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Abstract  The Great Barrier Reef, like most reef ecosys-
tems, is increasingly subject to major acute disturbances, 
including population irruptions of crown-of-thorns starfish 
(CoTS) and climate-induced coral bleaching. Given their 
increasing incidence, acute disturbances are likely to occur 
simultaneously or successively, though interactive effects 
of major disturbances are generally unknown. This study 
explores changes in the feeding behavior of CoTS during 
an emerging population irruption at Lizard Island that coin-
cided with the 2024 mass bleaching, using in situ survey 
data. We conducted Scooter-Assisted Large Area Diver-
Based surveys to investigate changes in CoTS demogra-
phy and feeding, and point-intercept transects to examine 
changes in coral cover. From 2023 to 2025, there was a 49% 
decline in coral cover at Lizard Island, which was largely 
attributable to mass bleaching. Daily feeding rates of CoTS 
significantly declined over the same period, both in terms 
of the number of coral colonies (42.8% decline) and the 
combined tissue surface area of all corals consumed for 
each starfish (46.3% decline). CoTS density increased by 
96.1% from 2023 to 2025 despite decreased feeding rates. 
Additionally, the relative consumption of different coral gen-
era was consistent throughout the study period, with Acro-
pora spp. contributing to > 80% of CoTS diet throughout 

the study. Though the 2024 bleaching event may have sup-
pressed feeding rates and ecological impact of individual 
CoTS, the longer-term effects of CoTS are likely to conflate 
with coral loss due to mass bleaching, especially given sus-
tained increases in CoTS densities.

Keywords  Population irruption · Crown-of-thorns 
starfish outbreak · Marine heatwave · Coral reef 
disturbance · Corallivore feeding rate · Lizard Island

Introduction

Indo-Pacific coral reefs are increasingly subject to major 
acute disturbances, including population irruptions of 
crown-of-thorns starfish (CoTS; Pratchett et al. 2014) and 
climate-induced mass coral bleaching (Hughes et al. 2018). 
Up until 2010, sustained coral loss on the Great Barrier 
Reef (GBR) was largely attributed to major tropical storms 
(cyclones) and recurrent population irruptions of CoTS 
(Osborne et al. 2011; De’ath et al. 2012; Bellwood et al. 
2019), though climate-induced coral bleaching has since 
emerged as the foremost cause of coral loss (Pratchett et al. 
2021; Emslie et al. 2024). Critically, there have been five 
episodes of mass coral bleaching and mortality since 2016, 
reflecting sustained increases in ocean temperatures (Emslie 
et al. 2024). The most recent of these, which occurred in the 
austral summer of 2024, was the most widespread bleach-
ing event to affect the GBR on record and caused major 
coral bleaching and mortality across the entire GBR (AIMS 
LTMP 2025). The latest mass bleaching event (in 2024) 
also coincided with documented increases in the abundance 
of Pacific CoTS (Acanthaster cf. solaris) in the northern 
GBR (Chandler et al. 2023), signaling the possible start of 
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renewed reef-wide population irruptions (Babcock et al. 
2020; Uthicke et al. 2024).

Population irruptions of A. cf. solaris have occurred 
throughout the western Pacific (Baird et al. 2013; Plass-
Johnson et al. 2015; Kayal et al. 2012) and are one of the 
foremost contributors to long-term coral loss (Bruno and 
Selig 2007; De’ath et al. 2012; Kayal et al. 2012). On the 
GBR, recurrent population irruptions have occurred every 
14–17 years since at least the 1950s (Pratchett et al. 2014). 
Past irruptions, which began in approximately 1962, 1979, 
1993, and 2009 (Pratchett et al. 2017), all started in the 
putative initiation box in the northern GBR (14.6°S–17°S) 
and then moved south along the mid-shelf (Pratchett et al. 
2014). CoTS occur naturally on the GBR, but the drivers 
of population irruptions remain equivocal. There are two 
main factors considered important in exacerbating, if not 
initiating population irruptions: terrestrial runoff caused by 
flood events can increase the availability of the nutrients 
that supplement limited food availability for CoTS larvae 
(Fabricius et al. 2010) and overfishing of predators may have 
reduced predatory limitation on CoTS (Dulvy et al. 2004). 
Irruption densities of CoTS (> 15 starfish.ha−1) have affected 
up to 17% of reefs along the length of the GBR during each 
distinct population irruption (Hoey and Chin 2004) and 
accounted for a substantial proportion (e.g., 36.7%; Osborne 
et al. 2011) of sustained coral loss recorded by routine moni-
toring up until 2017 (see also De’ath et al. 2012; Mellin et al. 
2019). Population irruptions of CoTS remain a persistent and 
continuing threat to coral reefs in this region, and based on 
the periodicity of past events, renewed population irruptions 
were expected to begin in 2025–2027 (Babcock et al. 2020). 
Accordingly, novel and highly resolved sampling methods 
have revealed increases in CoTS densities in the northern 
GBR since 2021 (Chandler et al. 2023; Uthicke et al. 2024) 
that have been overlooked by other sampling methods.

Population irruptions of CoTS also contribute to shifts 
in coral composition (Pratchett 2010), owing to their selec-
tive feeding on specific coral types, especially Acropora spp. 
(Keesing 2021; Foo et al. 2024). When their preferred prey 
corals are locally depleted, or when population irruptions 
are particularly severe, CoTS will consume less preferred 
taxa, such as massive Porites (Foo et al. 2024). Increasing 
predominance of Acropora corals (e.g., Emslie et al. 2024), 
attributable to their enhanced recovery capacity in the after-
math of severe disturbances (Linares et al. 2011; Pratchett 
et al. 2020), will also make coral assemblages even more 
vulnerable to subsequent population irruptions of CoTS 
(Millican et al. 2024). However, decreases in cover of pre-
ferred corals could hinder or even prevent population irrup-
tions from occurring in the future (Millican et al. 2024).

Increasing coincidence of population irruptions of CoTS 
with severe marine heatwaves and coral bleaching make it 
challenging to disentangle the ecological effects of these 

disturbances (Keesing et al. 2019). Notably, interactions 
among these major disturbance events have yet to be fully 
considered. CoTS are sensitive to elevated temperatures 
(Hue et al. 2020; Lang et al. 2021, 2022) but it is unclear 
whether changing environmental conditions will moderate 
or exacerbate the frequency and/or intensity of population 
irruptions (Uthicke et al. 2015) or otherwise cause changes 
in the distribution and extent of impacts (e.g., Su et al. 
2025). In the short-term, it is likely that mass coral bleaching 
and mortality will affect the availability and accessibility of 
different coral prey, which could have ramifications for CoTS 
behavior (Ling et al. 2020), as well as individual condition 
and fitness (Caballes et al. 2016). This study explores inter-
annual changes in CoTS density and feeding behavior from 
2023 to 2025 at Lizard Island, where increasing densities of 
CoTS (Chandler et al. 2023) coincided with a severe marine 
heatwave that caused extensive, but localized, mass coral 
bleaching and mortality in the northern GBR.

Methods

Study site

This study was conducted at Lizard Island (14°40’S, 
145°27’E), in the northern Great Barrier Reef, Australia. 
This reef has been subjected to recurrent population irrup-
tions of CoTS and is also located within the putative initia-
tion box (Pratchett et al. 2014) where reef-wide population 
irruptions are suggested to start. More specifically, popula-
tion irruptions in 1992 and 2010 were first recorded in the 
vicinity of Lizard Island (Pratchett 2005; Vanhatalo et al. 
2017) before spreading predominantly southward. Coral 
assemblages at Lizard Island have also been subjected to 
significant and increasing heat stress, causing mass coral 
bleaching and mortality (e.g., Tebbett et al. 2022; Garing 
et al. 2025; Raoult et al. 2025). In 2024, sea surface tempera-
tures exceeded the local maximum monthly mean through-
out January–March, resulting in maximum accumulated 
heat stress of ~ 6 °C-Heating Weeks, which caused extensive 
bleaching and mortality of hard corals at some sites (Garing 
et al. 2025; Raoult et al. 2025). Other events that can cause 
widespread coral mortality, such as sedimentation due to 
runoff, outbreaks of coral disease, and tropical cyclones, 
have not been reported for Lizard Island during the time-
frame of this study.

Field sampling

Pacific CoTS (Acanthaster cf. solaris) were surveyed at 
Lizard Island using the Scooter-Assisted Large Area Diver-
Based (SALAD) method following Chandler et al. (2023). 
Two divers using Yamaha (500Li) Seascooters (with a 
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surface float attached housing a GPS unit [Garmin eTrex 
10]) surveyed parallel 5 m wide transects between the reef 
crest (2–4 m) and upper reef slope (5–9 m). Transects did 
not have a set length and were run parallel to the reef crest. 
The mean length of SALAD surveys in the present study 
was 737 m and the maximum was > 2 km. Due to the length 
of these surveys, specific sampling sites were not consid-
ered. Instead, successive, non-overlapping surveys were 
conducted to cover as much of the reef edge as possible. 
When feeding scars were observed, the divers stopped and 
conducted concentrated searches to detect relevant CoTS. 
Where CoTS were detected, the diameter of the starfish (if 
found) and the sizes of the feeding scars were recorded (sin-
gle maximum linear measurement, following Chandler et al. 
2024). CoTS that were found during surveys were removed, 
and no repeat sampling of CoTS was performed during this 
study. Surveys were conducted primarily during the aus-
tral summer, but some 2023 surveys were conducted dur-
ing autumn and winter. Densities of CoTS were calculated 
based on the number of CoTS located per SALAD survey, 
standardized for the total search area (quantified from survey 
track data recorded using the GPS), following Chandler et al. 
(2023). CoTS generally exhibit cryptic behavior during the 
day (De’ath and Moran 1998), particularly during marine 
heatwaves and bleaching episodes, making them difficult to 
detect. Therefore, inferred CoTS densities were calculated 
using CoTS observed during SALAD surveys in addition 
to distinct sets of CoTS feeding scars which were observed 
but could not be attributed to any CoTS which had been 
accounted for, following Chandler et al. (2023). Estimating 
inferred CoTS densities from feeding scars likely still pro-
vides an underestimate of the true density, as CoTS can defer 
feeding for 3–4 days and remain hidden in the reef matrix 
(Chandler et al. 2025), and there is a possibility of multiple 
CoTS occurring in close proximity where it is difficult to 
discern their independent feeding scars. At low-to-moderate 
CoTS densities observed in the present study, there is rea-
sonable capacity to attribute specific sets of feeding scars to 
single individuals (Chandler et al. 2023).

To test for inter-annual changes in diet composition of 
CoTS, all corals with conspicuous recent feeding scars were 
identified to genus. For genera with considerable morpho-
logical variability (e.g., Acropora and Porites) corals were 
further distinguished based on gross morphology, follow-
ing Chandler et al. (2024). CoTS feeding rates were then 
estimated based on both i) the number of distinct colonies 
on which feeding scars were apparent, and ii) the combined 
tissue surface area (SA) of individual feeding scars on each 
different coral, which were standardized to provide daily 
feeding rates, following Chandler et al. (2025). The tissue 
SA of individual feeding scars was calculated from linear 
measurements of the maximum diameter of each distinct 
feeding scar (Chandler et al. 2024), that account for inherent 

differences in the shape and complexity of different corals. 
Formulas for specific morphotaxa were used when avail-
able, and generalized formulas based on morphology were 
used for coral taxa which did not have a specified formula 
(Table S1). Photogrammetry can provide greater precision 
and resolution in estimating the tissue surface area of dis-
tinct feeding scars, but prior research showed that single 
linear estimates combined with conversion coefficients cal-
culated for different coral morphotaxa provide a very good 
approximation of tissue SA (Chandler et al. 2024). Thus, we 
measured linear dimensions here to enable greater sampling 
effort than would have otherwise been possible (i.e., if we 
had used photogrammetry to precisely estimate tissue sur-
face area for every feeding scar).

Interannual variation in the cover and composition of hard 
corals (order Scleractinia) were assessed using 50 m point-
intercept transects (PITs), following Linares et al. (2011). 
Two replicate PITs were haphazardly conducted on both 
the reef crest (2–4 m) and slope (5–9 m) at relevant reefs 
where SALAD surveys were conducted. To quantify coral 
cover and composition, the occurrence and identity of corals 
(using same taxa and morphological categories described 
above) were recorded beneath each of 100 uniformly spaced 
points (i.e., 50 cm apart) along each PIT. It is important to 
note that these coral surveys were not designed to discern the 
independent contributions of bleaching-induced coral mor-
tality versus CoTS feeding. Rather, the study was focused 
on assessing changes in CoTS feeding following mass coral 
bleaching (in 2024) and coral depletion (in 2025). Therefore, 
the data collected on coral cover and composition represents 
important contextual information to enrich inferences made 
in respect to our primary variable of interest (i.e., CoTS feed-
ing). CoTS that were found during PIT surveys were also 
measured and relevant feeding scar data were recorded fol-
lowing the methodology described above. These data were 
included in CoTS size and feeding rate analyses only.

Statistical analysis

Generalized linear mixed effects models (GLMMs) were 
used to examine changes among years (fixed categorical 
factor with three levels [2023, 2024, and 2025]) in inferred 
CoTS density (explicitly accounting for feeding scars), CoTS 
size, CoTS feeding rates (tissue area consumed and number 
of feeding scars per day), percent cover of hard corals, and 
percent cover of Acropora spp. Inferred density was mod-
eled using a tweedie distribution with a log link function. 
CoTS size, the combined tissue surface area of corals con-
sumed by each CoTS per day, and the number of feeding 
scars per day of each CoTS were modeled using gamma 
distributions with log link functions. Both total hard coral 
cover and Acropora spp. cover were modeled using beta dis-
tributions with logit link functions. In all models, survey site 
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identity was also included as a random effect to account for 
any lack of spatial independence among replicate surveys 
(note any temporal patterns were accounted for by the fixed 
effects term of year). Model fit and assumptions were evalu-
ated using plots and tests derived from simulated residuals 
(DHARMa package; Hartig 2024), which were satisfactory 
in all cases. Post-hoc pairwise tests, based on a Tukey’s cor-
rection, were conducted to examine within factor level dif-
ferences. All GLMMs were conducted in R (version 4.4.1; 
R Core Team 2024) using the glmmTMB package (Brooks 
et al. 2017; McGillyCuddy et al. 2025). Post hoc analyses 
were performed using the emmeans package (Lenth 2025) 
and post hoc results can be found in Table S2.

The relative abundance of hard coral taxa (i.e., relative 
availability of CoTS prey) was compared between study 
years with a permutational multivariate analysis of vari-
ance (PERMANOVA) based on a Bray–Curtis dissimilarity 
matrix. Another PERMANOVA based on a Bray–Curtis dis-
similarity matrix was used to compare the relative surface 
area of each coral taxa consumed by CoTS (i.e., CoTS diet 
composition) between study years. Additionally, permuta-
tional analysis of multivariate dispersions (PERMDISPs) 
were used to test for differences in the variability of coral 
abundance and coral consumption among years. PER-
MANOVAs were performed using the adonis2 function and 
PERMDISPs were performed using the betadisper function, 
both from the vegan package (Oksanen et al. 2025) in R.

Results and discussion

Inferred densities of CoTS recorded at Lizard Island 
increased from 13.55 CoTS.ha−1 (± 1.66 SE) in 2023, to 
16.51 CoTS.ha−1 (± 2.24 SE) in 2024, and 26.57 CoTS.ha−1 
(± 4.58 SE) in 2025 (Fig. 1a). These significant and sus-
tained increases in CoTS densities among years (Table 1) 
further extend increases recorded from 2020 to 2022 (Chan-
dler et al. 2023), indicating the start of renewed popula-
tion irruptions in this region (see also Uthicke et al. 2024). 
Critically, densities recorded in 2024, and especially 2025, 
exceed the nominal threshold (15 CoTS.ha−1) used to distin-
guish population irruptions on the GBR (Moran and De’ath 
1992), representing the fifth distinct episode of population 
irruptions since the 1960s. Moreover, 14–15 years have 
elapsed since the start of the last documented irruption 
in the vicinity of Lizard Island in 2010 (Vanhatalo et al. 
2017). While CoTS densities increased substantially from 
2023 to 2025, the average size of CoTS recorded in 2023 
(421.74 mm ± 8.19 SE, n = 69) was very similar to that 
recorded in 2025 (422.44 mm ± 6.06 SE, n = 127; Fig. 1b) 
and did not vary significantly among years (Table 1), though 
mean CoTS size was larger in the present study compared 
to what was observed in previous studies (Chandler et al. 

2023). The number of large (> 450 mm maximum diameter) 
starfish increased over time, which is expected given the 
growth of established starfish (Pratchett et al. 2014), but 
this was offset by simultaneous increases in the number of 
smaller starfish (< 300 mm diameter), indicating that there 
has been continued CoTS recruitment at Lizard Island, con-
tributing to the increasing densities.

Daily feeding rates of individual CoTS exhibited sig-
nificant and unexpected declines from 2023 to 2024 and 
remained low in 2025. These interannual changes in feeding 
rates were apparent based on both (1) the estimated mean 
number of feeding scars per day made by individual CoTS 
(Fig. 1c), which declined from 1.45 colonies (± 0.10 SE) 
in 2023 to 0.90 colonies (± 0.10 SE) in 2024 and was still 
reduced in 2025 (0.83 colonies ± 0.08), and (2) the com-
bined tissue SA of feeding scars (Fig. 1d) which declined 
from 2,503.60 cm2 (± 230.51 SE) in 2023 to 1,312.74 cm2 
(± 242.69 SE) in 2024 and remained at this lower level into 
2025 (1,344.05 cm2 ± 189.74 SE). While there is evidence 
that efficient predators can affect CoTS densities (e.g., Kayal 
& Lenihan 2025, Doll et al. 2026), it is unlikely that preda-
tors impacted the observed reduction in CoTS feeding rates 
due to increase in CoTS density over the study period. Indi-
vidual feeding rates of CoTS are known to vary seasonally 
(e.g., Keesing and Lucas 1992), which is likely due to meta-
bolic suppression at low temperatures. Similarly, elevated 
temperatures (that led to mass coral bleaching in 2024) may 
lead to changes in feeding and activity patterns (Lang et al. 
2021), as shown for coral reef fishes (Johansen et al. 2013). 
Lab studies have shown that CoTS metabolism decreases 
when they are exposed to high temperatures (Lang et al. 
2021, 2022), however the effects of thermal stress on CoTS 
feeding rates, especially in the presence of bleaching corals, 
have not yet been investigated. Such effects are, however, 
expected to be short-lived, due to the temporary nature of 
marine heatwaves, whereas feeding rates of CoTS appeared 
to be suppressed throughout 2024 and 2025.

Temporal declines in the feeding rates of CoTS may 
therefore reflect changes in the distribution and abundance 
of coral prey in the aftermath of the mass-bleaching (sensu 
Ling et al. 2020). However, there was no significant change 
in the proportional use of different coral prey among years 
(PERMANOVA; F = 2.0783, df = 148, p = 0.059; Fig. 2) nor 
in the variability of CoTS diet composition among years 
(PERMDISP; F = 1.7611, p = 0.1755). Partial mortality of 
coral colonies, which can be caused by bleaching events 
(Burn et al. 2022), could help explain the conservation of the 
pre-bleaching coral community structure despite the reduc-
tion in total coral cover. Importantly, Acropora spp. (both 
staghorn and other growth forms) accounted for > 80% of 
coral prey consumed in each year, even though there were 
moderate, but sustained declines in their availability (Fig. 2). 
This reflects the widely reported feeding preference for 
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Acropora by A. cf. solaris (e.g., Ling et al. 2020; Foo et al. 
2024), which may be explained by the relatively high tis-
sue SA that is consumed by CoTS when feeding on these 
complex corals (Chandler et al. 2024). Notably, control 

of CoTS populations on the GBR is performed by culling, 
where divers manually remove starfish from reefs (Matthews 
et al. 2024). Mass bleaching events could provide oppor-
tunities for managers to enact CoTS control measures on 

Fig. 1   Temporal variation in CoTS density (a), CoTS size (b), feed-
ing scars made per day by individual CoTS (c), surface area of coral 
tissue consumed per day by individual CoTS (d), percent cover of 
hard corals (e), and percent cover of Acropora spp. The blue points 
denote the predicted mean and the line ranges the 95% confidence 

intervals from generalized linear mixed-effects models (GLMMs). 
Smaller gray points show the raw data. The orange dashed line is the 
accepted threshold for CoTS population irruptions (Moran and De’ath 
1992)
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concentrated groups of starfish as they are drawn towords 
surviving preferred prey corals.

Cover of hard corals declined through the course of this 
study, but mainly from 2024 to 2025 (Fig. 1e, Table 1), 
whereby mean cover declined slightly from 40.66% (± 2.36 
SE) in 2023 to 38.28% (± 3.14 SE) in 2024 and significantly 
declined to 20.75% (± 2.74 SE) in 2025. Given relatively 
low densities of CoTS recorded at Lizard Island, combined 
with apparent suppression of individual feeding rates in 
2024–2025, it is difficult to attribute much of the localized 
coral loss to CoTS. Pratchett (2010), for example, recorded 
only moderate levels of coral loss (28.8% coral cover 
decline) at CoTS densities of < 25 CoTS.ha−1 during popula-
tion irruptions at Lizard Island in the 1990s. Local coral loss 
recorded between 2024–2025 is, therefore, most likely due 
to coral mortality in the aftermath of severe mass bleaching 
that occurred in early 2024 (Garing et al. 2025; Raoult et al. 
2025). Raoult et al. (2025) documented extensive bleaching 
in March 2024 in shallow reef environments at two sites 
on opposing sides of Lizard Island and further showed that 
many of the bleached corals (mainly Acropora spp.) had 
died by June 2024. This aligns with previous work showing 
coral mortality may be highly protracted in the aftermath 
of major bleaching events, depending on the species (Baird 
and Marshall 2002).

Overall cover of Acropora spp. was 17.11% (± 2.72SE) in 
2023, compared to 14.16% (± 2.44SE) in 2024 and 10.11% 
(± 2.62SE) in 2025. Despite these apparent declines, there 
was no significant change in Acropora among years detected 
(Fig. 1f, Table 1). Moreover, coral composition in general 

did not vary significantly among years (PERMANOVA; 
F = 1.775, df = 55, p = 0.056; Fig. 2) nor was there a signifi-
cant difference in the variability in coral community com-
position among years (PERMDISP; F = 2.428, p = 0.098). 
Coral composition changes observed in this study were rela-
tively subtle compared to those in other parts of the GBR 
(e.g., Byrne et al. 2025), with our results for Lizard Island 
aligning with those of Garing et al. (2025) which showed 
shifts in the composition of corals at Lizard Island due to 
the 2024 bleaching event, especially in slope habitats, were 
more subtle relative to previous compositional changes. It 
is apparent that there were few transects with high (> 20%) 
cover of Acropora spp. in 2025, compared to 2023 and 2024 
(Fig. 1f), which likely spatially constrained prey availabil-
ity for CoTS. Acropora spp. tend to be the first and worst 
affected coral taxa during mass bleaching and mortality 
(Hughes et al. 2019), such that increasing frequency of 
mass bleaching events could lead to widespread declines 
in the abundance of Acropora spp. (Pratchett et al. 2020) 
and greatly constrain availability of preferred prey for CoTS. 
CoTS will travel to find its preferred prey (Ling et al. 2020), 
which could help to explain why we saw increased density 
of CoTS on reefs which still have populations of Acropora 
spp. CoTS will consume other coral taxa if preferred coral 
prey are not available (Pratchett et al. 2014), but increased 
consumption of non-preferred prey (e.g., Porites spp.) leads 
to declines in individual condition and fitness (Caballes et al. 
2016). Moderate declines in the abundance of Acropora 
spp. recorded at Lizard Island are probably insufficient to 
moderate future increases in local CoTS densities, though 

Table 1   Summary of results 
from generalized linear mixed-
effects models (GLMMs) used 
to examine changes in coral 
cover and crown-of-thorns 
starfish (CoTS) density, size, 
and feeding

Year was treated as a categorical fixed effect. SE = standard error

Response variable Model Predictor variable Estimate SE z value p value

CoTS density Tweedie GLMM Intercept 2.5632 0.185 13.895  < 0.001
2024 0.213 0.331 0.644 0.5198
2025 0.582 0.245 2.376 0.0175

CoTS size Gamma GLMM Intercept 6.047 0.024 255.850  < 0.001
2024 0.035 0.044 0.810 0.419
2025 − 0.005 0.032 − 0.160 0.869

Feeding scars (day−1) Gamma GLMM Intercept 0.38615 0.070 5.535  < 0.001
2024 − 0.496 0.132 − 3.743  < 0.001
2025 − 0.569 0.123 − 4.627  < 0.001

Surface area (day−1) Gamma GLMM Intercept 7.831 0.108 72.700  < 0.001
2024 − 0.677 0.209 − 3.230 0.0012
2025 − 0.662 0.212 − 3.130 0.0018

Hard coral cover Beta GLMM Intercept − 0.381 0.137 − 2.790 0.005
2024 − 0.114 0.212 − 0.537 0.591
2025 − 0.944 0.306 − 3.086 0.002

Acropora spp. cover Beta GLMM Intercept − 1.814 0.303 − 5.992  < 0.001
2024 − 0.067 0.465 − 0.144 0.885
2025 − 0.482 0.647 − 0.745 0.457
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sustained increases in CoTS are likely to further compound 
local coral loss, with disproportionate effects on Acropora 
spp. (Pratchett et al. 2014).

Conclusion

CoTS densities increased significantly at Lizard Island from 
2023 to 2025, reaffirming the emergence of renewed popula-
tion irruptions in the northern GBR (Chandler et al. 2023; 
Uthicke et al. 2024). However, individual feeding rates of 
CoTS declined significantly between 2023 and 2024, coin-
ciding with mass coral bleaching and mortality (Garing et al. 
2025; Raoult et al. 2025). Elevated temperatures that caused 
mass coral bleaching in 2024 may have led to metabolic sup-
pression that caused declines in feeding activity of CoTS, 
and/or depletion of prey corals constrained their poten-
tial feeding rates. Given observed and projected increases 
in the densities of CoTS at Lizard Island, it is likely that 
their sustained feeding on prey corals will significantly 
conflate recent coral mortality caused by climate-induced 
coral bleaching. There is also a very high likelihood that 
there will be further incidences of mass coral bleaching and 

mortality (Hughes et al. 2018) that may moderate or surpass 
ecological effects of CoTS. Interactions between mass coral 
bleaching and population irruptions of CoTS needs careful 
consideration and further evaluation, especially given the 
projected increases in the coincidence of these major acute 
disturbances.
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