The role of epidermal turgor in stomatal interactions following a local perturbation in humidity

Mott, K.A., and Franks, P.J. (2001) The role of epidermal turgor in stomatal interactions following a local perturbation in humidity. Plant, Cell and Environment, 24 (6). pp. 657-662.

[img] PDF (Published Version) - Published Version
Restricted to Repository staff only

View at Publisher Website:


Humidity in a small area of a Vicia faba L. leaf was perturbed with a flow of dry air from an 80 µm (inside diameter) needle, while the remainder of the leaf was maintained at high and constant humidity. The influence of the needle flow on the humidity at the leaf surface was quantified by using a spatially explicit dewpoint hygrometer to observe condensation patterns. When the dry air from a needle was applied to the leaf, stomata within the influence of the needle opened within the first few minutes of the perturbation, and local epidermal turgor pressure declined within the same time frame. When the needle flow was removed from the leaf, these responses were reversed, but with more variable kinetics. Stomata and epidermal cells outside the influence of the needle flow, which were exposed to a constant and high humidity, showed similar, but smaller, responses when the needle flow was applied to the leaf. Since the opening of these stomata should have had only a small effect on transpiration (because of the high humidity), it is likely that the reduction in epidermal turgor was the cause (rather than the result) of the stomatal opening. The magnitude of the turgor response was only loosely related to the distance from the needle flow up to distances of almost 400 μm. The data support the idea that neighbouring stomata can interact through the influence of transpiration on epidermal turgor.

Item ID: 13378
Item Type: Article (Research - C1)
ISSN: 1365-3040
Keywords: epidermis; patchy stomatal conductance; stomata; turgor pressure
Date Deposited: 30 Aug 2012 23:00
FoR Codes: 06 BIOLOGICAL SCIENCES > 0607 Plant Biology > 060705 Plant Physiology @ 100%
SEO Codes: 97 EXPANDING KNOWLEDGE > 970106 Expanding Knowledge in the Biological Sciences @ 100%
Downloads: Total: 2
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page