Temporal reproductive isolation and gametic compatibility are evolutionary mechanisms in the Acropora humilis species group (Cnidaria; Scleractinia)

Wolstenholme, Jackie (2004) Temporal reproductive isolation and gametic compatibility are evolutionary mechanisms in the Acropora humilis species group (Cnidaria; Scleractinia). Marine Biology, 144 (3). pp. 567-582.

[img] PDF (Accepted Version) - Accepted Version
Download (321Kb)
[img] PDF (Published Version) - Published Version
Restricted to Repository staff only

View at Publisher Website: http://dx.doi.org/10.1007/s00227-003-120...

Abstract

Patterns of interbreeding between individuals are fundamental to the structure and maintenance of evolutionary boundaries between species. In corals, both hybridisation and reproductive isolation appear to be important evolutionary mechanisms. In this study, I examine evolutionary boundaries using morphological, molecular and reproductive criteria within the Acropora humilis species group at Lizard Island on the Great Barrier Reef, Australia. Five species and seven morphs are recognised on the basis of morphological appearance of features traditionally used to identify corals of the genus Acropora. In a molecular phylogenetic analysis, I examine relationships for the mitochondrial DNAs putative control region, using maximum-parsimony and maximum-likelihood methods. The reproductive criteria explore whether species and morphs are reproductively isolated on the basis of temporal or fertilisation barriers. Timing of gamete maturity is surveyed for each species and morph, from the month prior to and 3 months after the mass spawning. Time of spawning is documented at the levels of night and hour of spawning, and time taken for egg-sperm bundles to separate. Laboratory fertilisation experiments tested the potential of species and morphs to interbreed. High levels of intraspecific and extremely low or zero fertilisation levels between the five species indicated that they are valid species. Based on the combined assessment of morphological, molecular and reproductive criteria, A. humilis and A. gemmifera appear to be the most closely related species, which are most closely related to the remaining species in the following order: A. samoensis, A. monticulosa and A. digitifera. Evidence derived from one or more of these criteria suggest that the morphs (1) are at various stages morphological characters, and (2) may indicate possible zones of speciation and hybridisation. Identification of morphs avoided the possibility of taxonomic error and was essential for accurate interpretation of evolutionary boundaries. Confirmation of morphology as an informative character of evolutionary boundaries is of great significance because most coral research projects rely on morphology as the primary tool for identification of species.

Item ID: 4771
Item Type: Article (Refereed Research - C1)
Keywords: Acropora, morphology, mtDNA, reproductive isolation, species boundaries
ISSN: 1432-1793
Date Deposited: 09 Jul 2009 23:58
FoR Codes: 06 BIOLOGICAL SCIENCES > 0603 Evolutionary Biology > 060301 Animal Systematics and Taxonomy @ 100%
SEO Codes: 96 ENVIRONMENT > 9608 Flora, Fauna and Biodiversity > 960808 Marine Flora, Fauna and Biodiversity @ 100%
Citation Count from Web of Science Web of Science 34
Downloads: Total: 292
Last 12 Months: 19
More Statistics

Actions (Repository Staff Only)

Item Control Page Item Control Page