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A B S T R A C T

This study evaluates the effectiveness of Copula-Based Outlier Detection (COPOD) in identifying geochemical 
anomalies within the Toroud–Chah Shirin belt (TCSB) in Iran. The TCSB is a significant mineralized zone con
taining epithermal precious and base metal veins, skarn, gold placer, and Pb–Zn sedimentary-hosted deposits. 
Unlike proximity-based or learning-based models, COPOD is a fully deterministic and unsupervised statistical 
approach. It requires no hyperparameter tuning or assumptions regarding data distribution, making it ideal for 
the skewed, non-Gaussian nature of stream sediment datasets. By modeling multivariate dependencies through 
empirical cumulative distribution functions (ECDFs), COPOD captured complex element relationships, such as 
Ag–Pb and Bi–Au, which relate to sedimentary-hosted and epithermal gold deposits in the region. Comparative 
analysis using Receiver Operating Characteristic (ROC) curves demonstrates that COPOD outperforms both 
traditional uni-element mapping and the state-of-the-art Isolation Forest (IF) method. Using a 10% contamina
tion threshold, the COPOD method identified 23 out of 32 known mineral occurrences, whereas the IF method 
captured 19. Furthermore, this study uses dimensional outlier graphs to provide transparent results, highlighting 
the influence of Co, Zn, Sb, and Pb on anomaly scores. Results from Lasso regression and random forest analysis 
further confirmed these elemental impacts. Comparison with the regional geological map shows that most 
anomalies occur within Paleogene volcanic units and the Cretaceous sedimentary unit that hosts Pb–Zn 
mineralization. However, some extend into surficial areas due to geochemical dispersion. Overall, COPOD offers 
a robust, efficient, and explainable alternative for multivariate geochemical anomaly delineation.

1. Introduction

The importance of geochemical anomalies in aiding the discovery of 
mineral deposits has long been acknowledged (e.g., Shahrestani et al., 
2019; Zuo and Xu, 2024). Over the past decades, considerable research 
efforts have been directed towards devising innovative methods capable 
of reliably identifying geochemical anomalies while minimizing asso
ciated uncertainties (e.g., Shahrestani et al., 2020; Wang and Zuo, 2022; 
Chen et al., 2023). In this context, anomaly detection techniques have 
been closely aligned with the concept of geochemical anomalies, facil
itating the differentiation between anomalous and non-anomalous 
zones. The anomaly detection methods applied to delineate geochem
ical anomalies can be categorized into unsupervised detection, super
vised detection, ensemble methods, feature extraction, and hybrid 
learning. For instance, anomalies in geochemical exploration data can 
be identified using an unsupervised machine learning model, which 

employs an outlier detection process. Geochemical anomalies in explo
ration data can also be identified using a supervised machine learning 
model through a classification process. This model treats geochemical 
anomalies and geochemical background as two distinct classes. Subse
quently, a decision function is determined to differentiate between these 
two classes, thereby separating geochemical anomalies from back
ground (Chen et al., 2023). The fundamental concept underlying these 
methods aligns with the broad definition of geochemical anomalies, 
which denotes a departure from the typical geochemical baseline 
considered as normal. Nevertheless, the precise methodologies 
employed to ascertain such deviations vary across different anomaly 
detection approaches.

Methods that have been applied in the domains of geochemical 
anomaly detection and mineral prospectivity mapping include restricted 
Boltzmann machines (RBMs) (Chen, 2015), variational autoencoders 
(VAEs) (Xiong and Zuo, 2016; Zhao et al., 2023; Esmaeiloghli et al., 
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2023), one-class support vector machines (OCSVMs) (Chen and Wu, 
2017; Shahrestani and Carranza, 2024), deep autoencoders (Xiong et al., 
2018), bat-optimized OCSVM model (Chen et al., 2019), isolation forest 
(iForest) (Chen and Wu, 2019), distance anomaly factors (Chen et al., 
2021a), k-nearest neighbor (Chen et al., 2021b), generative adversarial 
network (GAN) (Zhang and Zuo, 2021), self-organizing map (Bigdeli 
et al., 2022), model averaging (Wang and Zuo, 2022), dictionary 
learning (Chen and Sui, 2022), local outlier factor (Puchhammer et al., 
2024; Shahrestani and Carranza, 2024), and neural network based 
models (Wang et al., 2024). In recent years, significant progress has been 
made in the application of machine learning and, more recently, deep 
learning methods for the interpretation of geoscientific data. A wide 
range of approaches has been proposed, including LRR-Net (Li et al., 
2023), SpectralGPT (Hong et al., 2023), VAE-BIRCH (Hoseinzade et al., 
2025), 1DCNN combined with graph convolutional networks (Zuo and 
Xu, 2024), deep forest models (Liu et al., 2025), memory-augmented 
autoencoders (Luo et al., 2025), Bayesian deep learning approaches 
(Liu, 2025), and deep belief networks (e.g., Keykhay-Hosseinpoor et al., 

2024).
Various anomaly detection methods produce distinct patterns of 

anomalies, revealing uncertainty in geochemical anomaly identifica
tion. The absence of a universally superior method suggests that there 
could be an optimal, yet unidentified, anomaly detector capable of 
effectively distinguishing significant anomalies while minimizing 
misclassification. The uncertainty arises from the variability in anomaly 
patterns identified by different detection techniques (Wang and Zuo, 
2022). Several existing methods have certain limitations. Firstly, 
methods such as k-nearest neighbor, local outlier factor, one-class sup
port vector machines, and isolation forest face performance challenges 
when dealing with high-dimensional data, leading to a significant 
reduction in data processing efficiency. Therefore, they are often 
restricted to low-dimensional datasets. Secondly, the majority of 
methods require the determination and tuning of hyperparameters, 
including the number of clusters for clustering-based models, network 
architecture for neural network-based models, and the selection of in
dividual classifiers in ensemble models. In addition to these limitations, 

Fig. 1. Simplified geological map of the study area (after Eshraghi and Jalali, 2006).
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geochemical anomaly detection is further complicated by characteristics 
of geochemical data that are not adequately addressed by many existing 
approaches. Geochemical variables commonly exhibit non-Gaussian, 
skewed, and heavy-tailed distributions, which reduces the effective
ness of methods that rely on specific distributional assumptions. More
over, reliable ground truth labels are generally unavailable in 
geochemical exploration datasets, making supervised learning and 
extensive model optimization impractical. Under such conditions, 
anomaly detection results become highly method-dependent, increasing 
uncertainty. Furthermore, many anomaly detection techniques provide 
limited interpretability, as they generate anomaly scores without clearly 
indicating the contribution of individual variables, which restricts their 
usefulness for geological interpretation and decision-making.

To address these challenges, this study applies copula-based anomaly 
detection (COPOD) (Li et al., 2020), which differs from many 
state-of-the-art anomaly detection techniques in several important as
pects. Unlike proximity-based methods that rely on pairwise distance 
calculations or learning-based models that require training procedures, 
COPOD is a fully deterministic and unsupervised statistical approach. It 
is based on empirical cumulative distribution functions and involves no 
learning process or stochastic optimization. As a result, COPOD does not 
require model initialization or hyperparameter tuning, avoiding sub
jective parameter selection and potential training bias that commonly 
affect many existing methods. Another key advantage of COPOD is that 
it does not assume any predefined data distribution. This property is 

particularly important for geochemical datasets, which often exhibit 
skewed, heavy-tailed, and non-Gaussian distributions. By modelling 
multivariate dependencies through copula theory and ECDFs, COPOD is 
able to capture complex relationships among geochemical variables 
more effectively than methods that assume independence or specific 
distributional forms. In addition, COPOD does not require labeled data, 
making it well suited for geochemical exploration problems where 
reliable ground truth information is generally unavailable. COPOD also 
offers a high level of interpretability compared to many machine 
learning and deep learning approaches. By evaluating anomalous 
behaviour on a dimensional basis, COPOD quantifies the contribution of 
each variable to the overall anomaly score using dimensional outlier 
graphs. This allows domain experts to identify which geochemical ele
ments are most responsible for anomaly formation, providing trans
parent and explainable results that support geological interpretation. 
Furthermore, COPOD is computationally efficient and scales well to 
high-dimensional datasets, as it avoids costly distance calculations and 
model training. These characteristics make COPOD a robust, interpret
able, and efficient alternative to existing state-of-the-art anomaly 
detection techniques for multivariate geochemical data.

2. Geological background

The research area (Fig. 1), situated in northeastern Iran and depicted 
on the Moalleman geological map at a 1:100,000 scale (Eshraghi and 

Fig. 2. Locations representing the center of each window where the stream sediment samples were collected in Moalleman area.
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Jalali, 2006), showcases a diverse array of geological formations. These 
formations span from Precambrian gneisses and schists to Tertiary vol
canic rocks and granitic masses (Hushmandzadeh et al., 1978). Notably, 
the area encompasses segments of the Toroud–Chah Shirin belt (TCSB), 
renowned for its various mineral deposits, including copper and gold 
veins, gold placers, and quartz-base metal veins (Torshizian et al., 
2021). The TCSB exhibits a rich variety of rock formations, such as green 
schist, metamorphosed dolomite, and limestone, with Eocene 
volcanic-pyroclastic assemblages overlaying them. Underneath these 
rock formations are Oligocene intrusive bodies, mainly composed of 
granodiorite. The predominant magmatic rocks within the TCB include 
andesite and basalt, evolving from acidic to more alkaline compositions 
over time, resulting in formations like lava flows, breccias, and andesite 
tuffs. The lithological units in the area also include granite, 
micro-granite, granodiorite, and various other compositions, forming 
magmatic series ranging from subalkaline to alkaline and categorized as 
I-type rocks (Mehrabi et al., 2015).

In the TCSB, there are numerous notable mineral deposits and 
abandoned mines. These include intrusion-related epithermal vein de
posits such as Cheshmeh Hafez (Pb + Zn + Cu), Chah Messi (Cu ± Au), 
Gandy (Au–Ag ± Pb-Zn), Abolhassani (Pb–Zn ± Ag ± Au), Chalu (Cu ±
Au), Darestan (Cu ± Au), Baghu (Au ± Cu) and its associated Au-bearing 
placers, and sedimentary hosted deposits such as Khanjar (Pb–Zn ± Ag) 
(e.g., TaleFazel et al., 2019; Ghezelbash et al., 2021; Shahrestani and 
Carranza, 2024). These mineral occurrences are meticulously mapped 
on the 100,000 scale geological map, categorized by their main 
elemental associations such as Au, Au–Pb, Cu, Pb–Cu, Pb–Zn, and 
Pb–Zn–Cu. For further insights into the geology and mineralization 
within the study area, readers are referred to Ghezelbash et al. (2021), 
Bigdeli et al. (2023), Esmaeiloghli et al. (2023), and Shahrestani and 
Carranza (2024).

3. Materials and methods

3.1. Geochemical dataset

The geochemical dataset used in this study covers approximately 
1500 km2, from where 819 stream sediment samples were collected 

systematically by the Jianxi Chinese Company (JCC) in 1993. To address 
the predominant N–S-trending high-density drainages in the Moalleman 
district, JCC implemented a systematic sampling grid to effectively 
gather stream sediment geochemical data. By employing 1412 m ×
1412 m grid cells, 2–4 sub-samples were obtained from first- or second- 
order drainages within each cell (Hu, 1994). These sub-samples were 
then combined to produce a composite stream sediment sample per cell, 
ensuring a thorough dataset by merging multiple subsamples into 
representative composite samples, thus accurately reflecting sediment 
composition across the area (Fig. 2) (Ghezelbash et al., 2021; Azmi et al., 
2021). Stream sediment sampling yields information relevant to up
stream sources and may not indicate prospectivity at the sample loca
tions. However, collecting samples from first- or second-order streams 
(and not higher-order streams) ensures that any detected geochemical 
anomaly is directly associated with its source (e.g., Carranza and Hale, 
1997; Shahrestani et al., 2019). Stream sediment data are typically 
analyzed using catchment basin–based approaches (e.g., Carranza and 
Hale, 1997) because each sample commonly reflects material derived 
from an upstream drainage area rather than a single point location. In 
this study, however, the sampling strategy limits the spatial influence of 
individual samples, allowing them to be treated as quasi-point obser
vations. As a result, deterministic Euclidean distance–based interpola
tion methods, such as inverse distance weighting, can be reasonably 
applied to interpolate anomaly scores between sampling locations. The 
samples were analyzed by AMDEL Co. (Australia) for trace elements (Ag, 
As, Au, Ba, Bi, Co, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Sn, Sr, V, W, Zn) using 
ICP–MS (Ghezelbash et al., 2021). Quality assurance and control were 
carried out using Student's t-test and Fisher's test, which assessed the 
mean and variance of elemental data in duplicate samples. The findings 
demonstrated robust chemical analysis, with 95% confidence level (Hu, 
1994; Koohzadi et al., 2021; Esmaeiloghli et al., 2023).

3.2. Copula-based outlier detection (COPOD)

The COPOD method comprises three steps (Fig. 3). First, it fits left 
and right empirical cumulative distribution functions on a t-dimensional 
multivariate input dataset and calculates the skewness vector of each 
dimension. Second, the empirical copula values of Si corresponding to 

Fig. 3. Workflow diagram for delineating geochemical anomalies using the COPOD method.
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the left and right empirical distribution functions of the previous stage 
are calculated, and the skewness of the corrected empirical copula 
values is determined. Third, the probability of each Si being observed at 
least as extreme along each dimension is computed. The outlier score is 
determined by taking the maximum of the negative logarithm of the 
probability generated by the left tail empirical copula, the right tail 
empirical copula, and the skewness-corrected empirical copula. Intui
tively, as the tail probability decreases, its negative logarithm increases. 
Therefore, a point is deemed an outlier if it exhibits a low left tail 
probability, a low right tail probability, or a low skewness-corrected tail 
probability.

The comprehensive mathematical formulation of the COPOD method 
can be found in Li et al., (2020). Here, we present the fundamental 
mathematical principles underlying the COPOD method. This method 
leverages copula models, which are designed to separate marginal dis
tributions from the dependence structure of multivariate distributions. 
The copula function can be considered as a function that converts the [0, 
1]t space into [0,1] using the cumulative distribution function (CDF) of a 
random vector (L1, L2, …, Lt) with uniform (0,1) marginals: 

CL(l)=P (L1 ≤ l1,…, Lt ≤ lt) (1) 

where P (Lj ≤ lj) = lj for j in 1, …t and lj ϵ [0,1] (Li et al., 2020). It benefits 
from the inverse sampling to convert a uniform distribution into a 
favorable distribution, thus: 

Sj =F− 1
j
(
Lj
)
∼ Fj

)
(2) 

For a random variable dataset (S1, …, St) having joint distribution 
function F (s1, …, st) with marginal distributions as F1, …, Ft, there is a 
copula (C) defined as (Sklar, 1959): 

F(s)=C(F1(s1),…, Ft(st)) (3) 

In essence, a copula enables characterization of the combined distribu
tion of (S1, …, St) solely based on their individual marginal distributions. 
The copula equation, expressed in terms of the joint cumulative distri
bution function (CDF) and inverse CDFs, is obtained by substituting the 
inverse of Eq. (2) into Eq. (1): 

C(l)=P (FS1(S1)≤ l1,…, FSt(St)≤ lt)

= P
(
S1 ≤F− 1

S1 (S1),…, St ≤ F− 1
St (St)

)

= FS
(
F− 1

St (l1),…, F− 1
St (lt)

)
(4) 

Here, the empirical copula utilized by COPOD employs a nonparametric 
method that centers around fitting ECDFs. Considering Sj,i=(S1,i, S2,i, …, 
St,i), i = 1, …, n as ith observation in jth dimension, the empirical CDF 
called F̂(s) is: 

F̂(s) = ℙ(( − ꝏ, s]) =
1
n
∑n

i=1
I(Si ≤ s) (5) 

Using Eq. (2) the empirical copula observations called L̂i can be 
achieved as: 
(
L̂1,i,…, L̂t,i

)
=
(
F̂1

(
S1,i

)
,…, F̂ t

(
St,i

)
(6) 

Substituting Eq. (6) in Eq. (4), we achieve: 

Ĉ(l1,…, lt)=
1
n
∑n

i=1
I
(
L̃1,i ≤ l,…, L̃t,i ≤ lt

)
(7) 

Ĉ(l) has discrete uniform marginals on {1/n, 2/n, …, 1}t and based 
on central limit theorem will converge to C(l) (Nelsen, 2006).

The probability of observing a point at least as extreme as each 
observation si is to be computed. Specifically, assuming si to be 
distributed according to some t-variate distribution function FS, FS (si) =

P (S ≤ si) (left tail probability) and 1− FS (si) = P (S ≥ si) (right tail 
probability) are to be calculated. If xi is an outlier, rare occurrence is 
expected. Therefore, if either FS (si) or 1− FS (si) is extremely small, 
evidence suggests that this point has rare occurrence and is, therefore, 
likely an outlier. The empirical computation of tail probabilities begins 
with the computation of the empirical CDF using Eq. (5). Subsequently, 
the empirical CDFs allow for the approximation of the inverse of Eq. (2), 
facilitating the derivation of estimated copula observations lj by input
ting each sj into F̂ j. The estimated copula observations denote the 
probability of observing something as extreme as s along the jth 
dimension. Finally, the empirical estimation of the left tail probability is 
achieved by the multiplication of all lj. The corresponding right tail 
probabilities are determined by considering C(1-l) = ℙ (L1 ≥ l1, …, Lt ≥

lt). A simple substitution could be directly using -S = [-S1,i, -S2,i, …, -St,i] 
into Eq. (5) to achieve right tail ECDF.

In cases where outliers cluster at one extreme end of the distribution, 
skewness correction becomes necessary. For instance, in a dataset where 
all outliers concentrate at the left end, utilizing left tail probabilities 
proves effective, capturing smaller outliers accurately. Conversely, using 
right tail probabilities performs poorly due to the absence of signifi
cantly large outliers, leading to misidentification of relatively large 
points. If the dataset were reversed, with outliers at the top right corner, 
right tail ECDFs would work well while left tail ECDFs would struggle. 
Averaging tail probabilities is effective when both large and small out
liers are present. Considering the skewness of the dataset is crucial, with 
positive skewness favoring the use of right tail ECDFs for better results. 
In the COPOD method, the skewness vector bi = [b1, …, bt] is calculated 
using the standard equation, thus: 

bi =

1
n
∑n

i=1
(− si)3

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n− 1

∑n

i=1
(si − si)2

√ 3 (8) 

The "curse of dimensionality” refers to the emergence of unique 
challenges in high-dimensional spaces that are absent in low- 
dimensional contexts. This phenomenon poses significant obstacles for 
outlier detection algorithms (Li et al., 2020). Equation (7) exemplifies 
the difference between low and high-dimensional settings. As the 
dimensionality increases, the likelihood of encountering values less than 
or equal to lj (L̃j,i ≤ lj) for all dimensions diminishes exponentially. Li 
et al., (2020) prevented the reduction of tail probabilities, and 
leveraging the monotonicity property of the log () function, the sum of 
negative log probabilities is utilized instead, thus: 

− log(Ĉ(l))= − log
(
P
(
L̃1,i ≤ l1

)
×…×P

(
L̃t,i ≤ lt

))

= −
∑t

j=1
log

(
P
(
L̃j,i ≤ lj

))
= −

∑t

j=1
log

(
lj
)

(9) 

The validity of the last statement is upheld due to the uniform dis
tribution of L̃1,i on [0, 1].

In the employed anomaly detection methodology, copula-based 
techniques were utilized to capture variable dependencies inherently, 
circumventing the need for additional transformations like centered log- 
ratio (clr), additive log-ratio (alr), and isometric log-ratio (ilr) trans
formations. Through copula functions, multivariate dependencies are 
flexibly modeled while preserving the original data scale and distribu
tion. Consequently, in the conducted analysis, the necessity for these 
transformation techniques is obviated, as copula-based anomaly detec
tion provides a direct and interpretable approach to identifying anom
alies in multivariate datasets. In terms of computational cost, previous 
benchmark studies show that COPOD requires about 0.23s on average to 
process standard test datasets, which is comparable to other commonly 
used methods, such as isolation forest (IF). COPOD avoids pairwise 
distance calculations and does not require model training, which 
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reduces its computational cost. Tests on synthetic datasets also show 
that COPOD can handle datasets with up to 10,000 dimensions and 
1,000,000 observations within reasonable computation times on a 
standard personal computer, making it suitable for large geochemical 
datasets (Li et al., 2020).

COPOD was implemented using the PyOD library with its default 

settings (https://github.com/winstonll/COPOD/blob/master/mode 
ls/cod.py)(Zhao et al., 2019). The method is almost parameter-free 
and does not require model training or hyperparameter tuning. The 
only parameter is the contamination rate, which was set to 0.1 and used 
only to define the decision threshold, meaning that the top 10% of 
samples with the highest anomaly scores were labeled as anomalies. 
Empirical cumulative distribution functions (ECDFs) were calculated 
independently for each variable to estimate left- and right-tail proba
bilities. Skewness was used automatically to select the more relevant 
tail, and the final outlier score for each sample was obtained by sum
ming the negative log-probabilities across all dimensions.

4. Results and discussion

Initially, extreme values (mean + 3* St.Dev) (Table 1) were dis
cerned using probability plots and box plots. Among the elements Au, 
Ba, Hg, Sb, W, As, Bi, Ag, Ni, Mo, Cr, Co, and Sn, only a minimal fraction 
of extreme values were detected. These outliers were rectified by 
substituting them with the 95th percentile value derived from the 
remaining dataset. Conversely, for elements Zn, Pb, Cu, Sr, and V with a 
higher number of outliers, a regression model was employed to truncate 
and anticipate extreme values. Although replacing extreme values in 
geochemical datasets is generally discouraged due to the potential loss 
of important mineralization signals, in this study the number of extreme 
values was very small relative to the total dataset (819 samples). The 
COPOD method relies on marginal empirical distributions, and replac
ing a few extreme values with the 95th percentile helps to reduce the 
influence of potential measurement errors or noise on tail probability 
estimation. This replacement stabilizes the empirical cumulative dis
tribution functions without removing true anomalies, as the adjusted 
values remain sufficiently high to be identified as outliers by COPOD. 
Table 2 shows the summary statistics of elemental values post-extreme 
removal, comprising the geochemical dataset under analysis. Addi
tionally, concentration histograms are depicted in Fig. 4. Upon exami
nation of the histograms and summary statistics, it becomes evident that 

Table 1 
Counts of extreme data values per element through analysis of probability plots.

Element Ag As Au Ba Bi Co Cr Cu Hg

Number of extremes 1 1 4 4 1 0 0 4 2
Element Mo Ni Pb Sb Sn Sr V W Zn
Number of extremes 1 1 13 2 0 3 3 2 9

Table 2 
Summary statistics of uni-element concentrations in the stream sediment sam
ples collected from the study area (values in ppm).

Variable Mean St.Dev Minimum Maximum Skewness

Ag 0.16 0.56 0.03 7.95 11.90
As 13.31 5.85 4.80 66.80 3.01
Au 0.003 0.007 0.0004 0.100 9.160
Ba 544.07 277.73 143.48 2922.32 4.77
Bi 0.28 0.41 0.08 6.13 8.69
Co 15.32 2.93 6.46 28.52 0.46
Cr 73.47 19.56 28.75 198.12 1.77
Cu 53.51 40.50 16.74 401.81 4.66
Hg 0.02 0.07 0.01 1.17 12.60
Mo 1.40 0.54 0.33 6.40 2.30
Ni 33.56 6.46 13.02 83.64 1.36
Pb 44.53 45.52 14.54 416.19 5.16
Sb 1.00 1.21 0.30 17.09 8.74
Sn 1.28 0.32 0.66 3.12 1.10
Sr 669.30 730.10 210.60 6207.10 4.34
V 147.03 56.05 47.03 453.29 1.65
W 0.97 0.29 0.41 3.40 2.07
Zn 102.21 128.11 42.13 1879.94 9.93

Fig. 4. Histograms of concentrations of 18 elements from the study area.
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elements such as Ag, Au, Bi, Hg, Sb, and Zn exhibit substantial skewness 
in their distributions. Conversely, Co, Cr, Ni, and V portray more sym
metrical distributions, which is a prevalent trait observed in geochem
ical datasets, particularly observed in elements with very low 
concentrations, where skewed distributions are commonly encountered.

One way to delineate geochemical anomalies is mapping the main 
uni-element elemental concentrations such as Cu, Pb, Zn, and Au. Given 

that the distribution of these elements may deviate from normality, one 
straightforward approach to delineating geochemical anomalies is to 
utilize the quantile-based classification. Uni-element geochemical 
anomalies of Au, Zn, Cu, and Pb are presented in Fig. 5. The Cu anomaly 
mapping encountered challenges in accurately delineating some known 
Cu occurrences within the Cu anomaly class. Despite this difficulty, a 
distinct Cu Anomaly zone in the northern part of the study area clearly 

Fig. 5. Uni-element geochemical anomalies identified using the quantile classification for (a) Au, (b) Pb, (c) Zn, and (d) Cu.

Table 3 
Spearman coefficients between empirical copula values of different elements.

Ag As Au Ba Bi Co Cr Cu Hg Mo Ni Pb Sb Sn Sr V W Zn

Ag 1 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
As 0.00 1.00 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
Au 0.12 0.05 1.00 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
Ba 0.18 − 0.08 0.01 1.00 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
Bi 0.07 0.16 0.25 − 0.06 1.00 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
Co 0.14 0.11 0.17 − 0.09 0.19 1.00 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
Cr 0.01 0.12 − 0.01 0.07 0.03 0.27 1.00 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
Cu 0.22 0.00 0.18 0.00 0.21 0.47 0.13 1.00 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
Hg 0.21 0.08 0.10 0.18 0.09 0.18 0.10 0.22 1.00 ​ ​ ​ ​ ​ ​ ​ ​ ​
Mo 0.23 0.01 0.14 0.08 0.19 0.18 0.08 0.20 0.17 1.00 ​ ​ ​ ​ ​ ​ ​ ​
Ni − 0.04 0.05 0.00 − 0.02 0.09 0.14 0.32 0.11 0.05 0.04 1.00 ​ ​ ​ ​ ​ ​ ​
Pb 0.34 0.06 0.22 0.08 0.18 0.22 0.10 0.27 0.24 0.30 0.05 1.00 ​ ​ ​ ​ ​ ​
Sb 0.17 0.20 0.09 0.06 0.11 0.23 0.14 0.06 0.15 0.15 0.05 0.25 1.00 ​ ​ ​ ​ ​
Sn 0.14 0.03 − 0.01 0.07 0.06 0.15 0.11 0.13 0.05 0.05 0.10 0.07 0.11 1.00 ​ ​ ​ ​
Sr 0.16 − 0.21 − 0.09 0.37 − 0.12 0.01 0.03 0.07 0.17 0.11 0.03 0.04 − 0.03 0.13 1.00 ​ ​ ​
V 0.09 0.02 − 0.04 0.00 0.00 0.39 0.12 0.13 0.05 − 0.04 − 0.14 0.09 0.29 0.09 0.03 1.00 ​ ​
W 0.09 0.13 0.23 − 0.09 0.38 0.28 0.16 0.33 0.12 0.26 0.14 0.25 0.16 0.08 − 0.09 0.04 1.00 ​
Zn 0.24 0.14 0.19 0.06 0.18 0.37 0.18 0.35 0.19 0.14 0.04 0.44 0.14 0.13 0.07 0.16 0.26 1.00
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identifies known Pb–Cu and Au occurrences. Additionally, the Cu 
anomaly map shows spatial relation with a Cu occurrence in the 
southeast of the area. In contrast, the Pb anomaly maps highlighted all 
known Pb–Cu occurrences and some known Pb–Zn occurrences in the 
western region. Zn, with its greater mobility compared to Pb, tends to be 
more dispersed and diluted within stream sediments (Bouzekri et al., 
2019; Drahota et al., 2024). However, despite this, the Zn anomaly map 
highlighted several known Pb–Zn and Pb–Cu occurrences. The Au 
anomaly map, similar to the Cu anomaly map, revealed a significant 
anomaly in the northern part, encompassing most of the known Au oc
currences and several known Pb–Cu occurrences. The Au, Pb, and Zn 
uni-element anomaly maps demonstrated similarity in highlighting 
three known mineral occurrences in the northern part, including Pb–Cu, 
Pb–Zn, and Pb–Zn–Cu occurrences. However, distinct patterns emerged 
between the Au and Cu anomaly maps, indicating that varying litho
logical and geochemical factors influence the transportation and con
centration of these elements within stream sediments in the study area.

In order to implement the COPOD method, the algorithm introduced 
by Li et al., 2020 was applied. This involved computing the ECDFs for 
both the left and right tails, along with skewness coefficients. Following 

this, empirical copula observations were computed. In the concluding 
stage, tail probabilities were estimated using Eq. (9), and the outlier 
scores were identified as the maximum values among the left, right, and 
skewness-corrected probabilities. Table 3 presents the Spearman co
efficients derived from empirical copula values obtained through the 
COPOD method. The analysis revealed notable geochemically relevant 
relationships among the various elements. Significant correlations were 
observed among pairs such as Ag–Pb, Bi–Au, Pb–Au, Cr–Co, Cu–Co, 
Ni–Cr, Ba–Sr, Bi–W, V–Co, Pb–Cu, and Cu–Zn. These correlations can be 
linked to distinct mineral deposits within the study area. In the case of 
Bi–Au, trace minerals such as emplectite (CuBiS2), wittichenite 
(Cu3BiS3), tellurobismuthite (Bi2Te3), tetradymite (Bi2Te2S), and native 
gold have been identified in the Darestan Cu ± Au epithermal deposit 
(TaleFazel et al., 2019). In a different example, the Khanjar 
carbonate-hosted deposit, the Ag–Pb association has been reported to 
show an enrichment of Ag ranging between 90 and 2400 g/t (Sabahi and 
Ebrahimi, 2015). Moreover, the Abolhassani and Gandy deposits are 
dominated by primary ore minerals such as chalcopyrite, pyrite, sphal
erite, galena, and chalcocite. Additionally, trace minerals identified in 
these deposits include bornite, tennantite, emplectite (CuBiS2), argen
tite, and native gold (TaleFazel et al., 2019).

Fig. 6 depicts the histogram of outlier scores generated by the 
COPOD method. Fig. 7 illustrates the classified anomaly map based on 
quantile classification of the anomaly map derived from the application 
of the COPOD method to the geochemical dataset from the study area. 
The classified anomaly map effectively identified all Au, Pb–Cu and 
Au–Pb, and Pb–Zn occurrences. Regarding Cu occurrences, while the 
COPOD method delineated several of these occurrences, similar to uni- 
element Cu anomaly map, some mineral occurrences were not delin
eated due to sampling scheme limitations or the presence of complex 
multivariate patterns in the study area that the COPOD method cannot 
capture. In order to compare the effectiveness of the multivariate 
COPOD method and the uni-element anomaly mapping method, two 
procedures were followed. In the first comparison, the number of min
eral occurrences delineated in each quantile class (Q1 to Q4) of four uni- 
element and one COPOD-derived anomaly maps was contrasted 
(Table 4). The prospectivity maps in this study focus on Au, Zn, Cu, and 
Pb, as these are the main commodities of economic interest in the region 

Fig. 6. Histogram of outlier scores generated by the COPOD method.

Fig. 7. Quantile-based anomaly map derived by the COPOD method.
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and provide a clear basis for comparison between single-element 
anomaly mapping and the multivariate COPOD approach. Shahrestani 
and Carranza (2024) conducted a comprehensive principal component 
analysis (PCA) on the same geochemical dataset, which revealed sig
nificant elemental associations linked to distinct mineralization styles 
and lithological controls. Their results showed that the first seven 
principal components explain approximately 80% of the total elemental 
variability. Notably, PC2 highlights a strong association among Au, Bi, 
Cu, and W, indicative of epithermal gold mineralization characterized 
by the presence of chalcopyrite, pyrite, sphalerite, galena, and trace 
minerals such as bornite and tennantite in key deposits like Abolhassani 
and Gandy. PC5 and PC7 reflect hydrothermal and intrusive-related 
polymetallic mineralization, respectively, with elemental groups 
including Zn, Ag, Ni, Pb, Cu, Mo, V, and Ba. These PCA-derived 
elemental clusters provide robust justification for selecting Au, Zn, Cu, 
and Pb as pathfinder elements, as they capture the primary minerali
zation types and geochemical processes within the study area. Overall, 
the COPOD-derived and Cu anomaly maps showed the highest consis
tency between geochemical anomalies and known mineral occurrences. 
However, the most predominant feature of the Cu anomaly map was the 
high possibility of disregarding geochemical anomalies that originated 
from the Pb-Zn mineral deposits. In the case of COPOD-derived anomaly 
map, the contribution of geochemical anomalies related to Pb-Zn min
eral deposits was also taken into account while similar number of Cu 
mineralization was delineated by the Cu and COPOD-derived anomaly 
maps in the highest anomaly rank (i.e., Q4). Moreover, regarding 
highest anomaly rank, the COPOD-derived anomaly map was more 
effective than either of the Pb and Zn anomaly maps in delineating Pb-Zn 
mineral occurrences. The same scenario was true when considering the 
COPOD-derived and Au anomaly maps in which all known Au miner
alization fell into the highest anomaly class of the COPOD-derived 
anomaly map.

Another approach used to compare the anomaly maps was to utilize 
the receiver operating characteristic (ROC) curves whereby true positive 
rate is plotted against false positive rate at different threshold values 
(Fawcett, 2006). By incorporating labeled data representing known 
mineral deposits, ROC curves can be constructed to assess the perfor
mance of anomaly maps in which the area under the curve is utilized as a 
holistic performance metric across all threshold settings. In the ROC 
procedure, positive samples correspond to pixels that coincide with 
known mineral occurrences while negative samples are randomly 
selected pixels with no known mineral occurrences. Fig. 8 illustrates the 
ROC curve considering the four uni-element and one COPOD-derived 

anomaly maps. As can be seen, there was a considerable growth in 
area under curve value when the COPOD method was applied for 
geochemical anomaly delineation. We performed five repetitions of ROC 
analysis using different random selections of negative samples, and the 
AUC values for COPOD ranged from 78% to 87%. In all cases, COPOD 
anomaly maps outperformed the corresponding AUC values of the 
single-element maps.

The notable aspect of the COPOD method lies in its capacity to utilize 
the dimension outlier graph, which aids in comprehending the under
lying causes of abnormality. To further illustrate this feature, dimension 
outlier graphs for the samples with the top five highest outlier scores (ID: 
235, 339, 204, 793, and 72) are depicted in Fig. 8, along with their 
respective spatial locations. Fig. 9 also demonstrates that the COPOD- 
derived anomaly map, classified using a conservative 10% contamina
tion fraction, effectively captures 21 out of 32 known mineral occur
rences within the anomaly class. This indicates that despite the 
relatively small spatial extent of anomalous areas (approximately 10% 
of the study region), the COPOD method efficiently identifies 
geochemical anomalies associated with mineralization. There are both 
similarities and discrepancies observed in the trend of dimensional 

Table 4 
Number of known mineral occurrences in each anomaly class of the uni-element and COPOD-derived geochemical anomalies.

Anomaly map
Mineralization

Quantile Cu Pb-Zn Au-Pb Au Pb-Cu Pb-Zn-Cu Total Percentage

Au Q1 2 2 ​ ​ ​ ​ 4 13
Q2 5 1 ​ ​ ​ ​ 6 19
Q3 7 ​ ​ 1 ​ ​ 8 25
Q4 3 1 1 3 5 1 14 44

Zn Q1 1 ​ ​ ​ ​ ​ 1 3
Q2 5 1 ​ 2 ​ ​ 8 25
Q3 11 ​ ​ 1 ​ ​ 12 38
Q4 ​ 3 1 1 5 1 11 34

Pb Q1 4 ​ ​ ​ ​ ​ 4 13
Q2 5 1 ​ ​ ​ ​ 6 19
Q3 4 ​ ​ 1 ​ ​ 5 16
Q4 4 3 1 3 5 1 17 53

Cu Q1 ​ 3 ​ ​ ​ ​ 3 9
Q2 3 ​ ​ ​ ​ ​ 3 9
Q3 6 ​ ​ ​ ​ ​ 6 19
Q4 8 1 1 4 5 1 20 63

COPOD Q1 ​ ​ ​ ​ ​ ​ 0 0
Q2 7 ​ ​ ​ ​ ​ 6 18
Q3 2 ​ ​ ​ ​ 1 3 9
Q4 8 4 1 4 5 0 23 71

Fig. 8. ROC curves generated from the four univariate and one COPOD-derived 
anomaly maps, using the area under the curve as a proxy for efficiency.
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outlier scores among elements for the top high-scored samples. Specif
ically, samples with ID 204, 235, and 339, located downstream of two 
Pb–Zn occurrences in the western part of the study area, exhibit similar 
fluctuations in elemental concentrations. Notably, these samples show 
enrichment in Pb, Hg, Cu, and Au, suggesting the potential for placer- 
type mineralization originating from upstream anomalous sources. 
Distinct patterns were also evident in the case of samples 72 and 793, 
which demonstrate enrichment in Au pathfinder elements such as As 
and Bi. These samples are situated in close proximity to a zone favorable 
for Au mineralization. Additionally, among all five cases, elements such 
as Co, Sr, and Mo did not contribute to abnormality in these samples. It is 
important to note that, while these interpretations hold true for these 
specific samples, they may not be generalized across the entire study 
area.

In addition to visually representing the relative contributions of el
ements in outlier scores, this study utilized two methods for further 
analysis. Lasso regression, a technique within linear regression that in
corporates L1 regularization, was employed for variable feature selec
tion, exploring correlations among variables, and simplifying model 
complexity. Additionally, the random forest algorithm was utilized for 
tasks including classification, regression, and feature importance anal
ysis. These methods were applied to the copula values of each dimension 
(element) and the outlier scores derived from COPOD. The random 
forest analysis utilized the following parameters: 100 trees in the forest, 
2 splits for each tree, and a random state of 42 for reproducibility. 
Additionally, the dataset was partitioned into training (75%) and testing 

(25%) subsets for evaluation the performance of the model.
The order and coefficients obtained from Lasso regression are 

detailed in Table 5. From this regression analysis, the mean squared 
error (MSE) and R-squared values were computed as 14.54 and 0.69, 
respectively. The analysis suggests that elements such as Co, Zn, Sb, and 
Pb contributed significantly to the outlier scores derived by COPOD, 
while V, Ni, Cu, Sr, and Mo were considered less important.

In the random forest analysis, the MSE and R-squared values for the 
outlier scores of both the training and testing datasets were 5.51 and 
0.89, respectively. Fig. 10 illustrates the relative impact of each feature 
(element) on the outlier scores derived by COPOD. Notably, elements 
like Sb, Co, Pb, Zn, and Au exhibited the highest impact on the COPOD- 
derived outlier scores, while V, As, Mo, Ni, and Sn had the least impact. 
Despite some variations, there was an overall similarity in the order 
derived from both methods.

The variability in the impact of elements on the anomaly detection 
process can be attributed to several factors. Firstly, the quality of 
available data, including the restricted variability observed in Mo 
among different samples, significantly influences the outcomes. Sec
ondly, elements with known geochemical significance or associations 
with mineralization processes are more likely to influence anomaly 
scores. Conversely, lithological variation might primarily shape the 
distribution of geochemical anomalies for elements such as V, Ni, Cu, 
and Sr. Finally, elements that showcase more pronounced variability 
across samples typically exert a stronger influence on anomaly scores. 
This variability can be quantified using measures such as the skewness of 

Fig. 9. Dimension outlier graphs for samples with the top five highest outlier scores (ID: 235, 339, 204, 793, and 72), along with their respective spatial locations 
based on the COPOD anomaly map encompassing 10-percent contamination fraction.
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elemental values. However, there exists an exceptional case with Co. 
Despite its potentially lower skewness, Co significantly impacted the 
COPOD-derived outlier scores, likely due to other contributing factors 
such as its high correlations with Cu and Zn as primary elemental 
commodities (Table 3). Conversely, most elements that exhibited lower 
skewness values, including As, Cr, Ni, Mo, Sn, and V as indicated in 
Table 2, tended to have lesser impacts on COPOD-derived outlier scores.

Another way to assess the efficiency of the COPOD method in 
delineating geochemical anomalies is to compare its performance with 
other state-of-the-art techniques, such as the isolation forest (IF) 
method, which is robust to the curse of dimensionality (Shahrestani and 
Sanislav, 2025). Fig. 11 shows anomaly maps resulting from both 
COPOD and IF, classified using quartile thresholds. Overall, there is a 
general conformity between the spatial distribution of geochemical 
anomalies between the two methods; however, by focusing on the 
highest anomaly class (Q4), the superiority of the COPOD method over 
the IF anomaly map is evident, as it captures 23 mineral occurrences out 
of 32 compared to 19 localities by the IF method, however, some 
mineralization remain undetected in both anomaly maps.

Fig. 12 shows the overlap of the COPOD anomaly class with the 

regional geological map of the study area. Evidently, the anomaly class 
mainly covers the non-rocky zones of the area. However, since the 
outlier detection is based on multielement footprints derived from 
different lithological units, a complete agreement between the spatial 
distribution of anomalies and geological boundaries is not expected. 
Nevertheless, the anomaly class generally occurs within the Paleogene 
Etr unit, including trachyandesite, trachyandesitic basalt, and minor 
andesitic dacite, as well as the Et,v unit composed of submarine lavas 
and volcaniclastic rocks, and the Cretaceous Kl,shu unit consisting of 
shale, limestone, and minor sandstone, which host sedimentary Pb–Zn 
deposits.

Undoubtedly, samples containing elevated elemental values are 
more susceptible to being identified as outliers. However, when 
employing the COPOD method, a straightforward comparison of overall 
elemental concentrations in samples can be achieved through a scatter 
plot depicting the geometric means of the 18 elements against their 
anomaly scores. Geometric mean, being more robust to outliers than 
arithmetic mean, serves as a reliable metric. Based on the contamination 
factor and anomaly scores, samples with scores surpassing the threshold 
were categorized as the anomaly class, while the rest were labeled as 

Fig. 9. (continued).
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background samples. As depicted in Fig. 13, there exists a noticeable 
disparity in the relationship between anomaly scores and geometric 
means of samples in the background class compared to those in the 
anomaly class. For background samples, the relationship appears less 
pronounced, indicating a lack of strong association between the two 
variables. On the other hand, a significant relationship exists between 
the anomaly score of each sample and the corresponding geometric 
mean of the concentrations of 18 elements in that sample within the 
anomaly class. This pattern is consistent with the typical behavior 
observed when employing outlier detection techniques in multi-element 
geochemical datasets.

However, implementation of the COPOD method in the current case 
study to detect geochemical anomalies faced several limitations. First, 
the reliance of the method on 18 multielement distributions may treat 
mineralization-related and unrelated elements similarly, potentially 
orienting geochemical anomalies. Second, the selection of copula 
models may influence the results, necessitating a comprehensive survey 
to understand accurately the efficacy of different copula models in 
capturing geochemical dependencies. Third, as in the current study, the 

tendency of the COPOD method to detect anomalies could be influenced 
more by lithological variations than by mineralization-related anoma
lies in certain study areas, complicating the interpretation of detected 
anomalies. Lastly, a lack of predefined criteria or pre-selection proced
ures in the COPOD method could hinder its ability to effectively filter 
out noise and focus on relevant anomalies, potentially leading to false 
positives or missed detections.

The results of this study also highlight directions for future research. 
Some mineral occurrences, particularly Cu mineralization, were not 
delineated by the COPOD method, which may be related to sampling 
density, lithological mixing, or complex multivariate geochemical pat
terns in stream sediment data. COPOD primarily focuses on marginal tail 
behaviour and may therefore have limited ability to identify outliers 
within mixed or overlapping geochemical populations, which are com
mon in stream sediment samples. Future studies could evaluate the 
performance of COPOD after background correction or population sep
aration to reduce lithological and catchment effects. In addition, inte
grating COPOD with other multivariate or ensemble anomaly detection 
methods, or incorporating geological and structural information, may 
improve the detection of subtle or masked mineralization signals. 
Further applications to datasets from different geological environments 
would also help to assess the robustness and broader applicability of the 
method.

5. Conclusions

1. The copula-based outlier detection (COPOD) method emerges as a 
highly effective tool for identifying geochemical anomalies, partic
ularly in the context of mineral exploration. Through its application, 
COPOD accurately delineated the majority of known mineral oc
currences in the study area.

2. The generation of uni-element anomaly maps proved to be a robust 
initial step in highlighting anomalous concentrations of key elements 
such as Cu, Pb, Zn, and Au. These maps provided valuable insights 
into the spatial distribution of mineralization and served as a foun
dation for further analysis.

3. Correlations between empirical copula values across various 
geochemical elements revealed significant relationships indicative of 
distinct mineralization types within the study area. These 

Table 5 
Ranking of elements by Lasso regression based on 
outlier scores derived by COPOD.

Lasso Rank Lasso Coefficient

Co 1.88
Zn 1.62
Sb 1.43
Hg 1.41
Pb 1.38
Ag 1.34
Ba 1.26
Au 1.12
Bi 1.09
Cr 0.98
Sn 0.87
As 0.76
W 0.73
Mo 0.67
Sr 0.66
Cu 0.59
Ni 0.58
V 0.49

Fig. 10. Relative influence of each element determined by random forest analysis of the outlier scores generated by COPOD.
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correlations offered valuable insights into the underlying geological 
processes driving anomaly formation.

4. Through interpretation of dimension outlier graphs, valuable in
sights were gained into the elemental contributions to anomaly 

Fig. 11. Classified geochemical anomalies identified by COPOD and IF methods, shown alongside known mineral occurrences.

Fig. 12. Spatial overlap of the COPOD anomaly class with the regional geological map of the study area.
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scores. Elements such as Co, Zn, Sb, and Pb were identified as having 
substantial influences on anomaly scores, highlighting their impor
tance in anomaly detection.

5. The analysis of outlier scores between anomaly and background 
classes demonstrated distinct behaviors, with anomalies showing a 
strong correlation between outlier scores and geometric mean 
values, while background samples exhibited a weaker correlation.

6. The COPOD-derived anomaly map effectively delineated known Au, 
Pb–Cu, and Au–Pb occurrences. However, for Cu occurrences, some 
of these were not delineated by the COPOD method perhaps due to 
sampling limitations or complex patterns. Comparing multivariate 
and uni-element approaches, the COPOD-derived and Cu anomaly 
maps showed the highest consistency with known mineral occur
rences. The COPOD method was effective in delineating Pb-Zn oc
currences, outperforming Pb and Zn anomaly maps in the highest 
anomaly rank. Similarly, all known Au occurrences were captured in 
the highest anomaly class of the COPOD-derived anomaly map. The 
study compared the derived anomaly maps using ROC curves and 
found that the COPOD-derived map outperformed the uni-element 
maps in delineating geochemical anomalies, as evidenced by a sub
stantial increase in the area under the curve of the ROC curve. This 
suggests that, compared to uni-element anomaly mapping, the 
COPOD method provides for more accurate and effective identifi
cation of deposit-related geochemical anomalies.

7. Further analysis using Lasso regression and random forest methods 
revealed the substantial impacts of individual elements on anomaly 
detection. Elements such as Co, Zn, Sb, and Pb were found to 
significantly influence anomaly scores, providing additional insights 
into the geochemical processes driving anomaly formation.
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