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This study evaluates the effectiveness of Copula-Based Outlier Detection (COPOD) in identifying geochemical
anomalies within the Toroud—Chah Shirin belt (TCSB) in Iran. The TCSB is a significant mineralized zone con-
taining epithermal precious and base metal veins, skarn, gold placer, and Pb-Zn sedimentary-hosted deposits.
Unlike proximity-based or learning-based models, COPOD is a fully deterministic and unsupervised statistical
approach. It requires no hyperparameter tuning or assumptions regarding data distribution, making it ideal for
the skewed, non-Gaussian nature of stream sediment datasets. By modeling multivariate dependencies through
empirical cumulative distribution functions (ECDFs), COPOD captured complex element relationships, such as
Ag-Pb and Bi-Au, which relate to sedimentary-hosted and epithermal gold deposits in the region. Comparative
analysis using Receiver Operating Characteristic (ROC) curves demonstrates that COPOD outperforms both
traditional uni-element mapping and the state-of-the-art Isolation Forest (IF) method. Using a 10% contamina-
tion threshold, the COPOD method identified 23 out of 32 known mineral occurrences, whereas the IF method
captured 19. Furthermore, this study uses dimensional outlier graphs to provide transparent results, highlighting
the influence of Co, Zn, Sb, and Pb on anomaly scores. Results from Lasso regression and random forest analysis
further confirmed these elemental impacts. Comparison with the regional geological map shows that most
anomalies occur within Paleogene volcanic units and the Cretaceous sedimentary unit that hosts Pb-Zn
mineralization. However, some extend into surficial areas due to geochemical dispersion. Overall, COPOD offers
a robust, efficient, and explainable alternative for multivariate geochemical anomaly delineation.

1. Introduction

The importance of geochemical anomalies in aiding the discovery of
mineral deposits has long been acknowledged (e.g., Shahrestani et al.,
2019; Zuo and Xu, 2024). Over the past decades, considerable research
efforts have been directed towards devising innovative methods capable
of reliably identifying geochemical anomalies while minimizing asso-
ciated uncertainties (e.g., Shahrestani et al., 2020; Wang and Zuo, 2022;
Chen et al., 2023). In this context, anomaly detection techniques have
been closely aligned with the concept of geochemical anomalies, facil-
itating the differentiation between anomalous and non-anomalous
zones. The anomaly detection methods applied to delineate geochem-
ical anomalies can be categorized into unsupervised detection, super-
vised detection, ensemble methods, feature extraction, and hybrid
learning. For instance, anomalies in geochemical exploration data can
be identified using an unsupervised machine learning model, which
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employs an outlier detection process. Geochemical anomalies in explo-
ration data can also be identified using a supervised machine learning
model through a classification process. This model treats geochemical
anomalies and geochemical background as two distinct classes. Subse-
quently, a decision function is determined to differentiate between these
two classes, thereby separating geochemical anomalies from back-
ground (Chen et al., 2023). The fundamental concept underlying these
methods aligns with the broad definition of geochemical anomalies,
which denotes a departure from the typical geochemical baseline
considered as normal. Nevertheless, the precise methodologies
employed to ascertain such deviations vary across different anomaly
detection approaches.

Methods that have been applied in the domains of geochemical
anomaly detection and mineral prospectivity mapping include restricted
Boltzmann machines (RBMs) (Chen, 2015), variational autoencoders
(VAEs) (Xiong and Zuo, 2016; Zhao et al., 2023; Esmaeiloghli et al.,
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Fig. 1. Simplified geological map of the study area (after Eshraghi and Jalali, 2006).

2023), one-class support vector machines (OCSVMs) (Chen and Wu,
2017; Shahrestani and Carranza, 2024), deep autoencoders (Xiong et al.,
2018), bat-optimized OCSVM model (Chen et al., 2019), isolation forest
(iForest) (Chen and Wu, 2019), distance anomaly factors (Chen et al.,
2021a), k-nearest neighbor (Chen et al., 2021b), generative adversarial
network (GAN) (Zhang and Zuo, 2021), self-organizing map (Bigdeli
et al., 2022), model averaging (Wang and Zuo, 2022), dictionary
learning (Chen and Sui, 2022), local outlier factor (Puchhammer et al.,
2024; Shahrestani and Carranza, 2024), and neural network based
models (Wang et al., 2024). In recent years, significant progress has been
made in the application of machine learning and, more recently, deep
learning methods for the interpretation of geoscientific data. A wide
range of approaches has been proposed, including LRR-Net (Li et al.,
2023), SpectralGPT (Hong et al., 2023), VAE-BIRCH (Hoseinzade et al.,
2025), 1DCNN combined with graph convolutional networks (Zuo and
Xu, 2024), deep forest models (Liu et al., 2025), memory-augmented
autoencoders (Luo et al., 2025), Bayesian deep learning approaches
(Liu, 2025), and deep belief networks (e.g., Keykhay-Hosseinpoor et al.,

2024).

Various anomaly detection methods produce distinct patterns of
anomalies, revealing uncertainty in geochemical anomaly identifica-
tion. The absence of a universally superior method suggests that there
could be an optimal, yet unidentified, anomaly detector capable of
effectively distinguishing significant anomalies while minimizing
misclassification. The uncertainty arises from the variability in anomaly
patterns identified by different detection techniques (Wang and Zuo,
2022). Several existing methods have certain limitations. Firstly,
methods such as k-nearest neighbor, local outlier factor, one-class sup-
port vector machines, and isolation forest face performance challenges
when dealing with high-dimensional data, leading to a significant
reduction in data processing efficiency. Therefore, they are often
restricted to low-dimensional datasets. Secondly, the majority of
methods require the determination and tuning of hyperparameters,
including the number of clusters for clustering-based models, network
architecture for neural network-based models, and the selection of in-
dividual classifiers in ensemble models. In addition to these limitations,
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Fig. 2. Locations representing the center of each window where the stream sediment samples were collected in Moalleman area.

geochemical anomaly detection is further complicated by characteristics
of geochemical data that are not adequately addressed by many existing
approaches. Geochemical variables commonly exhibit non-Gaussian,
skewed, and heavy-tailed distributions, which reduces the effective-
ness of methods that rely on specific distributional assumptions. More-
over, reliable ground truth labels are generally unavailable in
geochemical exploration datasets, making supervised learning and
extensive model optimization impractical. Under such conditions,
anomaly detection results become highly method-dependent, increasing
uncertainty. Furthermore, many anomaly detection techniques provide
limited interpretability, as they generate anomaly scores without clearly
indicating the contribution of individual variables, which restricts their
usefulness for geological interpretation and decision-making.

To address these challenges, this study applies copula-based anomaly
detection (COPOD) (Li et al., 2020), which differs from many
state-of-the-art anomaly detection techniques in several important as-
pects. Unlike proximity-based methods that rely on pairwise distance
calculations or learning-based models that require training procedures,
COPOD is a fully deterministic and unsupervised statistical approach. It
is based on empirical cumulative distribution functions and involves no
learning process or stochastic optimization. As a result, COPOD does not
require model initialization or hyperparameter tuning, avoiding sub-
jective parameter selection and potential training bias that commonly
affect many existing methods. Another key advantage of COPOD is that
it does not assume any predefined data distribution. This property is

particularly important for geochemical datasets, which often exhibit
skewed, heavy-tailed, and non-Gaussian distributions. By modelling
multivariate dependencies through copula theory and ECDFs, COPOD is
able to capture complex relationships among geochemical variables
more effectively than methods that assume independence or specific
distributional forms. In addition, COPOD does not require labeled data,
making it well suited for geochemical exploration problems where
reliable ground truth information is generally unavailable. COPOD also
offers a high level of interpretability compared to many machine
learning and deep learning approaches. By evaluating anomalous
behaviour on a dimensional basis, COPOD quantifies the contribution of
each variable to the overall anomaly score using dimensional outlier
graphs. This allows domain experts to identify which geochemical ele-
ments are most responsible for anomaly formation, providing trans-
parent and explainable results that support geological interpretation.
Furthermore, COPOD is computationally efficient and scales well to
high-dimensional datasets, as it avoids costly distance calculations and
model training. These characteristics make COPOD a robust, interpret-
able, and efficient alternative to existing state-of-the-art anomaly
detection techniques for multivariate geochemical data.

2. Geological background

The research area (Fig. 1), situated in northeastern Iran and depicted
on the Moalleman geological map at a 1:100,000 scale (Eshraghi and
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Fig. 3. Workflow diagram for delineating geochemical anomalies using the COPOD method.

Jalali, 2006), showcases a diverse array of geological formations. These
formations span from Precambrian gneisses and schists to Tertiary vol-
canic rocks and granitic masses (Hushmandzadeh et al., 1978). Notably,
the area encompasses segments of the Toroud-Chah Shirin belt (TCSB),
renowned for its various mineral deposits, including copper and gold
veins, gold placers, and quartz-base metal veins (Torshizian et al.,
2021). The TCSB exhibits a rich variety of rock formations, such as green
schist, metamorphosed dolomite, and limestone, with Eocene
volcanic-pyroclastic assemblages overlaying them. Underneath these
rock formations are Oligocene intrusive bodies, mainly composed of
granodiorite. The predominant magmatic rocks within the TCB include
andesite and basalt, evolving from acidic to more alkaline compositions
over time, resulting in formations like lava flows, breccias, and andesite
tuffs. The lithological units in the area also include granite,
micro-granite, granodiorite, and various other compositions, forming
magmatic series ranging from subalkaline to alkaline and categorized as
I-type rocks (Mehrabi et al., 2015).

In the TCSB, there are numerous notable mineral deposits and
abandoned mines. These include intrusion-related epithermal vein de-
posits such as Cheshmeh Hafez (Pb 4+ Zn + Cu), Chah Messi (Cu + Au),
Gandy (Au-Ag + Pb-Zn), Abolhassani (Pb-Zn + Ag + Au), Chalu (Cu +
Au), Darestan (Cu + Au), Baghu (Au + Cu) and its associated Au-bearing
placers, and sedimentary hosted deposits such as Khanjar (Pb-Zn + Ag)
(e.g., TaleFazel et al., 2019; Ghezelbash et al., 2021; Shahrestani and
Carranza, 2024). These mineral occurrences are meticulously mapped
on the 100,000 scale geological map, categorized by their main
elemental associations such as Au, Au-Pb, Cu, Pb—-Cu, Pb-Zn, and
Pb-Zn-Cu. For further insights into the geology and mineralization
within the study area, readers are referred to Ghezelbash et al. (2021),
Bigdeli et al. (2023), Esmaeiloghli et al. (2023), and Shahrestani and
Carranza (2024).

3. Materials and methods
3.1. Geochemical dataset

The geochemical dataset used in this study covers approximately
1500 km?, from where 819 stream sediment samples were collected

systematically by the Jianxi Chinese Company (JCC) in 1993. To address
the predominant N-S-trending high-density drainages in the Moalleman
district, JCC implemented a systematic sampling grid to effectively
gather stream sediment geochemical data. By employing 1412 m X
1412 m grid cells, 24 sub-samples were obtained from first- or second-
order drainages within each cell (Hu, 1994). These sub-samples were
then combined to produce a composite stream sediment sample per cell,
ensuring a thorough dataset by merging multiple subsamples into
representative composite samples, thus accurately reflecting sediment
composition across the area (Fig. 2) (Ghezelbash et al., 2021; Azmi et al.,
2021). Stream sediment sampling yields information relevant to up-
stream sources and may not indicate prospectivity at the sample loca-
tions. However, collecting samples from first- or second-order streams
(and not higher-order streams) ensures that any detected geochemical
anomaly is directly associated with its source (e.g., Carranza and Hale,
1997; Shahrestani et al., 2019). Stream sediment data are typically
analyzed using catchment basin-based approaches (e.g., Carranza and
Hale, 1997) because each sample commonly reflects material derived
from an upstream drainage area rather than a single point location. In
this study, however, the sampling strategy limits the spatial influence of
individual samples, allowing them to be treated as quasi-point obser-
vations. As a result, deterministic Euclidean distance-based interpola-
tion methods, such as inverse distance weighting, can be reasonably
applied to interpolate anomaly scores between sampling locations. The
samples were analyzed by AMDEL Co. (Australia) for trace elements (Ag,
As, Au, Ba, Bi, Co, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Sn, Sr, V, W, Zn) using
ICP-MS (Ghezelbash et al., 2021). Quality assurance and control were
carried out using Student's t-test and Fisher's test, which assessed the
mean and variance of elemental data in duplicate samples. The findings
demonstrated robust chemical analysis, with 95% confidence level (Hu,
1994; Koohzadi et al., 2021; Esmaeiloghli et al., 2023).

3.2. Copula-based outlier detection (COPOD)

The COPOD method comprises three steps (Fig. 3). First, it fits left
and right empirical cumulative distribution functions on a t-dimensional
multivariate input dataset and calculates the skewness vector of each
dimension. Second, the empirical copula values of S; corresponding to
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the left and right empirical distribution functions of the previous stage
are calculated, and the skewness of the corrected empirical copula
values is determined. Third, the probability of each S; being observed at
least as extreme along each dimension is computed. The outlier score is
determined by taking the maximum of the negative logarithm of the
probability generated by the left tail empirical copula, the right tail
empirical copula, and the skewness-corrected empirical copula. Intui-
tively, as the tail probability decreases, its negative logarithm increases.
Therefore, a point is deemed an outlier if it exhibits a low left tail
probability, a low right tail probability, or a low skewness-corrected tail
probability.

The comprehensive mathematical formulation of the COPOD method
can be found in Li et al., (2020). Here, we present the fundamental
mathematical principles underlying the COPOD method. This method
leverages copula models, which are designed to separate marginal dis-
tributions from the dependence structure of multivariate distributions.
The copula function can be considered as a function that converts the [0,
11t space into [0,1] using the cumulative distribution function (CDF) of a
random vector (L, Ly, ..., LY) with uniform (0,1) marginals:

CG)=P (L <L,...,L <L) (@]

where P (L <1) =lforjin1,...tandlje [0,1] (Li et al., 2020). It benefits
from the inverse sampling to convert a uniform distribution into a
favorable distribution, thus:

Si=F'(L) ~ Fj) @

For a random variable dataset (Sy, ..., S) having joint distribution
function F (sy, ..., sp) with marginal distributions as F1, ..., Ft, there is a
copula (C) defined as (Sklar, 1959):

F(s) =C(Fi(s1), ..., Fe(sy)) 3

In essence, a copula enables characterization of the combined distribu-
tion of (Sy, ..., St) solely based on their individual marginal distributions.
The copula equation, expressed in terms of the joint cumulative distri-
bution function (CDF) and inverse CDFs, is obtained by substituting the
inverse of Eq. (2) into Eq. (1):

c)=pP (F51(Sl) <L, ~~~7FSt(St) < lt)

=P (S1<Fg (S1),..,S: <Fg/' (Sv)

= FS (F;tl (11)7 LS F;tl (lt)) (4)

Here, the empirical copula utilized by COPOD employs a nonparametric
method that centers around fitting ECDFs. Considering S;;=(S1,i, S2,; ---»
S:i),1=1, ..., nas ith observation in jth dimension, the empirical CDF

called F(s) is

F(s) =P((-o0,s]) = le <s) (5)

Using Eq. (2) the empirical copula observations called L: can be
achieved as:
(il,h ~~~7it.i) = (?1 (Sl,i)-, EEE) ?t(st.i) (6)
Substituting Eq. (6) in Eq. (4), we achieve:

n

~ 1 -
C(llw--x,lt):H ZI(LUSL

i=1

Tzl @

6(1) has discrete uniform marginals on {1/n, 2/n, ..., 1}' and based
on central limit theorem will converge to C(1) (Nelsen, 2006).

The probability of observing a point at least as extreme as each
observation s; is to be computed. Specifically, assuming s; to be
distributed according to some t-variate distribution function Fs, Fs (s;) =
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P (S < sj) (left tail probability) and 1—Fg (s;) = P (S > s;) (right tail
probability) are to be calculated. If x; is an outlier, rare occurrence is
expected. Therefore, if either Fg (s;) or 1—Fg (s;) is extremely small,
evidence suggests that this point has rare occurrence and is, therefore,
likely an outlier. The empirical computation of tail probabilities begins
with the computation of the empirical CDF using Eq. (5). Subsequently,
the empirical CDFs allow for the approximation of the inverse of Eq. (2),
facilitating the derivation of estimated copula observations l; by input-

ting each s; into ?j. The estimated copula observations denote the
probability of observing something as extreme as s along the jth
dimension. Finally, the empirical estimation of the left tail probability is
achieved by the multiplication of all l;. The corresponding right tail
probabilities are determined by considering C(1-) =P (L; > 13, ..., L >
1. A simple substitution could be directly using -S = [-S1 4, -Sai, .., -St,i]
into Eq. (5) to achieve right tail ECDF.

In cases where outliers cluster at one extreme end of the distribution,
skewness correction becomes necessary. For instance, in a dataset where
all outliers concentrate at the left end, utilizing left tail probabilities
proves effective, capturing smaller outliers accurately. Conversely, using
right tail probabilities performs poorly due to the absence of signifi-
cantly large outliers, leading to misidentification of relatively large
points. If the dataset were reversed, with outliers at the top right corner,
right tail ECDFs would work well while left tail ECDFs would struggle.
Averaging tail probabilities is effective when both large and small out-
liers are present. Considering the skewness of the dataset is crucial, with
positive skewness favoring the use of right tail ECDFs for better results.
In the COPOD method, the skewness vector b; = [bs, ..., b is calculated
using the standard equation, thus:

1 i (—si)®
L — ®

n
2
L (s

The "curse of dimensionality” refers to the emergence of unique
challenges in high-dimensional spaces that are absent in low-
dimensional contexts. This phenomenon poses significant obstacles for
outlier detection algorithms (Li et al., 2020). Equation (7) exemplifies
the difference between low and high-dimensional settings. As the
dimensionality increases, the likelihood of encountering values less than
or equal to [ (fj.l— < 1)) for all dimensions diminishes exponentially. Li
et al, (2020) prevented the reduction of tail probabilities, and
leveraging the monotonicity property of the log () function, the sum of
negative log probabilities is utilized instead, thus:

—log(C(l)) = —log(P(Li; <L) x ... x P(L; <L))

[ lg(L<l

=1

Z log (1, (C)]

The validity of the last statement is upheld due to the uniform dis-
tribution of zl,i on [0, 1].

In the employed anomaly detection methodology, copula-based
techniques were utilized to capture variable dependencies inherently,
circumventing the need for additional transformations like centered log-
ratio (clr), additive log-ratio (alr), and isometric log-ratio (ilr) trans-
formations. Through copula functions, multivariate dependencies are
flexibly modeled while preserving the original data scale and distribu-
tion. Consequently, in the conducted analysis, the necessity for these
transformation techniques is obviated, as copula-based anomaly detec-
tion provides a direct and interpretable approach to identifying anom-
alies in multivariate datasets. In terms of computational cost, previous
benchmark studies show that COPOD requires about 0.23s on average to
process standard test datasets, which is comparable to other commonly
used methods, such as isolation forest (IF). COPOD avoids pairwise
distance calculations and does not require model training, which

.
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Table 1

Counts of extreme data values per element through analysis of probability plots.
Element Ag As Au Ba Bi Co Cr Cu Hg
Number of extremes 1 1 4 4 1 0 0 4 2
Element Mo Ni Pb Sb Sn Sr \% w Zn
Number of extremes 1 1 13 2 0 3 3 2 9

Table 2
Summary statistics of uni-element concentrations in the stream sediment sam-
ples collected from the study area (values in ppm).

Variable Mean St.Dev Minimum Maximum Skewness
Ag 0.16 0.56 0.03 7.95 11.90
As 13.31 5.85 4.80 66.80 3.01
Au 0.003 0.007 0.0004 0.100 9.160
Ba 544.07 277.73 143.48 2922.32 4.77
Bi 0.28 0.41 0.08 6.13 8.69
Co 15.32 2.93 6.46 28.52 0.46
Cr 73.47 19.56 28.75 198.12 1.77
Cu 53.51 40.50 16.74 401.81 4.66
Hg 0.02 0.07 0.01 1.17 12.60
Mo 1.40 0.54 0.33 6.40 2.30
Ni 33.56 6.46 13.02 83.64 1.36
Pb 44.53 45.52 14.54 416.19 5.16
Sb 1.00 1.21 0.30 17.09 8.74
Sn 1.28 0.32 0.66 3.12 1.10
Sr 669.30 730.10 210.60 6207.10 4.34
A 147.03 56.05 47.03 453.29 1.65
w 0.97 0.29 0.41 3.40 2.07
Zn 102.21 128.11 42.13 1879.94 9.93

reduces its computational cost. Tests on synthetic datasets also show
that COPOD can handle datasets with up to 10,000 dimensions and
1,000,000 observations within reasonable computation times on a
standard personal computer, making it suitable for large geochemical
datasets (Li et al., 2020).

COPOD was implemented using the PyOD library with its default
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settings (https://github.com/winstonll/COPOD/blob/master/mode
Is/cod.py)(Zhao et al., 2019). The method is almost parameter-free
and does not require model training or hyperparameter tuning. The
only parameter is the contamination rate, which was set to 0.1 and used
only to define the decision threshold, meaning that the top 10% of
samples with the highest anomaly scores were labeled as anomalies.
Empirical cumulative distribution functions (ECDFs) were calculated
independently for each variable to estimate left- and right-tail proba-
bilities. Skewness was used automatically to select the more relevant
tail, and the final outlier score for each sample was obtained by sum-
ming the negative log-probabilities across all dimensions.

4. Results and discussion

Initially, extreme values (mean + 3* St.Dev) (Table 1) were dis-
cerned using probability plots and box plots. Among the elements Au,
Ba, Hg, Sb, W, As, Bi, Ag, Ni, Mo, Cr, Co, and Sn, only a minimal fraction
of extreme values were detected. These outliers were rectified by
substituting them with the 95th percentile value derived from the
remaining dataset. Conversely, for elements Zn, Pb, Cu, Sr, and V with a
higher number of outliers, a regression model was employed to truncate
and anticipate extreme values. Although replacing extreme values in
geochemical datasets is generally discouraged due to the potential loss
of important mineralization signals, in this study the number of extreme
values was very small relative to the total dataset (819 samples). The
COPOD method relies on marginal empirical distributions, and replac-
ing a few extreme values with the 95th percentile helps to reduce the
influence of potential measurement errors or noise on tail probability
estimation. This replacement stabilizes the empirical cumulative dis-
tribution functions without removing true anomalies, as the adjusted
values remain sufficiently high to be identified as outliers by COPOD.
Table 2 shows the summary statistics of elemental values post-extreme
removal, comprising the geochemical dataset under analysis. Addi-
tionally, concentration histograms are depicted in Fig. 4. Upon exami-
nation of the histograms and summary statistics, it becomes evident that

Histogram (p < 0.05)-Values in ppm

Ag As Au Ba Bi
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Fig. 4. Histograms of concentrations of 18 elements from the study area.
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Fig. 5. Uni-element geochemical anomalies identified using the quantile classification for (a) Au, (b) Pb, (c) Zn, and (d) Cu.

elements such as Ag, Au, Bi, Hg, Sb, and Zn exhibit substantial skewness that the distribution of these elements may deviate from normality, one
in their distributions. Conversely, Co, Cr, Ni, and V portray more sym- straightforward approach to delineating geochemical anomalies is to
metrical distributions, which is a prevalent trait observed in geochem- utilize the quantile-based classification. Uni-element geochemical
ical datasets, particularly observed in elements with very low anomalies of Au, Zn, Cu, and Pb are presented in Fig. 5. The Cu anomaly
concentrations, where skewed distributions are commonly encountered. mapping encountered challenges in accurately delineating some known
One way to delineate geochemical anomalies is mapping the main Cu occurrences within the Cu anomaly class. Despite this difficulty, a
uni-element elemental concentrations such as Cu, Pb, Zn, and Au. Given distinct Cu Anomaly zone in the northern part of the study area clearly
Table 3
Spearman coefficients between empirical copula values of different elements.
Ag As Au Ba Bi Co Cr Cu Hg Mo Ni Pb Sb Sn Sr \% w Zn

Ag 1

As 0.00 1.00

Au 0.12 0.05 1.00

Ba 0.18  —0.08 0.01 1.00

Bi 0.07 0.16 0.25  —0.06 1.00

Co 0.14 0.11 0.17  —0.09 019  1.00

Cr 0.01 012  —0.01 0.07 0.03 027 1.00

Cu 0.22 0.00 0.18 0.00 021 047 013  1.00

Hg 0.21 0.08 0.10 0.18 009 018 010 022 1.00

Mo 0.23 0.01 0.14 0.08 019 018 0.08 020 0.17 1.00

Ni —0.04 0.05 0.00  —0.02 009 014 032 011 0.05 0.04 1.00

Pb 0.34 0.06 0.22 0.08 018 022 010 027 0.24 0.30 0.05  1.00

Sb 0.17 0.20 0.09 0.06 011 023 014 006 0.5 0.15 0.05 025 1.00

Sn 0.14 0.03  —0.01 0.07 006 015 011 013 0.05 0.05 0.10  0.07 011  1.00

Sr 016 -021  —0.09 037 -012 0.01 0.03 007 017 0.11 0.03 004 -0.03 0.13 1.00

\% 0.09 0.02  —0.04 0.00 000 039 012 013 0.05 -0.04 -0.14  0.09 029  0.09 0.03  1.00

w 0.09 0.13 0.23  —0.09 038 028 016 033 0.12 0.26 0.14 025 016 0.08 —0.09 004 1.00

Zn 0.24 0.14 0.19 0.06 018 037 018 035 0.19 0.14 0.04  0.44 0.14 0.13 007 016 026 1.00
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Fig. 6. Histogram of outlier scores generated by the COPOD method.

identifies known Pb-Cu and Au occurrences. Additionally, the Cu
anomaly map shows spatial relation with a Cu occurrence in the
southeast of the area. In contrast, the Pb anomaly maps highlighted all
known Pb-Cu occurrences and some known Pb-Zn occurrences in the
western region. Zn, with its greater mobility compared to Pb, tends to be
more dispersed and diluted within stream sediments (Bouzekri et al.,
2019; Drahota et al., 2024). However, despite this, the Zn anomaly map
highlighted several known Pb-Zn and Pb-Cu occurrences. The Au
anomaly map, similar to the Cu anomaly map, revealed a significant
anomaly in the northern part, encompassing most of the known Au oc-
currences and several known Pb-Cu occurrences. The Au, Pb, and Zn
uni-element anomaly maps demonstrated similarity in highlighting
three known mineral occurrences in the northern part, including Pb—Cu,
Pb-Zn, and Pb-Zn-Cu occurrences. However, distinct patterns emerged
between the Au and Cu anomaly maps, indicating that varying litho-
logical and geochemical factors influence the transportation and con-
centration of these elements within stream sediments in the study area.

In order to implement the COPOD method, the algorithm introduced
by Li et al., 2020 was applied. This involved computing the ECDFs for
both the left and right tails, along with skewness coefficients. Following

280000 290000 300000
L f N
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this, empirical copula observations were computed. In the concluding
stage, tail probabilities were estimated using Eq. (9), and the outlier
scores were identified as the maximum values among the left, right, and
skewness-corrected probabilities. Table 3 presents the Spearman co-
efficients derived from empirical copula values obtained through the
COPOD method. The analysis revealed notable geochemically relevant
relationships among the various elements. Significant correlations were
observed among pairs such as Ag-Pb, Bi-Au, Pb-Au, Cr-Co, Cu-Co,
Ni-Cr, Ba-Sr, Bi-W, V-Co, Pb—Cu, and Cu-Zn. These correlations can be
linked to distinct mineral deposits within the study area. In the case of
Bi-Au, trace minerals such as emplectite (CuBiSy), wittichenite
(CusBiSs), tellurobismuthite (BigTes), tetradymite (BipTe3S), and native
gold have been identified in the Darestan Cu + Au epithermal deposit
(TaleFazel et al, 2019). In a different example, the Khanjar
carbonate-hosted deposit, the Ag-Pb association has been reported to
show an enrichment of Ag ranging between 90 and 2400 g/t (Sabahi and
Ebrahimi, 2015). Moreover, the Abolhassani and Gandy deposits are
dominated by primary ore minerals such as chalcopyrite, pyrite, sphal-
erite, galena, and chalcocite. Additionally, trace minerals identified in
these deposits include bornite, tennantite, emplectite (CuBiS;), argen-
tite, and native gold (TaleFazel et al., 2019).

Fig. 6 depicts the histogram of outlier scores generated by the
COPOD method. Fig. 7 illustrates the classified anomaly map based on
quantile classification of the anomaly map derived from the application
of the COPOD method to the geochemical dataset from the study area.
The classified anomaly map effectively identified all Au, Pb-Cu and
Au-Pb, and Pb-Zn occurrences. Regarding Cu occurrences, while the
COPOD method delineated several of these occurrences, similar to uni-
element Cu anomaly map, some mineral occurrences were not delin-
eated due to sampling scheme limitations or the presence of complex
multivariate patterns in the study area that the COPOD method cannot
capture. In order to compare the effectiveness of the multivariate
COPOD method and the uni-element anomaly mapping method, two
procedures were followed. In the first comparison, the number of min-
eral occurrences delineated in each quantile class (Q1 to Q4) of four uni-
element and one COPOD-derived anomaly maps was contrasted
(Table 4). The prospectivity maps in this study focus on Au, Zn, Cu, and
Pb, as these are the main commodities of economic interest in the region
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Fig. 7. Quantile-based anomaly map derived by the COPOD method.
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Table 4
Number of known mineral occurrences in each anomaly class of the uni-element and COPOD-derived geochemical anomalies.
Mineralization

Anomaly map Quantile Cu Pb-Zn Au-Pb Au Pb-Cu Pb-Zn-Cu Total Percentage

Au Q1 2 2 4 13
02 5 1 6 19
Q3 7 1 8 25
Q4 3 1 1 3 5 1 14 44

Zn 01 1 1 3
Q2 5 1 2 8 25
Q3 11 1 12 38
Q4 3 1 1 5 1 11 34

Pb Q1 4 4 13
Q2 5 1 6 19
Q3 4 1 5 16
Q4 4 3 1 3 5 1 17 53

Cu Q1 3 3 9
Q2 3 3 9
Q3 6 6 19
Q4 8 1 1 4 5 1 20 63

COPOD Q1 0 0
Q2 7 6 18
Q3 2 1 3 9
Q4 8 4 1 4 5 0 23 71

and provide a clear basis for comparison between single-element
anomaly mapping and the multivariate COPOD approach. Shahrestani
and Carranza (2024) conducted a comprehensive principal component
analysis (PCA) on the same geochemical dataset, which revealed sig-
nificant elemental associations linked to distinct mineralization styles
and lithological controls. Their results showed that the first seven
principal components explain approximately 80% of the total elemental
variability. Notably, PC2 highlights a strong association among Au, Bi,
Cu, and W, indicative of epithermal gold mineralization characterized
by the presence of chalcopyrite, pyrite, sphalerite, galena, and trace
minerals such as bornite and tennantite in key deposits like Abolhassani
and Gandy. PC5 and PC7 reflect hydrothermal and intrusive-related
polymetallic mineralization, respectively, with elemental groups
including Zn, Ag, Ni, Pb, Cu, Mo, V, and Ba. These PCA-derived
elemental clusters provide robust justification for selecting Au, Zn, Cu,
and Pb as pathfinder elements, as they capture the primary minerali-
zation types and geochemical processes within the study area. Overall,
the COPOD-derived and Cu anomaly maps showed the highest consis-
tency between geochemical anomalies and known mineral occurrences.
However, the most predominant feature of the Cu anomaly map was the
high possibility of disregarding geochemical anomalies that originated
from the Pb-Zn mineral deposits. In the case of COPOD-derived anomaly
map, the contribution of geochemical anomalies related to Pb-Zn min-
eral deposits was also taken into account while similar number of Cu
mineralization was delineated by the Cu and COPOD-derived anomaly
maps in the highest anomaly rank (i.e., Q4). Moreover, regarding
highest anomaly rank, the COPOD-derived anomaly map was more
effective than either of the Pb and Zn anomaly maps in delineating Pb-Zn
mineral occurrences. The same scenario was true when considering the
COPOD-derived and Au anomaly maps in which all known Au miner-
alization fell into the highest anomaly class of the COPOD-derived
anomaly map.

Another approach used to compare the anomaly maps was to utilize
the receiver operating characteristic (ROC) curves whereby true positive
rate is plotted against false positive rate at different threshold values
(Fawcett, 2006). By incorporating labeled data representing known
mineral deposits, ROC curves can be constructed to assess the perfor-
mance of anomaly maps in which the area under the curve is utilized as a
holistic performance metric across all threshold settings. In the ROC
procedure, positive samples correspond to pixels that coincide with
known mineral occurrences while negative samples are randomly
selected pixels with no known mineral occurrences. Fig. 8 illustrates the
ROC curve considering the four uni-element and one COPOD-derived
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Fig. 8. ROC curves generated from the four univariate and one COPOD-derived
anomaly maps, using the area under the curve as a proxy for efficiency.

anomaly maps. As can be seen, there was a considerable growth in
area under curve value when the COPOD method was applied for
geochemical anomaly delineation. We performed five repetitions of ROC
analysis using different random selections of negative samples, and the
AUC values for COPOD ranged from 78% to 87%. In all cases, COPOD
anomaly maps outperformed the corresponding AUC values of the
single-element maps.

The notable aspect of the COPOD method lies in its capacity to utilize
the dimension outlier graph, which aids in comprehending the under-
lying causes of abnormality. To further illustrate this feature, dimension
outlier graphs for the samples with the top five highest outlier scores (ID:
235, 339, 204, 793, and 72) are depicted in Fig. 8, along with their
respective spatial locations. Fig. 9 also demonstrates that the COPOD-
derived anomaly map, classified using a conservative 10% contamina-
tion fraction, effectively captures 21 out of 32 known mineral occur-
rences within the anomaly class. This indicates that despite the
relatively small spatial extent of anomalous areas (approximately 10%
of the study region), the COPOD method efficiently identifies
geochemical anomalies associated with mineralization. There are both
similarities and discrepancies observed in the trend of dimensional
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Outlier Score Breakdown for Data #235 (Outlier)
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Fig. 9. Dimension outlier graphs for samples with the top five highest outlier scores (ID: 235, 339, 204, 793, and 72), along with their respective spatial locations
based on the COPOD anomaly map encompassing 10-percent contamination fraction.

outlier scores among elements for the top high-scored samples. Specif-
ically, samples with ID 204, 235, and 339, located downstream of two
Pb-Zn occurrences in the western part of the study area, exhibit similar
fluctuations in elemental concentrations. Notably, these samples show
enrichment in Pb, Hg, Cu, and Au, suggesting the potential for placer-
type mineralization originating from upstream anomalous sources.
Distinct patterns were also evident in the case of samples 72 and 793,
which demonstrate enrichment in Au pathfinder elements such as As
and Bi. These samples are situated in close proximity to a zone favorable
for Au mineralization. Additionally, among all five cases, elements such
as Co, Sr, and Mo did not contribute to abnormality in these samples. It is
important to note that, while these interpretations hold true for these
specific samples, they may not be generalized across the entire study
area.

In addition to visually representing the relative contributions of el-
ements in outlier scores, this study utilized two methods for further
analysis. Lasso regression, a technique within linear regression that in-
corporates L1 regularization, was employed for variable feature selec-
tion, exploring correlations among variables, and simplifying model
complexity. Additionally, the random forest algorithm was utilized for
tasks including classification, regression, and feature importance anal-
ysis. These methods were applied to the copula values of each dimension
(element) and the outlier scores derived from COPOD. The random
forest analysis utilized the following parameters: 100 trees in the forest,
2 splits for each tree, and a random state of 42 for reproducibility.
Additionally, the dataset was partitioned into training (75%) and testing

10

(25%) subsets for evaluation the performance of the model.

The order and coefficients obtained from Lasso regression are
detailed in Table 5. From this regression analysis, the mean squared
error (MSE) and R-squared values were computed as 14.54 and 0.69,
respectively. The analysis suggests that elements such as Co, Zn, Sb, and
Pb contributed significantly to the outlier scores derived by COPOD,
while V, Ni, Cu, Sr, and Mo were considered less important.

In the random forest analysis, the MSE and R-squared values for the
outlier scores of both the training and testing datasets were 5.51 and
0.89, respectively. Fig. 10 illustrates the relative impact of each feature
(element) on the outlier scores derived by COPOD. Notably, elements
like Sb, Co, Pb, Zn, and Au exhibited the highest impact on the COPOD-
derived outlier scores, while V, As, Mo, Ni, and Sn had the least impact.
Despite some variations, there was an overall similarity in the order
derived from both methods.

The variability in the impact of elements on the anomaly detection
process can be attributed to several factors. Firstly, the quality of
available data, including the restricted variability observed in Mo
among different samples, significantly influences the outcomes. Sec-
ondly, elements with known geochemical significance or associations
with mineralization processes are more likely to influence anomaly
scores. Conversely, lithological variation might primarily shape the
distribution of geochemical anomalies for elements such as V, Ni, Cu,
and Sr. Finally, elements that showcase more pronounced variability
across samples typically exert a stronger influence on anomaly scores.
This variability can be quantified using measures such as the skewness of
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Fig. 9. (continued).

elemental values. However, there exists an exceptional case with Co.
Despite its potentially lower skewness, Co significantly impacted the
COPOD-derived outlier scores, likely due to other contributing factors
such as its high correlations with Cu and Zn as primary elemental
commodities (Table 3). Conversely, most elements that exhibited lower
skewness values, including As, Cr, Ni, Mo, Sn, and V as indicated in
Table 2, tended to have lesser impacts on COPOD-derived outlier scores.

Another way to assess the efficiency of the COPOD method in
delineating geochemical anomalies is to compare its performance with
other state-of-the-art techniques, such as the isolation forest (IF)
method, which is robust to the curse of dimensionality (Shahrestani and
Sanislav, 2025). Fig. 11 shows anomaly maps resulting from both
COPOD and IF, classified using quartile thresholds. Overall, there is a
general conformity between the spatial distribution of geochemical
anomalies between the two methods; however, by focusing on the
highest anomaly class (Q4), the superiority of the COPOD method over
the IF anomaly map is evident, as it captures 23 mineral occurrences out
of 32 compared to 19 localities by the IF method, however, some
mineralization remain undetected in both anomaly maps.

Fig. 12 shows the overlap of the COPOD anomaly class with the

11

regional geological map of the study area. Evidently, the anomaly class
mainly covers the non-rocky zones of the area. However, since the
outlier detection is based on multielement footprints derived from
different lithological units, a complete agreement between the spatial
distribution of anomalies and geological boundaries is not expected.
Nevertheless, the anomaly class generally occurs within the Paleogene
Etr unit, including trachyandesite, trachyandesitic basalt, and minor
andesitic dacite, as well as the Et,v unit composed of submarine lavas
and volcaniclastic rocks, and the Cretaceous Kl,shu unit consisting of
shale, limestone, and minor sandstone, which host sedimentary Pb-Zn
deposits.

Undoubtedly, samples containing elevated elemental values are
more susceptible to being identified as outliers. However, when
employing the COPOD method, a straightforward comparison of overall
elemental concentrations in samples can be achieved through a scatter
plot depicting the geometric means of the 18 elements against their
anomaly scores. Geometric mean, being more robust to outliers than
arithmetic mean, serves as a reliable metric. Based on the contamination
factor and anomaly scores, samples with scores surpassing the threshold
were categorized as the anomaly class, while the rest were labeled as
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Table 5
Ranking of elements by Lasso regression based on
outlier scores derived by COPOD.

Lasso Rank Lasso Coefficient
Co 1.88
Zn 1.62
Sb 1.43
Hg 1.41
Pb 1.38
Ag 1.34
Ba 1.26
Au 1.12
Bi 1.09
Cr 0.98
Sn 0.87
As 0.76
w 0.73
Mo 0.67
Sr 0.66
Cu 0.59
Ni 0.58
\% 0.49

background samples. As depicted in Fig. 13, there exists a noticeable
disparity in the relationship between anomaly scores and geometric
means of samples in the background class compared to those in the
anomaly class. For background samples, the relationship appears less
pronounced, indicating a lack of strong association between the two
variables. On the other hand, a significant relationship exists between
the anomaly score of each sample and the corresponding geometric
mean of the concentrations of 18 elements in that sample within the
anomaly class. This pattern is consistent with the typical behavior
observed when employing outlier detection techniques in multi-element
geochemical datasets.

However, implementation of the COPOD method in the current case
study to detect geochemical anomalies faced several limitations. First,
the reliance of the method on 18 multielement distributions may treat
mineralization-related and unrelated elements similarly, potentially
orienting geochemical anomalies. Second, the selection of copula
models may influence the results, necessitating a comprehensive survey
to understand accurately the efficacy of different copula models in
capturing geochemical dependencies. Third, as in the current study, the

Applied Computing and Geosciences 29 (2026) 100325

tendency of the COPOD method to detect anomalies could be influenced
more by lithological variations than by mineralization-related anoma-
lies in certain study areas, complicating the interpretation of detected
anomalies. Lastly, a lack of predefined criteria or pre-selection proced-
ures in the COPOD method could hinder its ability to effectively filter
out noise and focus on relevant anomalies, potentially leading to false
positives or missed detections.

The results of this study also highlight directions for future research.
Some mineral occurrences, particularly Cu mineralization, were not
delineated by the COPOD method, which may be related to sampling
density, lithological mixing, or complex multivariate geochemical pat-
terns in stream sediment data. COPOD primarily focuses on marginal tail
behaviour and may therefore have limited ability to identify outliers
within mixed or overlapping geochemical populations, which are com-
mon in stream sediment samples. Future studies could evaluate the
performance of COPOD after background correction or population sep-
aration to reduce lithological and catchment effects. In addition, inte-
grating COPOD with other multivariate or ensemble anomaly detection
methods, or incorporating geological and structural information, may
improve the detection of subtle or masked mineralization signals.
Further applications to datasets from different geological environments
would also help to assess the robustness and broader applicability of the
method.

5. Conclusions

1. The copula-based outlier detection (COPOD) method emerges as a
highly effective tool for identifying geochemical anomalies, partic-
ularly in the context of mineral exploration. Through its application,
COPOD accurately delineated the majority of known mineral oc-
currences in the study area.

. The generation of uni-element anomaly maps proved to be a robust
initial step in highlighting anomalous concentrations of key elements
such as Cu, Pb, Zn, and Au. These maps provided valuable insights
into the spatial distribution of mineralization and served as a foun-
dation for further analysis.

. Correlations between empirical copula values across various
geochemical elements revealed significant relationships indicative of
distinct mineralization types within the study area. These
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Fig. 12. Spatial overlap of the COPOD anomaly class with the regional geological map of the study area.

correlations offered valuable insights into the underlying geological 4. Through interpretation of dimension outlier graphs, valuable in-
processes driving anomaly formation. sights were gained into the elemental contributions to anomaly
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Fig. 13. Scatter plot depicting the relationship between the geometric means of
concentrations of 18 elements per sample and the corresponding outlier scores
derived from the COPOD method.

scores. Elements such as Co, Zn, Sb, and Pb were identified as having
substantial influences on anomaly scores, highlighting their impor-
tance in anomaly detection.

5. The analysis of outlier scores between anomaly and background
classes demonstrated distinct behaviors, with anomalies showing a
strong correlation between outlier scores and geometric mean
values, while background samples exhibited a weaker correlation.

6. The COPOD-derived anomaly map effectively delineated known Au,
Pb—Cu, and Au-Pb occurrences. However, for Cu occurrences, some
of these were not delineated by the COPOD method perhaps due to
sampling limitations or complex patterns. Comparing multivariate
and uni-element approaches, the COPOD-derived and Cu anomaly
maps showed the highest consistency with known mineral occur-
rences. The COPOD method was effective in delineating Pb-Zn oc-
currences, outperforming Pb and Zn anomaly maps in the highest
anomaly rank. Similarly, all known Au occurrences were captured in
the highest anomaly class of the COPOD-derived anomaly map. The
study compared the derived anomaly maps using ROC curves and
found that the COPOD-derived map outperformed the uni-element
maps in delineating geochemical anomalies, as evidenced by a sub-
stantial increase in the area under the curve of the ROC curve. This
suggests that, compared to uni-element anomaly mapping, the
COPOD method provides for more accurate and effective identifi-
cation of deposit-related geochemical anomalies.

7. Further analysis using Lasso regression and random forest methods
revealed the substantial impacts of individual elements on anomaly
detection. Elements such as Co, Zn, Sb, and Pb were found to
significantly influence anomaly scores, providing additional insights
into the geochemical processes driving anomaly formation.
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