Global biogeography of reef fishes: a hierarchical quantitative delineation of regions

Kulbicki, Michel, Parravicini, Valeriano, Bellwood, David R., Arias-Gonzàlez, Ernesto, Chabanet, Pascale, Floeter, Sergio R., Friedlander, Alan, McPherson, Jana, Myers, Robert E., Vigliola, Laurent, and Mouillot, David (2013) Global biogeography of reef fishes: a hierarchical quantitative delineation of regions. PLoS ONE, 8 (12). e81847. pp. 1-11.

[img]
Preview
PDF (Published Version) - Published Version
Available under License Creative Commons Attribution.

Download (1MB) | Preview
View at Publisher Website: http://dx.doi.org/10.1371/journal.pone.0...
 
167
1052


Abstract

Delineating regions is an important first step in understanding the evolution and biogeography of faunas. However, quantitative approaches are often limited at a global scale, particularly in the marine realm. Reef fishes are the most diversified group of marine fishes, and compared to most other phyla, their taxonomy and geographical distributions are relatively well known. Based on 169 checklists spread across all tropical oceans, the present work aims to quantitatively delineate biogeographical entities for reef fishes at a global scale. Four different classifications were used to account for uncertainty related to species identification and the quality of checklists. The four classifications delivered converging results, with biogeographical entities that can be hierarchically delineated into realms, regions and provinces. All classifications indicated that the Indo-Pacific has a weak internal structure, with a high similarity from east to west. In contrast, the Atlantic and the Eastern Tropical Pacific were more strongly structured, which may be related to the higher levels of endemism in these two realms. The "Coral Triangle", an area of the Indo-Pacific which contains the highest species diversity for reef fishes, was not clearly delineated by its species composition. Our results show a global concordance with recent works based upon endemism, environmental factors, expert knowledge, or their combination. Our quantitative delineation of biogeographical entities, however, tests the robustness of the results and yields easily replicated patterns. The similarity between our results and those from other phyla, such as corals, suggests that our approach may be of broad utility in describing and understanding global marine biodiversity patterns.

Item ID: 31684
Item Type: Article (Research - C1)
ISSN: 1932-6203
Additional Information:

© 2013 Kulbicki et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funders: Foundation de la Recherche pour la Biodiversité (FRB)
Date Deposited: 26 Feb 2014 09:31
FoR Codes: 06 BIOLOGICAL SCIENCES > 0602 Ecology > 060205 Marine and Estuarine Ecology (incl Marine Ichthyology) @ 100%
SEO Codes: 96 ENVIRONMENT > 9608 Flora, Fauna and Biodiversity > 960808 Marine Flora, Fauna and Biodiversity @ 100%
Downloads: Total: 1052
Last 12 Months: 2
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page