 cross section,
which has a smaller cross section below ǫ < 0.15 eV, gives
drift velocities that reproduce the ANU data with higher
accuracy. Table III reports the root mean square (rms)
of the relative difference between calculated and experi-
mental transport parameters for a number of momentum
transfer cross sections. The rms relative difference of the

10
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FIG. 1: (color online) The mean energy (in eV) as a function
of E/N (in Td) for electron swarms in neon. The mean energy
was computed using the SDpT cross section.

SDpTv2 cross section is four times smaller than the rms
relative difference for the SDpT cross section. Another
useful estimate of the accuracy is the largest relative dif-
ference between the calculated and measured transport
parameters. These are listed in Table IV. This is 1.70%
for the SDpT cross section, and 0.42% for the SDpTv2
cross section. The SDpTv2 cross section is in perfect
agreement with the 77 K ANU transport data given that
the stated experimental uncertainty is 1% [15].
Both the SDpT and SDpTv2 cross sections give almost

the same drift velocities for the 293 K data set. The
lowest value of E/N for the 293 K data set was 0.01518
Td. The lowest mean energy for this data set is about
0.05 eV, and at this energy the differences between the
SDpT and SDpTv2 σMT are insignificant. The transport
coefficients computed with these cross sections agree with
the ANU vdr to better than 0.5% for all E/N < 1.5 Td.
The SDpT and SDpTv2 transport parameters show

substantial differences with the ANU data at E/N =
1.821 and 2.003 Td. The mean energy exceeds 5 eV when
E/N > 1.6 Td and it is likely that excitations to the
lowest energy excited states near 16.6 eV are starting to
influence vdr at the two largest values of E/N .
The discrepancies between the BSR vdr and experi-

ment are much larger, with a 5.7% discrepancy with the
77 K ANU drift velocity at E/N = 0.001594 Td and an
rms difference of 2.2%. The BSR drift velocity is smaller
than the ANU (and SDpT) drift velocities at all values
of E/N which is indicative of a cross section which is
too large. The BSR momentum transfer cross section is
larger than the SDpT cross section for all energies below
the first excitation threshold. The difference is especially
significant at ǫ = 0 eV where the BSR cross section is
set to 0.500×10−20 m2 (equivalent to a scattering length
of 0.377 a0) about 3 times larger than the SDpT cross
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section. The BSR σMT is roughly constant for ǫ < 0.01
eV, a functional dependence that is not compatible with
MERT. The very large differences in the zero energy cross
section do not lead to a commensurate change in the drift
velocity because the cross section is so small at ǫ = 0.
The tendency for the BSR drift velocities to be smaller
than experiment is also apparent in the 293 K data set.

TABLE II: Drift velocity, in units of 103 ms−1, as a function
of the reduced electric field, for electrons in neon at T = 293
K. The stated uncertainty for the ANU drift velocities is 1%.

E/N (Td) SDpT SDpTv2 BSR Buckman ANU

[11] [3, 7, 8] [37] [15]

0.01518 0.9738 0.9756 0.9530 0.9721 0.976

0.01821 1.052 1.053 1.028 1.050 1.052

0.02125 1.122 1.123 1.096 1.119 1.122

0.02428 1.186 1.187 1.158 1.183 1.185

0.02732 1.246 1.246 1.216 1.242 1.243

0.03035 1.301 1.301 1.270 1.296 1.300

0.04553 1.536 1.536 1.501 1.530 1.532

0.06071 1.729 1.729 1.691 1.722 1.723

0.09106 2.046 2.046 2.005 2.038 2.040

0.1214 2.311 2.311 2.267 2.302 2.300

0.1518 2.544 2.544 2.498 2.536 2.532

0.1821 2.754 2.754 2.706 2.748 2.741

0.2125 2.948 2.948 2.897 2.944 2.935

0.2428 3.127 3.127 3.075 3.126 3.115

0.2732 3.297 3.297 3.241 3.298 3.284

0.3036 3.456 3.456 3.398 3.460 3.445

0.3643 3.750 3.750 3.688 3.759 3.738

0.4250 4.018 4.018 3.952 4.033 4.004

0.4553 4.144 4.144 4.076 4.161 4.130

0.4857 4.264 4.264 4.195 4.284 4.255

0.5464 4.492 4.492 4.421 4.518 4.478

0.6071 4.704 4.704 4.632 4.736 4.699

0.7589 5.178 5.178 5.105 5.226 5.170

0.9106 5.589 5.589 5.517 5.654 5.576

1.062 5.954 5.594 5.883 6.033 5.945

1.214 6.284 6.284 6.216 6.377 6.280

1.336 6.529 6.529 6.462 6.631 6.542

1.821 7.377 7.377 7.317 7.509 7.813

2.003 7.659 7.659 7.601 7.799 8.491

The Buckman cross section is based on the original
momentum transfer cross section of Robertson [15]. As
expected, this cross section does a uniformly good job
of reproducing the measured drift velocities at almost all
values of E/N . The rms difference of this momentum
transfer cross section with the 77 K and 293 K drift ve-
locity data is less than 1%. The Buckman cross section
does tend to be about 1% larger than the ANU drift ve-
locity for E/N > 0.6 Td.
The ab-initio MCHF σMT gives larger rms differences

TABLE III: The rms relative difference between experimental
and calculated transport parameters. The E/N = 1.821 and
2.003 Td vdr are not part of the error calculation for the 293
K data set.

Set vdr 77 K [15] vdr 293 K [15] DT /µ [17]

SDpT [11] 0.00618 0.00295 0.0253

BSR [3, 7, 8] 0.0221 0.0163 0.0132

MCHF [35] 0.00542 0.00819 0.0239

SDpTv2 0.00146 0.00296 0.0333

SIGLO [3, 43] 0.00143 0.00209 0.0318

Buckman [37] 0.00324 0.00718 0.0278

Morgan [3, 42] 0.00369 0.00154 0.0366

Biagi v8.9 [3, 47, 48] 0.00299 0.00285 0.0303

Puech [3, 49, 50] 0.0143 0.0104 0.0157

with the ANU drift velocities than the SDpT or SDpTv2
cross sections. The larger rms difference is partly due
to incomplete information about its behaviour at higher
energies.
The SIGLO, Morgan and Biagi cross sections accu-

rately reproduce the ANU drift velocity to a high degree
of accuracy, and the largest rms difference resulting from
any of these cross sections is less than 0.4%. This is
not surprising since all three cross section sets are based
on the Robertson [15] or O’Malley [21] cross sections at
low energies with some fine tuning occurring at energies
greater than 4 eV.

D. Comparison with the characteristic energy,

DT /µ

Table V gives the characteristic energy, DT /µ, for a
swarm travelling through neon gas at T = 293 K. Exper-
imental data comes from the Rikkyo group [17]. The key
conclusion to be drawn from the Table V is that there is
a 3% discrepancy at the level of the transport coefficients
between cross sections that reproduce drift velocity mea-
surements and cross sections that reproduce the Rikkyo
data for the transverse diffusion coefficients.
The SDpT DT /µ tend to be larger than the Rikkyo

data. The rms difference is 2.5% with the largest differ-
ence being 3.5%. The largest differences tend to occur
at the smallest values of E/N . This is clearly visible in
Figure 2 where the relative difference is given. The SDpT
cross section would need to be increased in order to be
compatible with the Rikkyo experiment. However, the
SDpTv2 σMT is actually smaller than the SDpT σMT.
Hence the rms difference of the SDpTv2 transport pa-
rameters with the Rikkyo data has increased to 3.3%.
Figure 2 shows that the increase in the difference with
the Rikkyo data is most prominent at the lowest E/N .
Four of the empirical cross sections, the Buckman,

SIGLO, Morgan and Biagi cross sections have rms differ-
ences that range from 2.8% to 3.7%. These cross sections
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TABLE IV: The maximum relative difference between exper-
imental and calculated transport parameters. The relative
difference is given above the value of E/N at which it occurs.
The E/N at 1.821 and 2.003 Td at 293 K were excluded from
consideration.

Set vdr 77 K [15] vdr 293 K [15] DT /µ [17]

SDpT 0.0170 0.00477 0.0346

0.002390 0.1214 0.014

BSR [3, 7, 8] 0.0571 0.0236 0.0237

0.001594 0.01518 0.35

MCHF [35] 0.0101 0.0180 0.0391

0.002390 1.214 0.014

SDpTv2 0.00417 0.00475 0.0553

0.001594 0.1214 0.014

SIGLO [3, 43, 44] 0.00301 0.00380 0.0530

0.5259 0.2732 0.014

Buckman [37] 0.00694 0.0154 0.0507

0.6374 1.214 0.014

Morgan [3, 42] 0.00817 0.00310 0.0639

0.007968 0.01518 0.014

Biagi v8.9 [3, 47, 48] 0.00502 0.00523 0.0591

0.003187 1.336 0.014

Puech [3, 49, 50] 0.0380 0.0171 0.0267

0.001594 0.2732 0.30

give a DT /µ that exceeds experiment in all cases. The
inherent discrepancy between the drift velocity and diffu-
sion data are clearly seen in Table III. The cross section
sets that have less than 0.5% rms discrepancy with the
drift velocity data all have greater than 3% rms relative
differences with the diffusion data.

The BSR cross section gives a smaller rms difference
with the Rikkyo data than the other two ab-initio cross
sections. The BSR cross section is larger than these other
cross sections and this results in smaller values of DT /µ.
The BSR DT /µ are mostly 1-2% too small over the entire
range of E/N . However, the relative difference of all
values of BSR DT /µ lie within the stated uncertainty
of 3%. One feature of the graph is the 1.6% jump that
occurs between 0.30 and 0.35 Td.

The Puech cross section has rms differences with the
vdr and DT /µ data of 1.0 to 1.5%. This suggests that
this cross section has been constructed to give equally
good fits to both the vdr and DT /µ transport data.

The cross sections that give the better than 0.5% accu-
racy fits to the ANU drift velocities give rms differences
of 3% with the DT /µ data. This does not constitute an
irreconcilable conflict since the stated uncertainty in the
Rikkyo measurements was 3%. However, one aim of the
present paper is to test the quality of various momentum
transfer cross sections at a 1% level of precision. Conse-
quently, precedence should be given to fitting ANU vdr
data ahead of Rikkyo DT /µ data.

TABLE V: The characteristic energy DT /µ, (in eV) with elec-
tric field (in Td), for electrons in neon at T = 293 K. The
stated uncertainty of the Rikkyo data is 3%.

E/N (Td) SDpT SDpTv2 BSR Buckman Rikkyo

[11] [3, 7, 8] [37] [17]

0.014 0.1314 0.1340 0.1268 0.1334 0.127

0.017 0.1491 0.1518 0.1442 0.1511 0.146

0.020 0.1660 0.1687 0.1606 0.1679 0.162

0.025 0.1926 0.1953 0.1864 0.1943 0.187

0.030 0.2177 0.2204 0.2105 0.2193 0.213

0.035 0.2418 0.2444 0.2336 0.2431 0.236

0.040 0.2649 0.2674 0.2557 0.2660 0.260

0.050 0.3091 0.3115 0.2978 0.3098 0.300

0.060 0.3511 0.3533 0.3379 0.3513 0.341

0.070 0.3914 0.3935 0.3764 0.3911 0.382

0.080 0.4304 0.4324 0.4137 0.4297 0.420

0.10 0.5054 0.5072 0.4856 0.5038 0.491

0.12 0.5774 0.5791 0.5549 0.5750 0.562

0.14 0.6473 0.6488 0.6221 0.6440 0.630

0.17 0.7492 0.7506 0.7204 0.7449 0.730

0.20 0.8486 0.8499 0.8165 0.8435 0.828

0.25 1.011 1.012 0.9733 1.005 0.987

0.30 1.169 1.170 1.127 1.163 1.14

0.35 1.326 1.327 1.279 1.320 1.31

0.40 1.480 1.481 1.429 1.476 1.46

E. Comparison with the thermal diffusion

coefficient

The thermal diffusion coefficient for electrons diffus-
ing in neon has been measured on a number of occasions
[23–26]. Discounting some earlier measurements, esti-
mates have been made at Oak Ridge National Labora-
tory (ORNL) [24], the Laboratori C. I. S. E [22, 23] and
the ANU [25, 26]. The C.I.S.E. value of ND is converted
from the stated diffusion constant of D0 = (2860± 100)
cm2 s−1 [23] by assuming that measurements were taken
at a gas temperature of 273 K.

The three experimental diffusion constants are not
compatible within their mutual experimental uncertain-
ties when temperature dependent effects are taken into
consideration. Preference is given to the ANU value of
ND.

Comparisons of experimental diffusion coefficients,
ND with calculations using the SDpT and BSR cross
section sets can be found in Table VI. The mean energy
of a thermal electron cloud at 295 K is 0.0381 eV. The
ND diffusion coefficient varies slowly with temperature.
For example, using the SDpTv2 cross section and de-
creasing the temperature results in ND decreasing from
75.04 × 1020 mm−1 s−1 to 74.14 × 1020 mm−1 s−1, a
change of only 1.2%.

The good agreement between the MCHF and ANU
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FIG. 2: (color online) The relative difference, between calcu-
lated characteristic energies and the experimental data of the
University of Rikkyo [17] group.

TABLE VI: The thermal diffusion coefficient, ND, in units
of 1020 mm−1 s−1, for thermal electrons in neon gas.

Source ND

T = 295 K T = 273 K

ORNL [24] (T = 300 K) 64.7

Laboratori C.I.S.E [23, 25, 26] 76.9 ± 2.4

ANU [25] 72.7+2.0

−0.9

SDpT [11] 71.28 70.36

BSR [3, 7, 8] 59.51 58.05

MCHF [35] 72.73 71.81

SDpTv2 75.04 74.14

SIGLO [3, 43, 44] 77.61 77.01

Buckman [37] 74.68 73.81

Morgan [3, 42] 75.93 75.13

Biagi v8.9 [3, 47, 48] 79.97 79.48

Puech [3, 49, 50] 66.47 65.41

ND coefficients suggests that the ANU diffusion exper-
iment would be consistent with a scattering length that
is close to the MCHF calculation, namely 0.2218 a0 [35].
The SDpTv2 value of ND of 75.04× 1020 mm−1 s−1 lies
just outside the error bounds for the ANU measurement.

One of the issues affecting comparisons with the empir-
ically derived cross sections such as the SIGLO, Morgan
and Biagi is their numerical representation. These cross
sections all have relatively few tabulated points below 0.1
eV where the cross section changes by a factor of 4. This
had an impact of 1-4% on the calculated diffusion con-
stant. A significant part of the differences between the
ND values of the Buckman, SIGLO, Morgan and Biagi

values of ND arises from the energies at which the cross
sections are tabulated.

The BSR cross section gives a diffusion coefficient of
59.5× 1020 mm−1 s−1, about 20% lower than the ANU
value. This underestimate further illustrates the prob-
lems with the BSR cross section at energies below 0.15
eV.

One of the salient conclusions drawn from Table VI is
the overall degree of consistency between the Buckman,
SDpTv2, MCHF and ANU values of ND. The Buckman
and SDpTv2 cross section give very similar drift velocities
that are close to ANU values [15]. These are effectively
compatible with the ANU ND within the experimental
uncertainty.

There is one other electron transport parameter that
has been measured for neon, the longitudinal diffusion
coefficient on mobility, DL/µ [16]. However, the lowest
value of E/N for which measurements have been made is
1.4 Td and the effects of inelastic collisions could make
a contribution here. Consequently, no calculations of the
longitudinal diffusion parameter were made.

F. Recommended low energy momentum transfer

cross section

Two measures have been given as metrics to test the
performance of the different cross sections against the
drift velocity and transverse diffusion data. These are
the root mean square of the relative difference between
the calculated and measured transport parameters and
secondly the largest relative difference between the cal-
culated and measured transport parameters.

The SIGLO momentum transfer cross section gives
drift velocities with very small rms difference from the
ANU experiment of 0.14% at 77 K and 0.21% at 293 K,
which are slightly smaller than those using the SDpTv2
cross section. Despite these very low differences from
ANU drift velocity data, in many aspects the SDpTv2
cross section has one significant advantage over the
SIGLO cross section. For example, the SDpTv2 diffusion
constant, ND, is closer to the ANU experimental value
than the SIGLO value of ND. The smaller rms differ-
ence of the SIGLO values of vdr is of minor importance
since all of the SIGLO and SDpTv2 values of the drift
velocity lie within the stated 1% uncertainty. However,
the SDpTv2 cross section, being derived from a large ab-
initio calculation, has a functional dependence based on
a properly founded dynamical description of the electron-
neon interaction as opposed to the SIGLO cross section
which like other purely empirical cross sections is a table
of numerical values constructed to fit experimental values
of the drift velocity. In effect, the SDpTv2 σMT varies
smoothly as a function of energy in a manner that can
be expected to be consistent with the actual momentum
transfer cross section.
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V. CONCLUSION

A high precision comparison of transport parameters
computed with various low energy electron-neon cross
sections is presented. The use of the two-term approxi-
mation is justified and the error associated with its usage
is determined to be less than 0.01%. One novel feature is
the comparison with the thermal energy diffusion coeffi-
cient from the ANU group [25, 26]. Direct comparisons
of theoretical cross sections with measured transport pa-
rameters (as opposed to the momentum transfer cross
section) is still relatively rare.
One major conclusion pertains to the relatively high

degree of precision achieved by the three ab-initio mo-
mentum transfer cross sections. The SDpT σMT gives
drift velocities that have an rms difference with the ANU
drift velocity data of only 0.62% and 0.30% for the 77 K
and 293 K vdr data respectively. The only significant dif-
ferences for the SDpT cross section occur for very low
E/N and even here the largest difference is only 1.7%.
The BSR cross section gave a poorer fit to the drift

velocity data, but even here the rms discrepancies are
only about 2%.
The low energy imperfections in the SDpT σMT were

removed by performing an energy dependent scaling of
the SDpT σMT. This reduced the rms differences with

the ANU vdr data to 0.15% and 0.30% at 77 K and
293 K respectively. There was no instance of a discrep-
ancy greater than 0.5% for drift velocity data below 1.4
Td. This cross section, being derived from a high qual-
ity treatment of e−-neon scattering has the advantage
of a smooth energy dependence that can be expected to
closely conform to that of the actual momentum transfer
cross section.
In some respects the present investigation comple-

ments the previous cross section assessment of Alves et al.
[3]. The Alves et al. investigation was aimed at assess-
ing e−-neon cross section compilations for modelling low
temperature plasmas. An acceptable level of accuracy
would be better than 10% in the most common trans-
port parameters. The present assessment is best summa-
rized as a test of low energy momentum transfer cross
sections with the expected level of accuracy in the com-
puted transport parameters being less that 1%. Critical
comparisons of the fine details of different ab-initio cross
sections require this high degree of accuracy.
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