Exposure of inshore corals to suspended sediments due to wave-resuspension and river plumes in the central Great Barrier Reef: a reappraisal

Orpin, Alan R., and Ridd, Peter V. (2012) Exposure of inshore corals to suspended sediments due to wave-resuspension and river plumes in the central Great Barrier Reef: a reappraisal. Continental Shelf Research, 47. . pp. 55-67.

[img] PDF (Published Version) - Published Version
Restricted to Repository staff only

View at Publisher Website: http://dx.doi.org/10.1016/j.csr.2012.06....
 
34
5


Abstract

Suspended sediment in the coastal zone is an important limiting factor for the growth and health of inshore coral reefs. The Great Barrier Reef (GBR) lagoon receives sediment from a number of tropical rivers and the physical and biological effects of riverine discharge and turbidity within the lagoon are of considerable scientific and public interest. Published data from two inshore regions of the GBR are reviewed herein to evaluate the relative influence of river plumes and wave resuspension on suspended sediment concentration (SSC) around coral communities over a range of timescales. Data from Cleveland Bay and from other sites near the mouth of the Tully River show that wave resuspension is the most dominant mechanism controlling SSC at inshore reefs. At many nearshore areas today fine-grained bed sediment is abundant, consistent with millennial-scale geological evidence of sediment dispersal prior to European settlement and catchment impacts. Flocculation, particle settling and dilution occurs within the river plume, and riverine sediment concentrations at reefs directly attributable to individual flood inputs is significantly reduced, suggesting that the plume component is a relatively small contribution to the total suspended sediment mass balance over inter-annual timescales. Resuspension events can generate higher ambient SSC than that measured in flood waters (e.g. Tully River). In addition, while visually spectacular, satellite and aerial images offer limited quantitative information of total sediment load carried by hypopycnal plumes, as many of these plumes may contain algal blooms but relatively low concentrations of suspended sediment (ca. <5 mg/l). Nonetheless, the cumulative effect of sediment-laden plumes may be a vector for other adsorbed contaminants of potential ecological concern, but coral smothering by hypopycnal plumes alone appears an unlikely impact particularly at inner- and middle-shelf reefs exposed to high wave energy and resuspension. Terrigenous sediment dispersal and turbidity within the GBR is governed by physical processes common to many continental shelves globally. Despite the examples examined in detail herein, the role of frequency, magnitude and duration in determining the impact or exposure of corals to elevated SSCs is poorly constrained by limited quantitative measurements during events, and our ability to place these into a broader temporal context. More high-quality observational data, at meaningful length-scales, can only enhance our ability to disentangle potential behavioural shifts in environmental responses.

Item ID: 23608
Item Type: Article (Research - C1)
ISSN: 1873-6955
Keywords: Great Barrier Reef; sediment; wave resuspension; river plume
Date Deposited: 15 Oct 2012 06:37
FoR Codes: 04 EARTH SCIENCES > 0405 Oceanography > 040503 Physical Oceanography @ 100%
SEO Codes: 96 ENVIRONMENT > 9611 Physical and Chemical Conditions of Water > 961102 Physical and Chemical Conditions of Water in Coastal and Estuarine Environments @ 100%
Downloads: Total: 5
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page