Learning temporal patterns of risk in a predator-diverse environment

Bosiger, Yoland J., Lonnstedt, Oona M., McCormick, Mark I., and Ferrari, Maud C.O. (2012) Learning temporal patterns of risk in a predator-diverse environment. PLoS ONE, 7 (4). e34535. pp. 1-7.

[img] PDF (Published Version) - Published Version
Available under License Creative Commons Attribution.

Download (145kB)
View at Publisher Website: http://dx.doi.org/10.1371/journal.pone.0...
 
28
1116


Abstract

Predation plays a major role in shaping prey behaviour. Temporal patterns of predation risk have been shown to drive daily activity and foraging patterns in prey. Yet the ability to respond to temporal patterns of predation risk in environments inhabited by highly diverse predator communities, such as rainforests and coral reefs, has received surprisingly little attention. In this study, we investigated whether juvenile marine fish, Pomacentrus moluccensis (lemon damselfish), have the ability to learn to adjust the intensity of their antipredator response to match the daily temporal patterns of predation risk they experience. Groups of lemon damselfish were exposed to one of two predictable temporal risk patterns for six days. "Morning risk" treatment prey were exposed to the odour of Cephalopholis cyanostigma (rockcod) paired with conspecific chemical alarm cues (simulating a rockcod present and feeding) during the morning, and rockcod odour only in the evening (simulating a rockcod present but not feeding). "Evening risk" treatment prey had the two stimuli presented to them in the opposite order. When tested individually for their response to rockcod odour alone, lemon damselfish from the morning risk treatment responded with a greater antipredator response intensity in the morning than in the evening. In contrast, those lemon damselfish previously exposed to the evening risk treatment subsequently responded with a greater antipredator response when tested in the evening. The results of this experiment demonstrate that P. moluccensis have the ability to learn temporal patterns of predation risk and can adjust their foraging patterns to match the threat posed by predators at a given time of day. Our results provide the first experimental demonstration of a mechanism by which prey in a complex, multi-predator environment can learn and respond to daily patterns of predation risk.

Item ID: 23056
Item Type: Article (Research - C1)
ISSN: 1932-6203
Additional Information:

© 2012 Bosiger et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Date Deposited: 15 Aug 2012 05:51
FoR Codes: 06 BIOLOGICAL SCIENCES > 0602 Ecology > 060202 Community Ecology (excl Invasive Species Ecology) @ 50%
06 BIOLOGICAL SCIENCES > 0602 Ecology > 060205 Marine and Estuarine Ecology (incl Marine Ichthyology) @ 50%
SEO Codes: 96 ENVIRONMENT > 9608 Flora, Fauna and Biodiversity > 960808 Marine Flora, Fauna and Biodiversity @ 100%
Downloads: Total: 1116
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page