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Chapter 1 : An introduction to guantitative risk analysis

Chapter 1
An introduction to quantitative risk analysis'

Introduction

In Volume 1 of this Handbook we stated that no single method of import risk assessment
has proven applicable in all situations, and different methods may be appropriate in
different circumstances®. In qualitative assessments, the likelthood the release and
subsequent exposure to a hazard and the magnitude of the resulting consequences are
expressed using non-numetical terms such as high, medium, low or negligible, and the
qualitative approach has so far proved suitable for the majority of import risk assessments.
Howevet, in some circumstances it may be desirable to undertake a quantitative analysis,
for example, to gain further insights into a particular problem, to identify critical steps or to
compate sanitary measures.

<

The terms ‘parameter’, ‘vatiable’, ‘input’ and are often used interchangeably in quantitative
risk assessments. In this Handbook, these tetms are used as follows:

— Parameter

In experimental statistics the term parameter represents a numerical descriptive measure
that charactetises a population, for example the population mean (lt), the population
standard deviation (G) and the binomial proportion (p). In spreadsheet computer
software, it is often used to represent the arguments of mathematical, statistical or
probability distribution functions such as the values required to define the shape of a
Beta distribution or the mean and standard deviation of a normal distribution.

— Vatiable

A variable is any characteristic that has a different value for different subjects or objects.
If it can take on a different value as a result of a random process it is called a random
variable. It can either be discrete, where it can only take on a limited number of values,
ot continuous, whete it can take on any value within a given range. Examples of discrete
variables include the number of infected animals, the number of test positive animals or
the number of piglets in a litter, while examples of continuous variables include
bodyweight or blood copper levels.

— Inputs

An input is any information that is fed into a model. As a result parameters and
vatiables, together with data and distributions, can be considered as inputs as they
provide information that is used in a quantitative risk assessment model.

— Model

A model is a simplified representation of the real world. Most models are symbolic
because symbols represent properties of the system. In this handbook, a ‘model’ is a
representation of an importation scenario in graphical or mathematical form where

! The general reference for this chapter is Vose D. Risk Analysis, A Quantitative Guide. John Wiley & Sons Chichester,
2000

2 Terrestrial Animal Health Code, Asticle 1.3.1.1
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Chapter 1 : An introduction to quantitative risk analysis

equations are used to simulate the biological processes under study and the impact of
risk management options.

— Quantitative risk assessment

A quantitative risk assessment is 2 mathematical model where the inputs and outputs are
expressed numerically. In its simplest form, commonly referred to as a deterministic or
point estimate analysis, both the inputs and outputs are expressed as single numbers or
point values. These may represent a ‘best guess’, the ‘average’ or ‘expected case’ or
pethaps the ‘worst case’. When one wants to determine the impact of one or more of
the input values on the output, one simply substitutes a new value into the model. This
is effectively a ‘what if’, or scenario, analysis. For simple models with few mputs, this
type of analysis can be easily undertaken using a calculator.

For more complex models, or in situations where one has more data to work with,
probabilistic risk assessments are preferable. In these, inputs are described as probability
distributions and a computer is essential for constructing the risk assessment model.

Deterministic (point estimate) risk assessment

Quantification of risk begins with considering ‘an experiment, or trial with only two
possible outcomes: success or failure. The trial may be repeated a number of times. For
example, a trial may be a single embryo transfer from an infected animal to a susceptible
recipient. A ‘success’ in this case would be where the infection is transmitted while a
‘failure’ would be a transfer where infection is not transmitted. If we observe no successes
after ten transfers (trials) we may begin to suspect that the probability of transmitting
infection by embryo transfer is low. As more transfers are undertaken without transmitting
infection, the mote confident we become that transmission is unlikely. This is shown in
Table I, where confidence intervals’ have been determined by consulting the statistical
tables presented in Appendix 1.

Table I

Probability of transmitting infection following embryo transfer from a viraemic
donor

Number of Number of Probability of transmitting  Lower 95% Upper 95%

transfers (1) in.fe'cted infection P, = (_r_x 100) cont.id(.ance confid(?nce
recipients I N limit limit

10 0 0.00 0.00 30.85

20 0 0.00 0.00 16.84

30 0 0.00 0.00 11.57

40 0 0.00 0.00 8.81

100 0 0.00 0.00 3.62

1,000 0 0.00 0.00 0.37

If 100 experimental transfers were undettaken without transmitting infection, we could
reasonably conclude, using the upper 95th percent confidence interval, that the probability

3 A confidence interval is a range of numbers believed to include an unknown quantity with a specified level of
confidence. For example, if we weighed 10 sheep we could calculate their average weight and the associated confidence
intervals. If the average weight is 50 kg and the 95% confidence interval is = 2.5 kg, this indicates that we could be 95%
confident that the true average weight of all sheep in the flock lies somewhere within the interval bounded by 47.5 kg and
525 kg

2 Handbook on Import Risk Analysis for Animals and Animal Products, Volume 2, 2004



Chapter 1 : An introduction to quantitative risk analysis

of transmitting infection for each embryo transferred from an infected donor is ‘at worst’
3.62%.

If we plan on undertaking an embryo transfer program we might like to estimate the
probability that at least one recipient becomes infected or, alternatively, the average
number of infected recipients we could expect.

To calculate the probability that at least one recipient becomes infected we proceed as
follows:

— the probability of transmitting infection (a success) is p, the probability of not
transmitting infection (a failure) is 1- p,

— the probability that none of the recipients become infected is (1- p)‘, where ¢ refers to
the number of recipients (trials)

— 5o, the probability that at least one recipient becomes infected is 1-(1- p)°

— the probability is expressed in mathematical notation as P(x = 1), where P refets to
probability and x refers to the outcome, that is, an infected recipient

— and the final equation is then written as:

P2 1) =1-(1-p) Equation 1

To calculate the expected number of infected recipients we multiply the probability of
transmitting infection p,, by the number of recipients e

expected number of infected recipients = p, xe Equation 2

If we assume a situation where the probability of transmission equals 3.62% (#=100) and
the number of embryos transferred equals 30, we could determine the probability that at
least one recipient becomes infected (Table IT). For simplicity, we will assume that each
recipient is implanted with only one embryo and that each donor produces a single
transferable embryo. As a result the number of recipients equals 30.

= Pl > 1) = 1-(1-0.0362) = 0.6692 = 66.92%
expected number of infected recipients = 0.0362x30 = 1.086

This scenario is essentially a ‘worst case’ as we have assumed that all the donors are
infected. If we had some information on the prevalence of disease among the donors we
could incotporate this into the model. Suppose a survey had been recently undertaken in a
donor flock of sheep and 5 I animals out of 100 (#) tested were found to be infected. By
consulting the statistical tables in Appendix 4 we could estimate that the true disease
prevalence, with a 95% level of confidence, is likely to be between 1.64% (lower 95%
confidence limit) and 11.28% (upper 95% upper confidence limit) with an expected value
of 5%. We could include these estimates of disease prevalence in the model to determine
three possible outcomes (Table II) using the following formulae:

Px=21)=1-(1-p x p,)f Equation 3
expected number of infected recipients = p X p, X e Equation 4

where: p = prevalence,
p,= probability of transmitting infection and
¢ = number of recipients.

Handbaok on Import Risk Analysis for Animals and Animal Products, Volume 2, 2004 3



Chapter 1 : An introduction to quantitative risk analysis

Table IT
Probability of transmitting infection to at least one recipient and the expected
number of infected recipients if thirty embryos are transferred

Scenario p = pfevalence p:= probability of  Probability Expected number of

in the flock of transmitting 2 1 recipient infected recipients
origin infection via infected (Equation 4)
embryo transfer  (Equation 3)

Minimum 1.64% 1.77% 0.017

(lower 95% CL*) (17 out of every 1,000)
Most likely 5% 3.62% 5.28% 0.054

(expected value) | (upper 95% CL) (54 out of every 1,000)
Worst case 11.28% 11.55% 0.122

(upper 95% CL) ‘ (122 out of every 1,000)

* CL = confidence limit

After considering the probabilities that one or more recipients would become infected, we
might consider that the likelihood is too high and that some risk management measure is
desirable. So, we might then decide to test the donors and discard any that ate positive. If
we test a potential donor, chosen at random, we could calculate the probability that it is
infected D*, given that it is test negative T-. This is a conditional probability, which is

expressed as P(D+ T” ) For a perfect test, this probability would be zero. However, since all

tests ate imperfect (with a sensitivity* of less than 1), we can expect that the test will fail to
detect some infected animals. In addition, some uninfected animals will be incorrectly
classified as positive, since the specificity’ will also be less than 1. In these circumstances

we calculate the P(D+ T™ ), by firstly determining the predictive value of a negative test NP/

as outlined in Chapter 4 and then calculate its complementary probability (1-NPV). This
represents the prevalence of infection within the group of donot animals we accept. That
is, the prevalence of infection amongst the test negative animals as a result of discarding
test positive animals. From Equation 40 in Chapter 4 the NPV is calculated as:

NPV = P(D"|r )= ——2 (-p) Equation 5
p(1—Se)+(1-p)sp
where: p = the prevalence of infection in the flock of sheep

Se = test sensitivity
Sp = test specificity

So the prevalence of infection within the test negative group is calculated as:
p(p*|r-)=1-NPV Equation 6

If we use a test with a sensitivity of 90% and specificity of 99% and reject any positive
animals, we could calculate the probability of infection for a test negative animal by
substituting these values into Equation 6 (Table III):

4 Sensitivity of a test is its ability to correctly classify an infected animal as test positive. It is calculated as the
D+)

5 Specificity of a test is its ability to correctly classify an uninfected animal as test negative. It is calculated as the

proportion of infected animals that yield a positive test result P(T+
proportion of uninfected animals that yicld a negative test result P(T"lD‘)

4 Handbook on Import Risk Analysis for Animals and Animal Products, Volume 2, 2004



Chapter 1 : An introduction to quantitative risk analysis

Table III

Prevalence of infection among test negative donors

Scenario p = prevalence in the Se = test Sp = test Prevalence among
flock of origin sensitivity specificity test negative donors

(Equation 6)

Minimum  1.64% (lower 95% CL*) 0.17%

Most likely 5% (expected value) 90% 999, 0.53%

Worst case  11.28% (upper 95% CL) 1.27%

* CL = confidence limit

Since 1-NP1/ is the prevalence of infection within the test negative group, we can replace
?p” in Equation 3 with ‘1-NPV” to determine the probability of transmitting infection to at
least one recipient:

P(R* 21)=1-(1-(1-NPV)xp,) Equation 7
where:  R" = infected recipient
and the expected number of infected recipients:

(1-NPV)x p, xe Equation 8

The results of these calculations are shown in Table IV.

Table IV
Probability of transmitting infection to at least one recipient and the expected
number of infected recipients if thirty embryos are transferred

(I-NPV) = prevalence P, = probability Probability  Expected number of

Scenatio in the group of test of transmitting 2 1recipient infected recipients
negative donots infection via infected (Equation 8)
(from Table III) ET (Equation 7)
Minimum 0.17% 0.18% 0.002
- (2 out of every 1,000)
Most 0.53% 3.62% 0.57% 0.006
likely (upper 95% CL¥*) (6 out of every 1,000)
Worst case 1.27% 1.37% 0.014

(14 out of every 1,000)

* CL = confidence limit

So, by making use of a statistical table and a calculator, we have been able to undertake a
simple deterministic or point estimate analysis that has given us a very good idea of the
risks we face. We could go on adding to this model, for example by including an estimate
of the probability that a randomly chosen flock is actually infected and the effect of
quarantining and testing recipients to screen out positive animals.

Probabilistic risk assessment (Monte Carlo simulation)

The embryo transfer model under discussion could be refined further. Just as we have
estimated the probability of transmitting infection by embryo transfer, and the prevalence
of infection within the flock of otigin, we could include confidence intervals of the
estimates of sensitivity, specificity and the probability that the flock of otigin is infected.

Hundbook on Import Risk Analysis for Animals and Animal Products, Volume 2, 2004 5



Chapter 1 : An introduction to guantitative risk analysis

However, as the number of such variables® increases there will be a rapid escalation in the
number of potential combinations or ‘what if® scenarios. For example, if we had four
variables, each with a mean and upper and lower 95th percent confidence limits, we would
have 3*, or 81 possible scenarios. Such an approach has significant drawbacks. It can
rapidly become impractical to analyse the results. In addition there is no weighting for each
of the values chosen. For example, our ‘best guess’ might be far more likely to happen than
the ‘wotst case’.

If we had information about the range of values and the likelihood of each value, we could
assign a probability distribution to each variable, which we can now describe as random
variables as they can take on a different value as a result of a random process. In our
embryo transfer example we could use the Beta distribution (Chapter 4) to define a
probability distribution for each input variable (Fig. 1). Such a model is called a stochastic
model and we can calculate the combined impact of the variation in each of the model’s
input distributions to determine a probability distribution of the possible model outcomes.
The simplest way to do this is to perform a simulation. This involves randomly sampling
values from each distribution and combining the values generated, according to the
mathematical logic of the model, to produce a result for that particular scenario. This
process is repeated many times and the results from each scenario, which are also known as
iterations, trials or realisations, are combined to produce a probability distribution of
possible model outcomes.

Throughout this text, probability disttibutions will be described in terms of functions used
in the tisk assessment computer software @RISK’ and the spreadsheet software Microsoft
Excel’. Fot example, the notation Binomial() is an @RISK function while BINOMDIST()
is a Mictosoft Excel function and is distinguished by capital lettets.

a) ) b)

25 25 e e——
2 201 2 201
K z
3 15 B 15 4
2 2
2 104 £ 10 4
o= =1
2 2
& 5 B 54
0 s - T 0 T T
0% 5% 10% 15% 0% 5% 10% 15%
prevalence of infection prevalence of infection

a) aBeta distribution of the probability of transmitting infection by ET if 100 transfers from infected donors to
susceptible recipients were undertaken without transmitting infection: Beta (0+1,100-0+1)

b) aBeta distribution of the prevalence of infection if 5 infected animals were detected in a sample of 100:
Beta(5+1,100-5+1)

Figure 1

An example of two probability disttibutions that could be assigned to the input

variables in the embtyo transfer quantitative risk assessment example

An ascending cumulative frequency plot (Fig. 2a) is often used to display the tesults of a
simulation. It shows the probability of being equal to or less than a certain value. For

=

A variable is any characteristic that has a different value for diffcrent subjects or objects

~

Palisade Corporation, Newfield, New York

-

Microsoft Inc., Redmond, Washington
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Chapter 1 : An introduction to guantitative risk analysis

example, we could report the results as follows, by reading from the 95th cumulative
percentile:

In 95% of iterations, the probability of transmitting infection to at least one recipient is equal to or less than
5.4% if test positive donors are not rejected and less than 0.61% if test positive donors are rejected.

Alternatively, we might choose to report the median result (50th percentile) and the
associated 95% confidence intervals. In the case of testing and rejecting positive donors the
median is 0.12% with lower and upper 95% confidence limits of 0.004% and 0.8%
respectively. It is important to note that the 95th percentile does not represent the upper
95% confidence limit. The upper and lower 95% confidence limits about the 50th
petrcentile are represented by the 97.5th and 2.5th percentiles respectively (Fig. 2b). The
area under the curve embraced by these percentiles is equal to 95% of the total area, which
is the relevant area for the 95% confidence interval.

a) b)

100%

100% .
90% 4 90% R
2 80% \| donors NOT tested 2 goy 4 97.5th percentile
g 70% - gsg 70% - 95th percentile
5 60% 4 5 60%
; 50% - accept test negative donors only ; 50% 50th percentile
£ 40% - g 0%
=E, 30% - E 30% A
3 20% 3 20%
10% ‘ 10% - 2.5th percentile
0% T T T — T T — 0% — T T T T T r
0% 2% 4% 6% 8% 10% 12% 14% 0% 2% 4% 6% 8% 10% 12% 14%
probability of transmitting infection probability of transmitting infection

a) with and without testing donors
b) percentiles for the probability without testing

Figure 2
Ascending cumulative frequency plots of the probability of transmitting infection to
at least one recipient if thirty embryos are transferred

Sampling values from a probability distribution

Sarnpiing values from probability distributions is most commonly undertaken by either
Monte Catlo or Latin hypercube sampling. The Monte Carlo method is based on simple
random sampling from the entire distribution, which represents the sampling frame for
each iteration. It is sampling with replacement, as it is possible for the same values to be
selected mote than once. Latin hypercube sampling, on the other hand, involves stratified
sampling without replacement. The range of the distribution is divided up into a number of
intetvals, equal to the number of iterations to be performed and a simple random sample is
then chosen from within each interval. Each interval is only selected once during a
simulation. As a result, Latin hypercube sampling ensures that values from the entire range
of the distribution will be sampled proportional to the probability density of the
distribution. Fewer samples are usually tequired to reproduce the probability distribution so
it is more efficient than Monte Carlo sampling for the same number of iterations. It is
generally the preferred method of numerical simulation since fewer iterations are required
for a particular level of accuracy.

Differentiating variability and uncertainty

The way in which variability and uncertainty have been desctibed by risk analysts has led to
a degree of confusion. To understand what is meant by these terms, it is important to
appreciate that risk assessment is essentially a tool aimed at predicting the probability of an

Handbook on Import Risk Analysis for Animals and Animal Products, Volume 2, 2004 7
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outcome of a particular action ot actions. For example, we might want to predict the likely
height of a petson chosen at random. We know from out own observations that there is a
great deal of natural variation among individuals in the population. While we might have a
good ‘feel’ for its range and what the average might be, it is only by measuring several
people that we can begin to make some accurate predictions about the heights of people in
the general population. As more measurements are collected, more knowledge is acquired.
We can begin to desctibe the vatriation in people’s heights with increasing certainty,
enabling us to be more and more confident in our predictions. If we measured everybody
in the population, we would have a petfect understanding and we would be able to state
exactly what the population parameters, such as the average height and standard deviation
(a measure of the amount of variation that exits), wete. Obviously, this is impractical and
we need to achieve a balance between acquiting perfect knowledge and obtaining
reasonable estimates upon which we can base our predictions with a reasonable level of
confidence.

TablEV
A hypothetical example of the height of ten adults chosen at random and the
associated statistics

Hgéight in centimeties (x;)
152.3 1184 1585 1688 1634 1629  180.7  99.5 1889 1985

n
o2
Sample average = (x) :% =159.2

Sample standard deviation = s = Vi

Standard etror of the mean = s_ '
x n

tvalue with (#—1) degrees of freedom = 2.262 (from the student’s  distribution)
Confidence interval = frxs_=1+2.262x9.6=+21.7

X
Upper 95% confidence limit = x+Xs_. = 159.2 +2.262 x 9.6 = 180.9
X
Lower 95% confidence limit = x—txs_=159.2-2.262x9.6=137.5
X

Note: sample statistics are represented by x (average) and s (standard deviation) while the
corresponding population parameters are represented by z and o

If we choose ten adults at random and measute them, we can calculate their average height
and standard deviation. These atre actually sample statistics, rather than population parametets
because we have collected data from a subset of the population only (Table V). If we
deduce, from previous observations, that height is a normally distributed variable, we could
use these sample statistics in a normal distribution function (Chapter 3) to enable us to
describe the distribution of height in the general population and make some predictions.
However, because of the small sample size we might be concerned that these sample
statistics do not adequately reflect the population parameters. That is, the population
parameters are uncertain. As shown in Figure 3 we could develop a sampling distribution
for both the mean and standard deviation (see Chapter 6 for details). A sampling
distribution enables us to capture the uncertainty associated with the estimate of a
population parameter based on the data we have collected. For example, we can calculate
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confidence intervals, which allow us to determine how confident we can be that the true
population parameter lies within so many units either side of the corresponding sample
statistic. Confidence intervals ate determined from the area under the curve surrounding
the average value of the distribution. The 95% confidence interval, for example,
corresponds to = 47.5% of the area under the curve either side of the average value. In our
case the 95% confidence interval is £ 21.7 cm about the sample average of 159.2 cm
(Table V). This indicates that we could be 95% confident that the true population average
lies somewhete within the interval bounded by 137.5 cm to 180.9 cm.

a) ®)
0.25 0.12
5> 024 o 0.1
5 015 _q;) 0.08
£ 2 006 |
S 0.1 5
-g -5 0.04 1
= 005 ® 0.02
0 T T T T 0 T T T T T
120 140 160 180 200 15 25 35 45 55 65
mean {cm)’ standard deviation (cm)

a} hypothetical sampling distributions of the mean
b) standard deviation )

Figure 3
Hypothetical sampling distributions of the mean and standard deviation based on
the data in Table V .

If we randomly select a value from each sample distribution of the mean and standard
deviation in Figure 3 and insett them into a normal disttibution function, plot its graph and
repeat this exercise a number of times, we could build up a picture of possible distributions
of height (Fig. 4a). Each of these distributions separately represents a first order distribution,
while together they form a second order distribution. These distributions, which enable
variability and uncertainty to be modelled separately, are explored in more detail in Chapter
7. The thick black line in Figure 4a represents the hypothetical situation where we have
petfect knowledge. It can be seen that there is a certain degree of uncertainty associated
with the small sample size, because there are a number of different possible distributions.

What happens if we increase the sample size to 100 adults? By repeating the exercise just
outlined, we can see from Figure 4b, that by collecting some additional information we
have reduced the uncettainty considerably as the range of possible distributions is very
close to the distribution representing perfect knowledge. We appear to have achieved a
good balance between acquiring perfect knowledge and obtaining reasonable estimates.
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0.02 0.02
.g 20015 1
v
5 g
B 4
E o
a &

50 100 150 200 250 300 50 100 150 200 250 300
height (cm) height (cm)
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b) sample size =100

Figure 4

A hypothetical normal distribution of the height of adults in Great Britain.
The thick line represents petfect knowledge where the average height of all adults is
170 cm with a standard deviation of 30 cm. Each thin line represents one possible
distribution of height

Uncertainty, then, may be thought of as a measure of the incompleteness of one’s
knowledge or information about an unknown quantity. It is important to temember that
even with perfect knowledge vatiability still exists.

As was observed in Volume 1, even though quantitative risk assessments involves
numbers, they are not necessarily more objective, nor ate the results necessarily more
‘precise’ than with qualitative assessments. Choosing an approptiate model structure, which
pathways to include or exclude, the level of aggregation or disaggregation, the actual values
used for each input variable and the type of distribution applied to them, all involve a
degree of subjectivity. Further, because data ate often lacking, models may need to
incorporate expert opinion, which by its very nature is subjective.

The means by which this inherent subjectivity is countered in a good risk assessment is by
ensuring that it is Zransparent. All the information, data, assumptions, uncertainties, methods
and results must be comprehensively documented and the discussion and conclusions
supported by a reasoned and logical discussion. The assessment should be fully referenced
and subjected to peer review.
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