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Abstract The Great Barrier Reef, like most reef ecosys-
tems, is increasingly subject to major acute disturbances,
including population irruptions of crown-of-thorns starfish
(CoTS) and climate-induced coral bleaching. Given their
increasing incidence, acute disturbances are likely to occur
simultaneously or successively, though interactive effects
of major disturbances are generally unknown. This study
explores changes in the feeding behavior of CoTS during
an emerging population irruption at Lizard Island that coin-
cided with the 2024 mass bleaching, using in situ survey
data. We conducted Scooter-Assisted Large Area Diver-
Based surveys to investigate changes in CoT'S demogra-
phy and feeding, and point-intercept transects to examine
changes in coral cover. From 2023 to 2025, there was a 49%
decline in coral cover at Lizard Island, which was largely
attributable to mass bleaching. Daily feeding rates of CoT'S
significantly declined over the same period, both in terms
of the number of coral colonies (42.8% decline) and the
combined tissue surface area of all corals consumed for
each starfish (46.3% decline). CoTS density increased by
96.1% from 2023 to 2025 despite decreased feeding rates.
Additionally, the relative consumption of different coral gen-
era was consistent throughout the study period, with Acro-
pora spp. contributing to>80% of CoTS diet throughout

Supplementary Information The online version contains
supplementary material available at https://doi.org/10.1007/
$00338-026-02814-1.

P4 Leighton T. Levering
leighton.levering @my.jcu.edu.au

! College of Science and Engineering, James Cook University,

Townsville, QLD 4811, Australia

Institute for Marine and Antarctic Studies, University
of Tasmania, Hobart 7001, Australia

Published online: 05 February 2026

- Madeline R. Garing!

the study. Though the 2024 bleaching event may have sup-
pressed feeding rates and ecological impact of individual
CoTS, the longer-term effects of CoT'S are likely to conflate
with coral loss due to mass bleaching, especially given sus-
tained increases in CoT'S densities.
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Introduction

Indo-Pacific coral reefs are increasingly subject to major
acute disturbances, including population irruptions of
crown-of-thorns starfish (CoTS; Pratchett et al. 2014) and
climate-induced mass coral bleaching (Hughes et al. 2018).
Up until 2010, sustained coral loss on the Great Barrier
Reef (GBR) was largely attributed to major tropical storms
(cyclones) and recurrent population irruptions of CoTS
(Osborne et al. 2011; De’ath et al. 2012; Bellwood et al.
2019), though climate-induced coral bleaching has since
emerged as the foremost cause of coral loss (Pratchett et al.
2021; Emslie et al. 2024). Critically, there have been five
episodes of mass coral bleaching and mortality since 2016,
reflecting sustained increases in ocean temperatures (Emslie
et al. 2024). The most recent of these, which occurred in the
austral summer of 2024, was the most widespread bleach-
ing event to affect the GBR on record and caused major
coral bleaching and mortality across the entire GBR (AIMS
LTMP 2025). The latest mass bleaching event (in 2024)
also coincided with documented increases in the abundance
of Pacific CoTS (Acanthaster cf. solaris) in the northern
GBR (Chandler et al. 2023), signaling the possible start of
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renewed reef-wide population irruptions (Babcock et al.
2020; Uthicke et al. 2024).

Population irruptions of A. cf. solaris have occurred
throughout the western Pacific (Baird et al. 2013; Plass-
Johnson et al. 2015; Kayal et al. 2012) and are one of the
foremost contributors to long-term coral loss (Bruno and
Selig 2007; De’ath et al. 2012; Kayal et al. 2012). On the
GBR, recurrent population irruptions have occurred every
14-17 years since at least the 1950s (Pratchett et al. 2014).
Past irruptions, which began in approximately 1962, 1979,
1993, and 2009 (Pratchett et al. 2017), all started in the
putative initiation box in the northern GBR (14.6°S-17°S)
and then moved south along the mid-shelf (Pratchett et al.
2014). CoTS occur naturally on the GBR, but the drivers
of population irruptions remain equivocal. There are two
main factors considered important in exacerbating, if not
initiating population irruptions: terrestrial runoff caused by
flood events can increase the availability of the nutrients
that supplement limited food availability for CoTS larvae
(Fabricius et al. 2010) and overfishing of predators may have
reduced predatory limitation on CoTS (Dulvy et al. 2004).
Irruption densities of CoTS (> 15 starfish.ha™"!) have affected
up to 17% of reefs along the length of the GBR during each
distinct population irruption (Hoey and Chin 2004) and
accounted for a substantial proportion (e.g., 36.7%; Osborne
et al. 2011) of sustained coral loss recorded by routine moni-
toring up until 2017 (see also De’ath et al. 2012; Mellin et al.
2019). Population irruptions of CoT'S remain a persistent and
continuing threat to coral reefs in this region, and based on
the periodicity of past events, renewed population irruptions
were expected to begin in 2025-2027 (Babcock et al. 2020).
Accordingly, novel and highly resolved sampling methods
have revealed increases in CoTS densities in the northern
GBR since 2021 (Chandler et al. 2023; Uthicke et al. 2024)
that have been overlooked by other sampling methods.

Population irruptions of CoTS also contribute to shifts
in coral composition (Pratchett 2010), owing to their selec-
tive feeding on specific coral types, especially Acropora spp.
(Keesing 2021; Foo et al. 2024). When their preferred prey
corals are locally depleted, or when population irruptions
are particularly severe, CoI'S will consume less preferred
taxa, such as massive Porites (Foo et al. 2024). Increasing
predominance of Acropora corals (e.g., Emslie et al. 2024),
attributable to their enhanced recovery capacity in the after-
math of severe disturbances (Linares et al. 2011; Pratchett
et al. 2020), will also make coral assemblages even more
vulnerable to subsequent population irruptions of CoTS
(Millican et al. 2024). However, decreases in cover of pre-
ferred corals could hinder or even prevent population irrup-
tions from occurring in the future (Millican et al. 2024).

Increasing coincidence of population irruptions of CoT'S
with severe marine heatwaves and coral bleaching make it
challenging to disentangle the ecological effects of these
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disturbances (Keesing et al. 2019). Notably, interactions
among these major disturbance events have yet to be fully
considered. CoTS are sensitive to elevated temperatures
(Hue et al. 2020; Lang et al. 2021, 2022) but it is unclear
whether changing environmental conditions will moderate
or exacerbate the frequency and/or intensity of population
irruptions (Uthicke et al. 2015) or otherwise cause changes
in the distribution and extent of impacts (e.g., Su et al.
2025). In the short-term, it is likely that mass coral bleaching
and mortality will affect the availability and accessibility of
different coral prey, which could have ramifications for CoT'S
behavior (Ling et al. 2020), as well as individual condition
and fitness (Caballes et al. 2016). This study explores inter-
annual changes in CoTS density and feeding behavior from
2023 to 2025 at Lizard Island, where increasing densities of
CoT'S (Chandler et al. 2023) coincided with a severe marine
heatwave that caused extensive, but localized, mass coral
bleaching and mortality in the northern GBR.

Methods
Study site

This study was conducted at Lizard Island (14°40’S,
145°27°E), in the northern Great Barrier Reef, Australia.
This reef has been subjected to recurrent population irrup-
tions of CoT'S and is also located within the putative initia-
tion box (Pratchett et al. 2014) where reef-wide population
irruptions are suggested to start. More specifically, popula-
tion irruptions in 1992 and 2010 were first recorded in the
vicinity of Lizard Island (Pratchett 2005; Vanhatalo et al.
2017) before spreading predominantly southward. Coral
assemblages at Lizard Island have also been subjected to
significant and increasing heat stress, causing mass coral
bleaching and mortality (e.g., Tebbett et al. 2022; Garing
et al. 2025; Raoult et al. 2025). In 2024, sea surface tempera-
tures exceeded the local maximum monthly mean through-
out January—March, resulting in maximum accumulated
heat stress of ~6 °C-Heating Weeks, which caused extensive
bleaching and mortality of hard corals at some sites (Garing
et al. 2025; Raoult et al. 2025). Other events that can cause
widespread coral mortality, such as sedimentation due to
runoff, outbreaks of coral disease, and tropical cyclones,
have not been reported for Lizard Island during the time-
frame of this study.

Field sampling

Pacific CoTS (Acanthaster cf. solaris) were surveyed at
Lizard Island using the Scooter-Assisted Large Area Diver-
Based (SALAD) method following Chandler et al. (2023).
Two divers using Yamaha (500Li) Seascooters (with a
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surface float attached housing a GPS unit [Garmin eTrex
10]) surveyed parallel 5 m wide transects between the reef
crest (2—4 m) and upper reef slope (5-9 m). Transects did
not have a set length and were run parallel to the reef crest.
The mean length of SALAD surveys in the present study
was 737 m and the maximum was > 2 km. Due to the length
of these surveys, specific sampling sites were not consid-
ered. Instead, successive, non-overlapping surveys were
conducted to cover as much of the reef edge as possible.
When feeding scars were observed, the divers stopped and
conducted concentrated searches to detect relevant CoTS.
Where CoTS were detected, the diameter of the starfish (if
found) and the sizes of the feeding scars were recorded (sin-
gle maximum linear measurement, following Chandler et al.
2024). CoTS that were found during surveys were removed,
and no repeat sampling of CoT'S was performed during this
study. Surveys were conducted primarily during the aus-
tral summer, but some 2023 surveys were conducted dur-
ing autumn and winter. Densities of CoT'S were calculated
based on the number of CoTS located per SALAD survey,
standardized for the total search area (quantified from survey
track data recorded using the GPS), following Chandler et al.
(2023). CoTS generally exhibit cryptic behavior during the
day (De’ath and Moran 1998), particularly during marine
heatwaves and bleaching episodes, making them difficult to
detect. Therefore, inferred CoT'S densities were calculated
using CoT'S observed during SALAD surveys in addition
to distinct sets of CoT'S feeding scars which were observed
but could not be attributed to any CoTS which had been
accounted for, following Chandler et al. (2023). Estimating
inferred CoTS densities from feeding scars likely still pro-
vides an underestimate of the true density, as CoT'S can defer
feeding for 3—4 days and remain hidden in the reef matrix
(Chandler et al. 2025), and there is a possibility of multiple
CoTS occurring in close proximity where it is difficult to
discern their independent feeding scars. At low-to-moderate
CoT'S densities observed in the present study, there is rea-
sonable capacity to attribute specific sets of feeding scars to
single individuals (Chandler et al. 2023).

To test for inter-annual changes in diet composition of
CoTS, all corals with conspicuous recent feeding scars were
identified to genus. For genera with considerable morpho-
logical variability (e.g., Acropora and Porites) corals were
further distinguished based on gross morphology, follow-
ing Chandler et al. (2024). CoTS feeding rates were then
estimated based on both i) the number of distinct colonies
on which feeding scars were apparent, and ii) the combined
tissue surface area (SA) of individual feeding scars on each
different coral, which were standardized to provide daily
feeding rates, following Chandler et al. (2025). The tissue
SA of individual feeding scars was calculated from linear
measurements of the maximum diameter of each distinct
feeding scar (Chandler et al. 2024), that account for inherent

differences in the shape and complexity of different corals.
Formulas for specific morphotaxa were used when avail-
able, and generalized formulas based on morphology were
used for coral taxa which did not have a specified formula
(Table S1). Photogrammetry can provide greater precision
and resolution in estimating the tissue surface area of dis-
tinct feeding scars, but prior research showed that single
linear estimates combined with conversion coefficients cal-
culated for different coral morphotaxa provide a very good
approximation of tissue SA (Chandler et al. 2024). Thus, we
measured linear dimensions here to enable greater sampling
effort than would have otherwise been possible (i.e., if we
had used photogrammetry to precisely estimate tissue sur-
face area for every feeding scar).

Interannual variation in the cover and composition of hard
corals (order Scleractinia) were assessed using 50 m point-
intercept transects (PITs), following Linares et al. (2011).
Two replicate PITs were haphazardly conducted on both
the reef crest (2—4 m) and slope (5-9 m) at relevant reefs
where SALAD surveys were conducted. To quantify coral
cover and composition, the occurrence and identity of corals
(using same taxa and morphological categories described
above) were recorded beneath each of 100 uniformly spaced
points (i.e., 50 cm apart) along each PIT. It is important to
note that these coral surveys were not designed to discern the
independent contributions of bleaching-induced coral mor-
tality versus CoTS feeding. Rather, the study was focused
on assessing changes in CoT'S feeding following mass coral
bleaching (in 2024) and coral depletion (in 2025). Therefore,
the data collected on coral cover and composition represents
important contextual information to enrich inferences made
in respect to our primary variable of interest (i.e., CoI'S feed-
ing). CoTS that were found during PIT surveys were also
measured and relevant feeding scar data were recorded fol-
lowing the methodology described above. These data were
included in CoTS size and feeding rate analyses only.

Statistical analysis

Generalized linear mixed effects models (GLMMs) were
used to examine changes among years (fixed categorical
factor with three levels [2023, 2024, and 2025]) in inferred
CoTS density (explicitly accounting for feeding scars), CoT'S
size, CoTS feeding rates (tissue area consumed and number
of feeding scars per day), percent cover of hard corals, and
percent cover of Acropora spp. Inferred density was mod-
eled using a tweedie distribution with a log link function.
CoTS size, the combined tissue surface area of corals con-
sumed by each CoTS per day, and the number of feeding
scars per day of each CoI'S were modeled using gamma
distributions with log link functions. Both total hard coral
cover and Acropora spp. cover were modeled using beta dis-
tributions with logit link functions. In all models, survey site
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identity was also included as a random effect to account for
any lack of spatial independence among replicate surveys
(note any temporal patterns were accounted for by the fixed
effects term of year). Model fit and assumptions were evalu-
ated using plots and tests derived from simulated residuals
(DHARMa package; Hartig 2024), which were satisfactory
in all cases. Post-hoc pairwise tests, based on a Tukey’s cor-
rection, were conducted to examine within factor level dif-
ferences. All GLMMs were conducted in R (version 4.4.1;
R Core Team 2024) using the glmmTMB package (Brooks
et al. 2017; McGillyCuddy et al. 2025). Post hoc analyses
were performed using the emmeans package (Lenth 2025)
and post hoc results can be found in Table S2.

The relative abundance of hard coral taxa (i.e., relative
availability of CoTS prey) was compared between study
years with a permutational multivariate analysis of vari-
ance (PERMANOVA) based on a Bray—Curtis dissimilarity
matrix. Another PERMANOVA based on a Bray—Curtis dis-
similarity matrix was used to compare the relative surface
area of each coral taxa consumed by CoTS (i.e., CoTS diet
composition) between study years. Additionally, permuta-
tional analysis of multivariate dispersions (PERMDISPs)
were used to test for differences in the variability of coral
abundance and coral consumption among years. PER-
MANOVAs were performed using the adonis2 function and
PERMDISPs were performed using the betadisper function,
both from the vegan package (Oksanen et al. 2025) in R.

Results and discussion

Inferred densities of CoTS recorded at Lizard Island
increased from 13.55 CoTS.ha™! (+1.66 SE) in 2023, to
16.51 CoTS.ha™! (+2.24 SE) in 2024, and 26.57 CoTS.ha™!
(£4.58 SE) in 2025 (Fig. 1a). These significant and sus-
tained increases in CoI'S densities among years (Table 1)
further extend increases recorded from 2020 to 2022 (Chan-
dler et al. 2023), indicating the start of renewed popula-
tion irruptions in this region (see also Uthicke et al. 2024).
Critically, densities recorded in 2024, and especially 2025,
exceed the nominal threshold (15 CoTS.ha™") used to distin-
guish population irruptions on the GBR (Moran and De’ath
1992), representing the fifth distinct episode of population
irruptions since the 1960s. Moreover, 14-15 years have
elapsed since the start of the last documented irruption
in the vicinity of Lizard Island in 2010 (Vanhatalo et al.
2017). While CoTS densities increased substantially from
2023 to 2025, the average size of CoT'S recorded in 2023
(421.74 mm+8.19 SE, n=69) was very similar to that
recorded in 2025 (422.44 mm +6.06 SE, n=127; Fig. 1b)
and did not vary significantly among years (Table 1), though
mean CoT'S size was larger in the present study compared
to what was observed in previous studies (Chandler et al.
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2023). The number of large (>450 mm maximum diameter)
starfish increased over time, which is expected given the
growth of established starfish (Pratchett et al. 2014), but
this was offset by simultaneous increases in the number of
smaller starfish (<300 mm diameter), indicating that there
has been continued CoT'S recruitment at Lizard Island, con-
tributing to the increasing densities.

Daily feeding rates of individual CoTS exhibited sig-
nificant and unexpected declines from 2023 to 2024 and
remained low in 2025. These interannual changes in feeding
rates were apparent based on both (1) the estimated mean
number of feeding scars per day made by individual CoTS
(Fig. 1c), which declined from 1.45 colonies (+0.10 SE)
in 2023 to 0.90 colonies (+0.10 SE) in 2024 and was still
reduced in 2025 (0.83 colonies +0.08), and (2) the com-
bined tissue SA of feeding scars (Fig. 1d) which declined
from 2,503.60 cm? (+230.51 SE) in 2023 to 1,312.74 cm?
(£242.69 SE) in 2024 and remained at this lower level into
2025 (1,344.05 cm?+ 189.74 SE). While there is evidence
that efficient predators can affect CoT'S densities (e.g., Kayal
& Lenihan 2025, Doll et al. 2026), it is unlikely that preda-
tors impacted the observed reduction in CoT'S feeding rates
due to increase in CoT'S density over the study period. Indi-
vidual feeding rates of CoTS are known to vary seasonally
(e.g., Keesing and Lucas 1992), which is likely due to meta-
bolic suppression at low temperatures. Similarly, elevated
temperatures (that led to mass coral bleaching in 2024) may
lead to changes in feeding and activity patterns (Lang et al.
2021), as shown for coral reef fishes (Johansen et al. 2013).
Lab studies have shown that CoTS metabolism decreases
when they are exposed to high temperatures (Lang et al.
2021, 2022), however the effects of thermal stress on CoT'S
feeding rates, especially in the presence of bleaching corals,
have not yet been investigated. Such effects are, however,
expected to be short-lived, due to the temporary nature of
marine heatwaves, whereas feeding rates of CoT'S appeared
to be suppressed throughout 2024 and 2025.

Temporal declines in the feeding rates of CoTS may
therefore reflect changes in the distribution and abundance
of coral prey in the aftermath of the mass-bleaching (sensu
Ling et al. 2020). However, there was no significant change
in the proportional use of different coral prey among years
(PERMANOVA; F=2.0783, df =148, p=0.059; Fig. 2) nor
in the variability of CoTS diet composition among years
(PERMDISP; F=1.7611, p=0.1755). Partial mortality of
coral colonies, which can be caused by bleaching events
(Burn et al. 2022), could help explain the conservation of the
pre-bleaching coral community structure despite the reduc-
tion in total coral cover. Importantly, Acropora spp. (both
staghorn and other growth forms) accounted for > 80% of
coral prey consumed in each year, even though there were
moderate, but sustained declines in their availability (Fig. 2).
This reflects the widely reported feeding preference for
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Fig. 1 Temporal variation in CoTS density (a), CoTS size (b), feed-
ing scars made per day by individual CoTS (c), surface area of coral
tissue consumed per day by individual CoIS (d), percent cover of
hard corals (e), and percent cover of Acropora spp. The blue points
denote the predicted mean and the line ranges the 95% confidence

Acropora by A. cf. solaris (e.g., Ling et al. 2020; Foo et al.
2024), which may be explained by the relatively high tis-
sue SA that is consumed by CoTS when feeding on these
complex corals (Chandler et al. 2024). Notably, control

CoTS size (mm)

Surface area consumed (cm? day')

Acropora cover (%)

good b
500+ . o -4 « B0
':*.‘ * Feia
400+ : - -
- B L 4
Y A" .
300- .
2004
2023 2024 2025
d
80004
60004
#y )
3000+ i 5 . , '
] T o . F#
| ¢ | [ ‘ , E
N X g R XY
|
2023 2024 2025
f
604
404
204 )
04 .
2023 2024 2025
Year

intervals from generalized linear mixed-effects models (GLMMs).
Smaller gray points show the raw data. The orange dashed line is the
accepted threshold for CoT'S population irruptions (Moran and De’ath
1992)

of CoT'S populations on the GBR is performed by culling,
where divers manually remove starfish from reefs (Matthews
et al. 2024). Mass bleaching events could provide oppor-
tunities for managers to enact CoT'S control measures on
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Table 1 Summary of results

. ) . Response variable Model Predictor variable  Estimate ~SE zvalue  p value
from generalized linear mixed-
effects models (GLMMs) used CoTS density Tweedie GLMM  Intercept 25632 0185  13.895  <0.001
L0 examine changes in corl 2024 0213 0331 0644 05198
starfish (COTS) density, size, 2025 0.582 0.245 2.376 0.0175
and feeding CoTS size Gamma GLMM  Intercept 6.047 0.024 255850  <0.001
2024 0.035 0.044 0.810 0.419
2025 -0.005 0032 -0.160 0.869
Feeding scars (day™') Gamma GLMM  Intercept 0.38615 0.070 5.535 <0.001
2024 -049 0132 -3.743  <0.001
2025 -0.569 0123 —-4.627 <0.001
Surface area (day_l) Gamma GLMM  Intercept 7.831 0.108 72.700 <0.001
2024 -0.677 0209 —3.230 0.0012
2025 -0.662 0212 -3.130 0.0018
Hard coral cover Beta GLMM Intercept —0.381 0.137  —-2.790 0.005
2024 -0.114 0212 —-0.537 0.591
2025 -0.944 0306 —3.086 0.002
Acropora spp. cover Beta GLMM Intercept —-1.814 0303 —-5992 <0.001
2024 -0.067 0465 —0.144 0.885
2025 -0482 0647 —-0.745 0.457

Year was treated as a categorical fixed effect. SE =standard error

concentrated groups of starfish as they are drawn towords
surviving preferred prey corals.

Cover of hard corals declined through the course of this
study, but mainly from 2024 to 2025 (Fig. le, Table 1),
whereby mean cover declined slightly from 40.66% (+2.36
SE) in 2023 to 38.28% (£ 3.14 SE) in 2024 and significantly
declined to 20.75% (£ 2.74 SE) in 2025. Given relatively
low densities of CoT'S recorded at Lizard Island, combined
with apparent suppression of individual feeding rates in
2024-2025, it is difficult to attribute much of the localized
coral loss to CoTS. Pratchett (2010), for example, recorded
only moderate levels of coral loss (28.8% coral cover
decline) at CoTS densities of <25 CoTS.ha™! during popula-
tion irruptions at Lizard Island in the 1990s. Local coral loss
recorded between 2024-2025 is, therefore, most likely due
to coral mortality in the aftermath of severe mass bleaching
that occurred in early 2024 (Garing et al. 2025; Raoult et al.
2025). Raoult et al. (2025) documented extensive bleaching
in March 2024 in shallow reef environments at two sites
on opposing sides of Lizard Island and further showed that
many of the bleached corals (mainly Acropora spp.) had
died by June 2024. This aligns with previous work showing
coral mortality may be highly protracted in the aftermath
of major bleaching events, depending on the species (Baird
and Marshall 2002).

Overall cover of Acropora spp. was 17.11% (+2.72SE) in
2023, compared to 14.16% (+2.44SE) in 2024 and 10.11%
(+=2.62SE) in 2025. Despite these apparent declines, there
was no significant change in Acropora among years detected
(Fig. 1f, Table 1). Moreover, coral composition in general
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did not vary significantly among years (PERMANOVA;
F=1.775, df=55, p=0.056; Fig. 2) nor was there a signifi-
cant difference in the variability in coral community com-
position among years (PERMDISP; F=2.428, p=0.098).
Coral composition changes observed in this study were rela-
tively subtle compared to those in other parts of the GBR
(e.g., Byrne et al. 2025), with our results for Lizard Island
aligning with those of Garing et al. (2025) which showed
shifts in the composition of corals at Lizard Island due to
the 2024 bleaching event, especially in slope habitats, were
more subtle relative to previous compositional changes. It
is apparent that there were few transects with high (>20%)
cover of Acropora spp. in 2025, compared to 2023 and 2024
(Fig. 1f), which likely spatially constrained prey availabil-
ity for CoTS. Acropora spp. tend to be the first and worst
affected coral taxa during mass bleaching and mortality
(Hughes et al. 2019), such that increasing frequency of
mass bleaching events could lead to widespread declines
in the abundance of Acropora spp. (Pratchett et al. 2020)
and greatly constrain availability of preferred prey for CoTS.
CoTS will travel to find its preferred prey (Ling et al. 2020),
which could help to explain why we saw increased density
of CoTS on reefs which still have populations of Acropora
spp- CoTS will consume other coral taxa if preferred coral
prey are not available (Pratchett et al. 2014), but increased
consumption of non-preferred prey (e.g., Porites spp.) leads
to declines in individual condition and fitness (Caballes et al.
2016). Moderate declines in the abundance of Acropora
spp. recorded at Lizard Island are probably insufficient to
moderate future increases in local CoTS densities, though
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sustained increases in CoT'S are likely to further compound
local coral loss, with disproportionate effects on Acropora
spp. (Pratchett et al. 2014).

Conclusion

CoTS densities increased significantly at Lizard Island from
2023 to 2025, reaffirming the emergence of renewed popula-
tion irruptions in the northern GBR (Chandler et al. 2023;
Uthicke et al. 2024). However, individual feeding rates of
CoTS declined significantly between 2023 and 2024, coin-
ciding with mass coral bleaching and mortality (Garing et al.
2025; Raoult et al. 2025). Elevated temperatures that caused
mass coral bleaching in 2024 may have led to metabolic sup-
pression that caused declines in feeding activity of CoT'S,
and/or depletion of prey corals constrained their poten-
tial feeding rates. Given observed and projected increases
in the densities of CoTS at Lizard Island, it is likely that
their sustained feeding on prey corals will significantly
conflate recent coral mortality caused by climate-induced
coral bleaching. There is also a very high likelihood that
there will be further incidences of mass coral bleaching and

mortality (Hughes et al. 2018) that may moderate or surpass
ecological effects of CoTS. Interactions between mass coral
bleaching and population irruptions of CoT'S needs careful
consideration and further evaluation, especially given the
projected increases in the coincidence of these major acute
disturbances.
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