MELIOIDOSIS:

AN INVESTIGATION OF CELLULAR IMMUNE RESPONSES

Thesis submitted by

Jodie Lee BARNES, BBiomedSc (Hons I) JCU

in April 2004

for the degree of Doctor of Philosophy

in the School of Biomedical Sciences

James Cook University

This thesis is dedicated to my family for their support, patience and belief that I would not be a uni student forever.

THE IMAGES ON THIS PAGE HAVE BEEN REMOVED DUE TO COPYRIGHT RESTRICTIONS

DECLARATION

I declare that this work is my own and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished works of others has been acknowledged in the text and a list of references is given.

I, the undersigned, the author of this work, declare that the electronic copy of this thesis provided to the James Cook University Library is an accurate copy of the print thesis submitted, within the limits of technology available.

Jodie Lee BARNES

April 2004

STATEMENT OF ACCESS

I, the undersigned, author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Theses network, for use elsewhere.

I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and I do not wish to place any further restriction on access to this work.

Jodie Lee BARNES

April 2004

ACKNOWLEDGEMENTS

The completion of this project would never have come to be without the input, support and advice of a number of people whose contribution I am extremely grateful for. I would like to thank my principal supervisor and friend, Natkunam Ketheesan, for continuously challenging me to do better. I am very appreciative of the skills imparted, the advice shared and the opportunities that he has provided me with. After four years of working with Ketheesan I have come to realise that he isn't as scary as he would have his honours students believe. I have grown to enjoy the fact that we rarely seem to agree on anything except possibly, that graphs should always "look nice". Thank you very much for all you've done Ketheesan.

Secondly, my co-supervisor, Robert Hirst for his continued motivation, reassurance and guidance. As an undergraduate student, it was Robert's enthusiasm and optimism that tempted me down the research path. I am grateful to Glen Ulett for his numerous contributions to this project particularly for his many suggestions and guidance over the years. Thank you to Robert Norton and Justin LaBrooy for their contributions to the human melioidosis studies and for providing various funding opportunities. A big thank you to our multi-talented lab managers Kellie Powell and Sharon Arnold, each of whom spent many hours assisting me with various mundane tasks such as measuring mouse feet.

I am also very grateful for the friendly, supportive work environment provided by the staff and students of Biomedical Sciences, JCU. A special thanks to Raymon Layton and Juli-Anne Knapp for our morning coffee ritual in TV028 and an opportunity to vent frustrations. Thank you to Scott Blyth, who never complained about the seemingly endless number of mice and cages that I asked of him throughout the project. I would like to thank Professor Phil Summers for his assistance and advice with the histological aspects of the project and Laurie Reilly for making me feel so welcome in his lab and sharing his knowledge of tissue processing, staining and photography. Thanks must also go to Brenda Govan and Rod Campbell for their suggestions and assistance, particularly in the compilation of this thesis.

I would like to thank Jeff Warner for initiating and co-ordinating the collaborative project with the Papua New Guinea Institute of Medical Research and School of Tropical Health and Public Medicine for the PNG study and for giving me the opportunity to be involved in it.

I would also like to acknowledge each of the melioidosis patients that selflessly volunteered their time, and their veins to enable us to carry out our human melioidosis studies.

Finally, I would like to thank my family and friends who have been so supportive and who have encouraged me to persevere through the less enjoyable times. Lastly, a big thank you to my wonderful husband, Darran Morris, who made it his mission to see that this thesis was *finally* completed. Thank you so much for your encouragement, motivation and patience and for putting up with my cranky butt for the last few months.

PUBLICATIONS

Publications resulting from this Thesis:

- Barnes J L, Ulett G C, Ketheesan N and Hirst R G. 2001. Induction of multiple chemokine and colony stimulating factor genes in experimental *Burkholderia pseudomallei* infection. *Immunology and Cell Biology* 79: 490-501.
- Ketheesan N, Barnes J L, Ulett G C, VanGessel H J, Norton R E, Hirst R G and LaBrooy J T. 2002. Demonstration of a cell-mediated immune response in melioidosis. *Journal of Infectious Diseases* 186(2): 286-289.
- Barnes J L and Ketheesan N. 2004. Melioidosis: An emerging infection. Australasian Science 25(2): 29-31.
- Barnes J L, Warner J, Melrose W, Durrheim D, Speare R, Reeder J and Ketheesan N. 2004. Adaptive immunity in individuals exposed to *Burkholderia pseudomallei* in Papua New Guinea: a possible role for T cells in determining outcome of infection. *Clinical Immunology (submitted)*.
- 5. **Barnes J L** and Ketheesan N. 2003. Melioidosis: the route of infection influences disease outcome. *Acta Tropica (in preparation)*.
- Barnes J L and Ketheesan N. 2003. Demonstration of cell-mediated immune responses in a murine model of melioidosis. *Infection and Immunity (in preparation)*.

Other Publications:

- Ulett G C, Currie B, Clair T, Mayo M, Ketheesan N, LaBrooy J L, Gal D, Norton R, Ashhurst-Smith C, Barnes J L, Warner J and Hirst R G. 2001. *Burkholderia pseudomallei* virulence: definition, stability and association with clonality. *Microbes and Infection*: 3(8): 621-31.
- Ulett G C, Ketheesan N, Clair T W, McElnea C L, Barnes J L and Hirst R G. 2002. Analogous cytokine responses to *Burkholderia pseudomallei* strains contrasting in virulence correlate with partial cross-protection in immunized mice. *Infection and Immunity*. 70(7): 3953-3958.

ABSTRACT

Melioidosis is a potentially fatal disease caused by the soil bacterium *Burkholderia pseudomallei* and is predominantly seen in southeast Asia and northern Australia. Protection from infections with other facultative intracellular bacteria such as *Listeria monocytogenes* and *Legionella pneumophila*, has been shown to be mediated largely by a cell-mediated immune (CMI) response of the host. *B. pseudomallei* is also a facultative intracellular bacterium but despite decades of research being conducted on this pathogen, few studies have focussed on the CMI response in melioidosis. The nature of a protective host immune response, and the conditions under which it is induced, are fundamental for improved clinical management of patients and vaccine development. Therefore, the major focus of the research outlined within this thesis was the characterisation of the CMI responses involved in the development of protective immunity in melioidosis. This was achieved using a previously characterised mouse model of acute and chronic melioidosis. Following intravenous (*iv*) inoculation, BALB/c mice are highly susceptible, and C57BL/6 mice relatively resistant to *B. pseudomallei* infection.

Using the murine model, we compared the pathogenesis of *B. pseudomallei* infection following inoculation of the bacterium by *iv*, intraperitoneal (*ip*), intranasal (*in*), per os (*po*) and subcutaneous (*sc*) routes of infection. These studies emphasized that determination of bacterial virulence is highly dependent on the route of infection. BALB/c mice consistently demonstrated greater susceptibility toward *B. pseudomallei*, independent of the route of infection. Spleen and liver were the primary organs targeted following infections by all methods tested. Interestingly, following *in* and *po* inoculation of C57BL/6 mice, significant levels of bacteria were detected in the brain in the absence of septicemia.

Reverse transcriptase-polymerisation chain reaction (RT-PCR) and histology were used to assess the increased expression of messenger (m) ribonucleic acid (RNA) for interferon- γ -inducible protein 10 (IP-10), monocyte interferon- γ -inducible protein (Mig), regulated upon activation, normal T-cell expressed and secreted chemokine (RANTES), monocyte chemoattractant protein-1 (MCP-1), cytokine-induced neutrophil chemoattractant (KC), macrophage inflammatory protein-2 (MIP-2), granulocyte colony-stimulating factor (G-CSF), macrophage (M)-CSF, granulocyte-macrophage (GM)-CSF during infection with a highly virulent strain of *B. pseudomallei* (NCTC 13178). Histological changes and bacterial loads were also monitored in the livers and spleens of C57BL/6 and BALB/c mice infected with NCTC 13178. Disparate expression of mRNA was demonstrated for IP-10, Mig, MCP-1, KC, MIP-2, GM-CSF and M-CSF. The magnitude of cellular responses observed in tissue correlated with increased levels of the chemokines and CSF investigated, as well as bacterial load. Compared with C57BL/6 mice, greater infiltration of neutrophils was observed in liver and spleen of BALB/c mice. In contrast, early lesions in C57BL/6 mice predominantly comprised macrophages. These results suggested that the inability of BALB/c mice to contain the infection at sites of inflammation may underlie the susceptible phenotype of this mouse strain toward *B. pseudomallei* infection.

The nitric oxide (NO) secretory activity of C57BL/6 and BALB/c peritoneal macrophages were compared following *in vitro* stimulation with *B. pseudomallei* antigens. Comparable levels of NO were produced by peritoneal macrophages from both mouse strains, suggesting that other antimicrobial mechanisms may underlie differences in the *in vitro* intracellular killing capacities of peritoneal macrophages from C57BL/6 compared to BALB/c mice. However, the low numbers of macrophages observed histologically at sites of *B. pseudomallei* infection in BALB/c mice suggest that failure to recruit sufficient macrophages to these sites may also contribute to the susceptibility of this mouse strain.

The present studies are the first to demonstrate the role of T cell responses in experimental and human melioidosis. Following exposure to a less virulent strain of *B. pseudomallei* (NCTC 13179), both C57BL/6 and BALB/c mice demonstrated delayed-type hypersensitivity (DTH) responses (P<0.05) and lymphocyte proliferation (P<0.05) towards *B. pseudomallei* antigens. Such a response indicated the generation of

B. pseudomallei-specific lymphocytes following initial exposure to the bacterium. The strength of DTH and lymphocyte proliferation responses was dependent on the concentration of the primary inoculating dose. Adoptive transfer experiments were carried out using mononuclear leucocytes (MNL) or purified T cells from spleen of *B. pseudomallei*-immunised C57BL/6 mice. The transfer of *B. pseudomallei*-specific MNL to naïve C57BL/6 mice was demonstrated by a DTH response (P<0.05) to *B. pseudomallei* antigens. However, these mice were not protected from a subsequent lethal challenge with NCTC 13178. Similarly, recipient mice that received purified T cells were not protected from a subsequent lethal challenge. The results of this study suggested that a single exposure to *B. pseudomallei* is insufficient to induce a protective adaptive immune response.

Therefore, we attempted to induce resistance in susceptible BALB/c mice using repetitive low-dose exposure to live *B. pseudomallei* NCTC 13179. Immune responses and resistance following *sc* immunisation with live *B. pseudomallei* was compared to exposure to *B. pseudomallei* antigens. Low-dose immunisation with live bacteria induced protection (P<0.01) to a subsequent lethal challenge with NCTC 13178. In comparison, mice immunised with *B. pseudomallei* antigens were not protected but demonstrated significantly increased levels of IgG_{2a} (P<0.01) and IgG₁ (P<0.01) in serum. These findings suggest that although exposure to *B. pseudomallei* antigens induced a DTH response and lymphocyte proliferation to *B. pseudomallei* antigens *in vitro*, the generation of a protective immune response following *B. pseudomallei* infection requires the presence of live bacteria.

The present studies have also given the first evidence of the development of CMI responses to *B. pseudomallei* in patients who had recovered from melioidosis. Significantly higher lymphocyte proliferation, IFN- γ production and activation of CD4⁺ and CD8⁺ T cell subsets were observed in the patient group compared with control subjects after *in vitro* challenge of peripheral blood mononuclear leucocytes (PBML) cultured with *B. pseudomallei* antigens. It is tempting to reason that the survival of the patients included in this study was due to the development of a protective adaptive

immune response to *B. pseudomallei*. Strong CMI responses were also demonstrated in subclinical melioidosis infection. Individuals who had been exposed to *B. pseudomallei* without any clinical manifestations displayed enhanced lymphocyte proliferation and IFN- γ production in response to stimulation with *B. pseudomallei* antigens *in vitro*, when compared to individuals who had recovered from clinical melioidosis. Such a response may be essential for determining protection following *B. pseudomallei* infection.

In summary, the results of the present studies have provided basic data regarding the involvement of CMI responses during *B. pseudomallei* infection. They provide evidence supporting an essential role for T cells in the development of an effective adaptive immune response to experimental and human *B. pseudomallei* infection and suggest that differences in the development of T cell responses may influence the outcome of infection.

TABLE OF CONTENTS

ABSTRAC	Τ	vi
LIST OF T	ABLES	xiii
	IGURES	
LIST OF A	BBREVIATIONS	xvii
CHAPTER	1: INTRODUCTION	1
CHAPTER	2: LITERATURE REVIEW	6
	TORICAL OVERVIEW	
	KHOLDERIA PSEUDOMALLEI: THE AETIOLOGICAL AGENT	
2.2.1	Тахопоту	
2.2.2	Geographic distribution and ecology	
2.2.3	Isolation and identification	
2.2.4	Pathogenicity determinants	
2.3 MEI	LIOIDOSIS IN ANIMALS	
2.4 ME	LIOIDOSIS IN HUMANS	
2.4.1	Transmission	
2.4.2	Associated risk factors	
2.4.3	Clinical features	
2.4.4	Diagnosis	
2.4.5	Chemotherapeutic regimens and vaccines	
	IUNOPATHOGENESIS OF B. PSEUDOMALLEI INFECTIONS	
2.5.1	Regulation of immune responses by cytokines	
2.5.2	Host genetic factors	
2.5.3	Humoral immunity in melioidosis	
2.5.4 2.6 CON	Cell-mediated immunity in melioidosis NCLUSION	
	3: GENERAL MATERIALS AND METHODS	
3.1 BAC	TERIAL ISOLATES	
3.1.1	Origin of B. pseudomallei strains	
3.1.2	Confirmation of strain identification	
3.1.3	Preparation of bacterial antigens	
	ERIMENTAL ANIMALS	
3.2.1	Ethics approval, routes of administration and safety measures	
3.2.2	Preparation and delivery of standard inoculum	
3.2.3 3.2.4	Recovery of viable bacteria from whole organs	
3.2.4	Isolation of murine splenic mononuclear leucocytes	
	COMPARISON OF B. pseudomallei INFECTION GENERA	
	INT ROUTES IN A MURINE MODEL	
	RODUCTION	
4.2 MA 4.2.1	Delivery of inoculum and care of animals	
4.2.2	Comparison of virulence following infection by different routes	
4.2.2	Comparison of variance following injection by different routes	
4.2.4	Statistical analysis	
	SULTS	
4.3.1	Virulence determination	

4.3.2	Bacterial loads in tissues	71
4.4 DIS	CUSSION	75
	5: CHEMOKINE AND COLONY STIMULATING FACTO	OD CENE
	ON IN A MURINE MODEL OF MELIOIDOSIS	
	RODUCTION	
	TERIALS AND METHODS	
5.2.1	Bacterial isolate	
5.2.2	Experimental infection with B. pseudomallei	
5.2.3	RNA extraction	
5.2.4	Reverse transcription	
5.2.5	PCR-assisted amplification	
5.2.6	Histology	
	SULTS	
5.3.1	Bacterial growth kinetics	
5.3.2	Detection of chemokine and colony stimulating factor mRNA	90
5.3.3	Histology	
5.4 DIS	CUSSION	93
	6: DEMONSTRATION OF CELL-MEDIATED IMMUNE	
RESPONSE	CS IN A MURINE MODEL OF MELIOIDOSIS	101
	RODUCTION	
6.2 MA	FERIALS AND METHODS	
6.2.1	Nitrite production by peritoneal macrophages	
6.2.2	Delayed-type hypersensitivity	105
6.2.3	Lymphocyte proliferation assays	106
6.2.4	Assessment of IFN-γ and IL-4 production	
6.3 RE	SULTS	
6.3.1	Comparison of nitrite production by peritoneal macrophages	
6.3.2	DTH response to B. pseudomallei antigens	
6.3.3	Lymphocyte proliferation	
6.3.4	$IFN-\gamma$ and $IL-4$ production	
	SCUSSION.	
0.4 DI		
CHAPTER	7: ADOPTIVE TRANSFER OF RESISTANCE TO	
B . nseudomo	ullei IN A MURINE MODEL OF MELIOIDOSIS	
	RODUCTION.	
7.1 MA	FERIALS AND METHODS	127
7.2.1	Primary immunisation	
7.2.2	Isolation and purification of splenic MNL	
7.2.2	DTH responses	
7.2.3	Host survival and bacterial loads	
7.2.4	$TNF - \alpha$ levels	
	Serum IgG_{2a} and IgG_1 levels	
7.2.6		
	ULTS	
7.3.1	DTH responses.	
7.3.2	Host survival and bacterial loads	
7.3.3	$TNF-\alpha$ levels	
7.3.4	IgG_{2a} and IgG_1 levels	
7.4 DIS	CUSSION	137
CHAPTER	8: GENERATION OF RESISTANCE IN SUSCEPTIBLE B	ALB/c
	TRODUCTION	
	ATERIALS AND METHODS.	
8.2.1	Determination of effective immunisation dose	143

8.2.2	Immunisation schedule and lethal challenge	143
8.2.3	DTH response	144
8.2.4	Lymphocyte proliferation assays	144
8.3 RES	SULTS	144
8.3.1	Immunisation dose	144
8.3.2	DTH	
8.3.3	Lymphocyte proliferation	145
8.3.4	Host survival and bacterial loads	145
8.3.5	IgG_{2a} and IgG_1 levels	151
8.4 DIS	CUSSION	151
СНАРТЕР	9: A ROLE FOR T CELLS IN SURVIVAL OF PATIENTS	з Штн
	<i>MALLEI</i> INFECTION	
	TRODUCTION ATERIALS AND METHODS	
9.2 MIA 9.2.1		
9.2.1	Subjects	
9.2.2 9.2.3	Antibody titres.	
9.2.3 9.2.4	Lymphocyte proliferation assays	
	Determination of cytokine levels by ELISA	
9.2.5	Fluorescent-activated cell scanning (FACS) analysis of T cell subsets	
9.2.6	Statistical analysis	
	SULTS	
9.3.1	Serum antibody levels	
9.3.2	Lymphocyte proliferation	
9.3.3	Cytokine levels in supernatants	
<i>9.3.4</i>	Activation of T cell subsets	
9.4 DIS	CUSSION	104
	10: A ROLE FOR T CELLS IN PREVENTING THE PRO	
OF B. pseud	lomallei INFECTION	167
	TRODUCTION	
	ATERIALS AND METHODS	
10.2.1	Subjects	
10.2.2	Antibody titres	
10.2.3	Preparation of B. pseudomallei antigens	
10.2.4	Lymphocyte proliferation	
10.2.5	Measurement of IFN- γ in whole blood	
10.2.6	Statistical analysis	
	SULTS	
10.3.1	Serum antibody levels	
10.3.2	Lymphocyte proliferation	
10.3.3	$IFN-\gamma production.$	
	CUSSION.	
CHAPTER	11: GENERAL DISCUSSION	
REFERENC	CES	
	1: SOLUTIONS AND REAGENTS	
AFFENDIA	I; SULUTIONS AND REAGEN 15	
APPENDIX	2: MORTALITY DATA AND BACTERIAL LOADS FOR	Ł
B. PSEUDO	MALLEI STRAINS, NCTC 13178 AND NCTC 1379 FOLL	OWING
	N BY VARIOUS ROUTES	
	Α DI ΥΑΝΙΟυς ΚΟυΤΕς	
APPENDIX	3: GENERATION OF RESISTANCE IN SUSCEPTIBLE	BALB/c

LIST OF TABLES

Table 2.1	Common clinical manifestations of melioidosis	.33
Table 4.1	Challenge doses of NCTC 13178 used for determination of LD_{50} value	s in
	BALB/c and C57BL/6 mice following sc or in route of	
	infection	67
Table 4.2	Challenge doses of NCTC 13179 used for determination of LD_{50} value	s in
	BALB/c and C57BL/6 mice following sc or in route of	
	infection	68
Table 5.1	Chemokine- and CSF-specific primer pair sequences	86
Table 8.1	Doses of NCTC 13179 used to sc infect BALB/c mice1	43

Table 9.1 Demographic and clinical details of

patients.....160

Table 10.1	Summary of demographic features and clinical characteristics of	
	individuals exposed to <i>B. pseudomallei</i>	172

LIST OF FIGURES

Figure 2.1	The worldwide distribution of melioidosis11
Figure 2.2	Distribution of regions endemic for melioidosis within Australia11
Figure 2.3	<i>B. pseudomallei</i> is a facultative intracellular bacterium25
Figure 4.1	Ten-day LD ₅₀ values following <i>iv</i> , <i>sc</i> or <i>in</i> inoculation with
	NCTC 1317870
Figure 4.2	Ten-day LD ₅₀ values following <i>iv</i> , <i>sc</i> or <i>in</i> inoculation with
	NCTC 1317970
Figure 4.3	Comparison of bacterial loads in tissues of C57BL/6 mice following
	challenge with virulent B. pseudomallei by different routes of
	infection72
Figure 4.4	Comparison of bacterial loads in tissues of BALB/c mice following
	challenge with virulent B. pseudomallei by different routes of
	infection73
Figure 5.1	Bacterial load in spleen and liver of C57BL/6 and BALB/c mice infected
	<i>iv</i> with 25 cfu of virulent <i>B. pseudomallei</i>
Figure 5.2	Chemokine and CSF mRNA responses in spleen of C57BL/6 and BALB/c
	mice infected <i>iv</i> with 25 cfu of virulent <i>B. pseudomallei</i>
Figure 5.3	Chemokine and CSF mRNA responses in liver of C57BL/6 and BALB/c
	mice infected <i>iv</i> with 25 cfu of virulent <i>B. pseudomallei</i>
Figure 5.4	Histological examination of spleen of C57BL/6 and BALB/c mice
	infected <i>iv</i> with 25 cfu of virulent <i>B. pseudomallei</i>
Figure 5.5	Histological examination of liver of C57BL/6 and BALB/c mice
	infected <i>iv</i> with 25 cfu of virulent <i>B. pseudomallei</i>
Figure 6.1	Nitrite production in C57BL/6 and BALB/c peritoneal macrophage
	cultures
Figure 6.2	DTH responses to BpLy1 in (a) C57BL/6 and (b) BALB/c mice111
Figure 6.3	DTH response to BpLy1 and CepLy in (a) C57BL/6 and (b) BALB/c
	mice112

Figure 6.4 Effect of immunising dose and time on lymphocyte proliferation in

	(a) C57BL/6 and (b) BALB/c mice113
Figure 6.5	Lymphocyte proliferation in (a) C57BL/6 and (b) BALB/c mice in
	response to BpLy1 and CepLy115
Figure 6.6	Lymphocyte proliferation in (a) C57BL/6 and (b) BALB/c mice
	following neutralisation of LPS in BpLy1, CepLy and
	P. aeruginosa-LPS116
Figure 6.7	IFN- γ -producing lymphocytes from (a) C57BL/6 and
	(b) BALB/c mice
Figure 6.8	IL-4-producing lymphocytes from (a) C57BL/6 and (b) BALB/c mice
Figure 7.1	DTH response following adoptive transfer of (a) unfractionated MNL
	and (b) purified T cells
Figure 7.2	Spleen indices of mice following adoptive transfer of (a) unfractionated
	MNL and (b) purified T cells, subsequently challenged with
	NCTC 13178
Figure 7.3	Bacterial loads in spleen of adoptive transfer mice following challenge
	with NCTC 13178
Figure 7.4	Survival of adoptive transfer mice following challenge with
	NCTC 13178
Figure 7.5	TNF- α levels in serum of purified T cell-recipient mice following
	challenge with NCTC 13178135
Figure 7.6	Antibody levels in serum from unfractionated MNL-recipient mice
	following challenge with NCTC 13178136
Figure 8.1	Identification of a suitable immunising dose for BALB/c mice as
	assessed by (a) footpad swelling, (b) spleen index and (c) bacterial
	loads in spleen146
Figure 8.2	DTH response to BpLy1 in low-dose immunised BALB/c mice147
Figure 8.3	Lymphocyte proliferation in response to BpLy1 in cultures from low-dose
	immunised BALB/c mice147
Figure 8.4	Survival rate of low-dose immunised BALB/c mice following challenge
	with NCTC 13178148
Figure 8.5	Bacterial loads at (a) day 1 and (b) day 3 post-infection in spleen of

	low-dose immunised BALB/c mice challenged with NCTC 13178149
Figure 8.6	(a) IgG_{2a} and (b) IgG_1 levels in serum from low-dose immunised
	BALB/c mice following challenge with NCTC 13178150
Figure 9.1	Proliferation of lymphocytes derived from PBML of patients and
	healthy control subjects in response to BpLy1 and PPD161
Figure 9.2	IFN- γ levels in PBML culture supernatants derived from patients and
	healthy control subjects in response to BpLy1 and PPD161
Figure 9.3	IL-10 levels in PBML culture supernatants derived from patients and
	healthy control subjects in response to BpLy1 and PPD162
Figure 9.4	Changes in the % of CD4 ⁺ CD69 ⁺ T lymphocytes at day 6 following
	stimulation with BpLy1 or PPD163
Figure 9.5	Changes in the % of CD8 ⁺ CD69 ⁺ T lymphocytes at day 6 following
	stimulation with BpLy1 or PPD163
Figure 10.1	Proliferation of lymphocytes derived from controls and B. pseudomallei-
	exposed individuals in response to BpLy1, BpLy2 and Ttox173
Figure 10.2	Proliferation of controls (S^{-}/C^{-}), culture negative (S^{+}/C^{-}) and culture
	positive (C^+) individuals in response to (a) BpLy1, (b) BpLy2 and
	(c) Ttox
Figure 10.3	IFN- γ production by controls (S ⁻ /C ⁻), culture negative (S ⁺ /C ⁻) and culture
	positive (C^+) individuals in response to (a) BpLy1, (b) BpLy2 and
	(c) Ttox176

LIST OF ABBREVIATIONS

AIDS – acquired immunodeficiency syndrome	LV – less virulent
ANOVA – analysis of variance	M – 123 bp DNA size marker
APC – antigen presenting cell	MAC – membrane attack complex
Ara- non arabinose assimilating	MCP-1 – monocyte chemoattractant protein-1
Ara ⁺ - arabinose assimilating	M-CSF – macrophage CSF
ARDS – acute respiratory distress syndrome	MHC – major histocompatibility complex
BCG – bacillus Calmette-Guérin	Mig – monocyte interferon-γ-inducible protein
Bp – base pairs	MIP-2 – macrophage inflammatory protein-2
BP-LPS – B. pseudomallei LPS	MLD – minimum lethal dose
BpLy1 – B. pseudomallei lysate (NCTC 13179)	
cDNA – complementary DNA	MNL – mononuclear leucocytes
CepLy – <i>B. cepacia</i> lysate	mRNA – messenger RNA
CF – cystic fibrosis	MW – molecular weight
cfu – colony forming units	NK – natural killer
CLT – cytolethal toxin	NO – nitric oxide
CMI – cell-mediated immunity	OD – optical density
ConA – concanavalin A	O-PS – O-antigenic polysaccharide
CP- capsular polysaccharide	PBML – peripheral blood mononuclear leucocytes
cpm – counts per minute	PBP – penicillin-binding protein
CSF – colony stimulating factor	PBS – phosphate buffered saline
DNA – deoxyribonucleic acid	PCR – polymerase chain reaction
dNTP – deoxynucleoside triphosphate	PEC – peritoneal exudate cells
EIA – ezyme immunoassay	PFGE – pulse field gel electrophoresis
ELISA – enzyme linked immunosorbent assay	PHA – phytohaemagglutinin
FCS – foetal calf serum	PMNL – polymorphonuclear leucocyte
G-CSF – granulocyte CSF	<i>po</i> – per os, oral
GM-CSF – granulocyte macrophage CSF	PPD – tuberculin purified protein derivative
H&E – haematoxylin and eosin	PPS – protein polysaccharide
HIFCS – heat-inactivated FCS	RANTES – regulated upon activation, normal T-
HIV – human immunodeficiency virus	cell expressed and secreted chemokine
HLA – human leucocyte antigen	RAPD – randomly amplified polymorphic DNA
HV – highly virulent	RNA – ribonucleic acid
IFA- indirect fluorescent antibody	RNI – reactive nitrogen intermediates
IFN-γ – gamma interferon	ROI – reactive oxygen intermediates
Ig – immunoglobulin	rRNA – ribosomal RNA
IHA – indirect haemagglutination	RT – room temperature
IL – interleukin	RT-PCR – reverse transcription PCR
<i>in</i> – intranasal	SBA – sheep blood agar
<i>ip</i> - intraperitoneal	sc – subcutaneous
IP-10 – interferon- γ -inducible protein 10	SEM - standard error of the mean
<i>iv</i> – intravenous	TNF $-\alpha$ – tumor necrosis factor alpha
KC - cytokine-induced neutrophil	$T_{\rm H}1 - T$ Helper (type) 1
chemoattractant	$T_{\rm H}2 - T$ Helper (type) 2
LD_{50} – fifty percent lethal dose	Ttox – tetanus toxoid
LIX – LPS-induced C-X-C chemokine	
LPS – lipopolysaccharide	