Relative accuracy of three common methods of parentage analysis in natural populations

Harrison, Hugo B., Saenz-Agudelo, Pablo, Planes, Serge, Jones, Geoffrey P., and Berumen, Michael L. (2013) Relative accuracy of three common methods of parentage analysis in natural populations. Molecular Ecology, 22 (4). pp. 1158-1170.

[img] PDF (Published Version) - Published Version
Restricted to Repository staff only

View at Publisher Website: http://dx.doi.org/10.1111/mec.12138
 
78
2


Abstract

Parentage studies and family reconstructions have become increasingly popular for investigating a range of evolutionary, ecological and behavioural processes in natural populations. However, a number of different assignment methods have emerged in common use and the accuracy of each may differ in relation to the number of loci examined, allelic diversity, incomplete sampling of all candidate parents and the presence of genotyping errors. Here, we examine how these factors affect the accuracy of three popular parentage inference methods (colony, famoz and an exclusion-Bayes' theorem approach by Christie (Molecular Ecology Resources, 2010a, 10, 115) to resolve true parent–offspring pairs using simulated data. Our findings demonstrate that accuracy increases with the number and diversity of loci. These were clearly the most important factors in obtaining accurate assignments explaining 75–90% of variance in overall accuracy across 60 simulated scenarios. Furthermore, the proportion of candidate parents sampled had a small but significant impact on the susceptibility of each method to either false-positive or false-negative assignments. Within the range of values simulated, colony outperformed FaMoz, which outperformed the exclusion-Bayes' theorem method. However, with 20 or more highly polymorphic loci, all methods could be applied with confidence. Our results show that for parentage inference in natural populations, careful consideration of the number and quality of markers will increase the accuracy of assignments and mitigate the effects of incomplete sampling of parental populations.

Item ID: 31874
Item Type: Article (Research - C1)
ISSN: 1365-294X
Keywords: accuracy, colony, FaMoz, microsatellite, parentage
Funders: James Cook University (JCU), Ecole Pratique des Hautes Etude, Université de Perpignan, King Abdullah University of Science and Technology (KAUST)
Research Data: http://datadryad.org/resource/doi:10.5061/dryad.2ht96
Date Deposited: 29 May 2014 02:29
FoR Codes: 06 BIOLOGICAL SCIENCES > 0602 Ecology > 060205 Marine and Estuarine Ecology (incl Marine Ichthyology) @ 100%
SEO Codes: 96 ENVIRONMENT > 9603 Climate and Climate Change > 960307 Effects of Climate Change and Variability on Australia (excl. Social Impacts) @ 100%
Downloads: Total: 2
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page