Immigrants and refugees: the importance of dispersal in mediating biotic attrition under climate change
Anderson, Alex S., Reside, April E., VanDerWal, Jeremy J., Shoo, Luke P., Pearson, Richard G., and Williams, Stephen E. (2012) Immigrants and refugees: the importance of dispersal in mediating biotic attrition under climate change. Global Change Biology, 18 (7). pp. 2126-2134.
PDF (Published Version)
- Published Version
Restricted to Repository staff only |
Abstract
Montane tropical rainforests are critically important areas for global bird diversity, but are projected to be highly vulnerable to contemporary climate change. Upslope shifts of lowland species may partially offset declines in upland species but also result in a process of lowland biotic attrition. This latter process is contingent on the absence of species adapted to novel warm climates, and isolation from pools of potential colonizers. In the Australian Wet Tropics, species distribution modelling has forecast critical declines in suitable environmental area for upland endemic birds, raising the question of the future role of both natural and assisted dispersal in species survival, but information is lacking for important neighbouring rainforest regions. Here we use expanded geographic coverage of data to model the realized distributions of 120 bird species found in north-eastern Australian rainforest, including species from potential source locations in the north and recipient locations in the south. We reaffirm previous conclusions as to the high vulnerability of this fauna to global warming, and extend the list of species whose suitable environmental area is projected to decrease. However, we find that expansion of suitable area for some species currently restricted to northern rainforests has the potential to offset biotic attrition in lowland forest of the Australian Wet Tropics. By examining contrasting dispersal scenarios, we show that responses to climate change in this region may critically depend on dispersal limitation, as climate change shifts the suitable environmental envelopes of many species south into currently unsuitable habitats. For lowland and northern species, future change in vegetation connectivity across contemporary habitat barriers is likely to be an important mediator of climate change impacts. In contrast, upland species are projected to become increasingly isolated and restricted. Their survival is likely to be more dependent on the viability of assisted migration, and the emergence and persistence of suitable environments at recipient locations.
Item ID: | 22599 |
---|---|
Item Type: | Article (Research - C1) |
ISSN: | 1365-2486 |
Keywords: | climate change, global warming, MAXENT, montane tropics, ornithology, range shift |
Date Deposited: | 01 Aug 2012 09:30 |
FoR Codes: | 06 BIOLOGICAL SCIENCES > 0699 Other Biological Sciences > 069999 Biological Sciences not elsewhere classified @ 50% 06 BIOLOGICAL SCIENCES > 0602 Ecology > 060208 Terrestrial Ecology @ 50% |
SEO Codes: | 96 ENVIRONMENT > 9608 Flora, Fauna and Biodiversity > 960805 Flora, Fauna and Biodiversity at Regional or Larger Scales @ 50% 96 ENVIRONMENT > 9603 Climate and Climate Change > 960307 Effects of Climate Change and Variability on Australia (excl. Social Impacts) @ 50% |
Downloads: |
Total: 8 |
More Statistics |