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Abstract

The tremendous advancements in artificial intelligence (Al) techniques, particularly those
pertinent to computer vision and image recognition, are revolutionizing the automotive
industry towards the development of intelligent transportation systems for smart cities. In-
tegrating Al techniques into connected autonomous vehicles (CAVs) and unmanned aerial
vehicles (UAVs) and their data fusion, enables a new paradigm that allows for unparal-
leled real-time awareness of the surrounding environment. The potential of emerging wire-
less technologies can be fully exploited by establishing communication and cooperation
among Al-augmented CAVs and UAVs. However, configuring appropriate deep learning
(DL) models for connected vehicles is a complex task. Any errors can result in severe con-
sequences, including loss of vehicles, infrastructure, and human lives. These systems are
also susceptible to cyber attacks, necessitating a thorough and timely threat analysis and
countermeasures to prevent catastrophic events. Our findings highlight the effectiveness
of Al-driven data fusion in enhancing cooperative perception between CAVs and UAVs,
identify security vulnerabilities in DL-based systems, and demonstrate how V2X-enabled
UAVs can significantly improve situational awareness in corner cases.

Keywords Deep learning - Artificial intelligence - Connected and autonomous vehicles -
Unmanned aerial vehicles - Cybersecurity

1 Introduction

The last decade has seen immense progress in making the dream of connected and autono-
mous vehicles (CAVs) a reality. Deep learning (DL) is undoubtedly the primary technology
behind many breakthroughs in image recognition, and robotics (Bonsignorio et al. 2020).
The success of DL techniques in the mentioned fields has led to widespread deployment
of this technology with the aim of passenger safety, elimination of roadside accidents, and
optimal path planning in self-driving cars (Grigorescu et al. 2020; Kuutti et al. 2020; Rao
and Frtunikj 2018; Ni et al. 2020). The automotive industry has started testing CAVs on
“controlled” roads with different capabilities termed “scales” graded from zero to five. The
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lower scales feature basic driver assistance, while higher scales indicate a vehicle that needs
no human intervention in driving (Yurtsever et al. 2020). A complete CAV system combines
technologies, sensors, algorithms, and communication infrastructure. The involvement of
DL blocks in a CAV system also depends on its scale. A fully automated car operating on
scale five may have a distinct DL module attached to its key decision and control systems.

To complement CAVs in challenges like surveillance, acquiring aerial data, and com-
bating emergencies, a promising solution is to adopt unmanned aerial vehicles (UAVs)
(Hildmann and Kovacs 2019; Amer et al. 2020; Moukahal et al. 2020; Guillen-Perez and
Cano 2018). A UAV is an unmanned autonomous or semi-autonomous machine that can
be controlled remotely and allows us to monitor activities at different locations. UAVs can
play a vital role in assisting a CAV’s network in conjunction with Vehicle-to-Everything
(V2X) communication technology and other advanced network technologies, such as soft-
ware-defined networking, network function virtualization, mobile edge computing (MEC),
and fog computing (Mishra and Natalizio 2020). Recently, UAVs’ applications in the com-
munications domain, along with their challenges and open problems, are investigated in
Mozaffari et al. (2019). Due to UAV’s versatile nature, automation, and low cost, it enjoys
widespread use in civilian applications like surveillance, disaster rescue, parcel delivery,
power line inspection, agriculture support, and mobile sensing platforms (Giordan et al.
2020; Menouar et al. 2017a). Integrating UAVs in CAV networks unveils many benefits
and new use cases. Figure 1 depicts a typical scenario of a composite UAV-assisted CAV
network, illustrating the various entities involved and their corresponding communication
link types, thereby providing a clear and comprehensive representation of the considered
operational environment. Besides surveillance and aerial information exchange, a UAV can
take the roles of flying or emergency roadside unit (RSU), base station, or reconfigurable
intelligent surface (RIS) (Hildmann and Kovacs 2019; Menouar et al. 2017a). These use
cases can be extremely helpful in hardware malfunctions and disaster situations like fire or
earthquake, thus guaranteeing an operational CAV system at all times.

Fig. 1 A pictorial view of UAV-assisted CAVs in a vehicular network

@ Springer



Unifying ground and air: a comprehensive review of deep... Page3of72 19

1.1 Research motivation

The motivation for this review stems from a gap identified in the existing literature regard-
ing DL-assisted CAVs and UAVs. Previous surveys, as referenced in Table 1, have focused
on aspects specific to either CAVs or UAVs, failing to provide an integrated view of how
the unique capabilities of UAVs, particularly their aerial view (that presents a holistic view
of traffic conditions), can address significant challenges in the deployment of the connected
vehicular system. Numerous issues, such as handling corner cases, computer vision errors,
adapting to diverse driving conditions, accurately predicting human behaviour and legal,
ethical, and regulatory obstacles still need to be addressed for the real-world deployment
of CAVs.
To this end, the key contributions of this article are highlighted as follows:

1. We provide a comprehensive system-level overview of UAVs-assisted CAV network
architecture, integration efforts, CAV-UAV data fusion, CAVs and UAVs DL designs,
along with highlighting the potential use cases of integrating UAVs with CAVs.

2. We compare two state-of-the-art deep learning frameworks applicable to CAVs, namely,
the pipeline-based modular approach and the single block processing approach, also
known as “End-to-End (E2E)” learning. Furthermore, we discuss the role of the latest
Large Language Models (LLM) based DL designs in CAVs and UAVs, critically ana-
lyzing the strengths and limitations of these models.

3. We analyze the domains where deep learning can assist UAVs in enhancing their per-
ception, path planning, navigation, and control. We also explore the state-of-the-art
DL designs that enable UAVs to detect entities of vehicular networks and discuss their
limitations.

Table 1 Literature comparison

Detailed research  UAV-CAV Deep Deep Cyberse- Critical Challenges Trends

analysis Networking learn- learn- curity in analysis and
ingin ingin CAVsand future
CAVs UAVs UAVs directions

Oubbati et al. v X v X X X X

(2021)

Shin et al. (2022) v v v X X v X

Shi et al. (2018) v X X X X v v

Bouguettaya et v v v X v v

al. 2021)

Huetal. (2021) v v X X v v

Telikani et al. X v v X X v v

(2024)

Biswas et al. v X X v X v v

(2022)

Abir et al. (2023) v v X X X v v

Ahmad et al. X v X v X v X

(2024)

Telikani et al. v X v X v v v

(2025)

Ours v v v v v v v
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4.  We conduct a comprehensive review of Al-based cyberattacks of various types that can
affect CAVs and UAVs. We also conduct a critical analysis of Al-based attacks, identi-
fying the severity of each type. Furthermore, we explore the deep learning techniques
that can be tailored as countermeasures against adversarial attacks.

5. We conclude our work by identifying current and prospective future challenges faced
by UAV-assisted CAVs and propose future directions that can help overcome these
challenges, leading to a successful deployment of CAVs in smart cities.

To clearly describe the scope of our investigation, the section breakdown of the paper is
depicted in Fig. 2.

The research landscape on UAV-assisted CAVs has made notable strides, yet several
critical gaps remain, requiring more focused efforts in the integration and enhancement of
their coordination and vision capabilities. First, there is a clear need for extensive work on
the integration of CAV-UAV systems, particularly in the joint testing of their coordination
and vision capabilities through advanced deep learning constructs. The current literature
predominantly addresses these domains separately, leaving an unexplored potential for their
combined functionality in real-world scenarios. Second, the current body of work lacks
an in-depth exploration of how these constructs can provide a more accurate and holistic
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understanding of the CAV environment, essential for enabling reliable self-driving systems.
At last, there is an urgent need to critically examine the cybersecurity threats that could
compromise both autonomous driving and UAV-CAV coordination. Specifically, adversarial
attacks that target the integrity of machine learning models present a significant risk to the
safety and reliability of these systems. Future studies must address these vulnerabilities by
proposing robust defense mechanisms that ensure resilience against cyber threats. Table 1
presents a comprehensive list of literature works on UAV-assisted CAVs, highlighting the
contributions of each work.

1.2 Research methodology

This study was initiated to establish a foundational understanding of modular and end-to-
end approaches in deep learning-enabled CAVs. The rapid advancement in both approaches
necessitated a comprehensive review of their pros and cons to answer the crucial question of
the most promising approach. Through comparative analysis and the identification of corner
cases, we recognized the importance of incorporating aerial support to address unresolved
scenarios. Consequently, we presented an integrated system that combines deep learning-
enabled CAVs and UAVs to realize the vision of a successful driving system capable of
overcoming challenges in diverse scenarios.

The literature selection process adhered to a rigorous and systematic methodology
designed to ensure comprehensiveness and high relevance. To collate relevant studies,
we have adopted a two-pronged search strategy. Initially, we combined key terms such
as “CAVs or ITS”, “Perception”, “Path Planning”, “Motion Control” “Modular Vs End-
to-End” and “Cameras”, “RADAR”, “LiDAR”. Later, we conducted an exhaustive search
with terminologies such as “Deep Learning in UAVs”, “Deep Learning in CAVs-UAVs
systems” “UAVs-CAVs integration” “UAV-CAV Sensor Fusion”, “UAV-CAV Cyber-threats
and Countermeasures”. Finally, terms like "UAV-CAV Vision Transformers”, “UAVs-CAVs
LLM-based designs” and “UAV-CAV Challenges, Trends and Future Directions” were uti-
lized to complete this comprehensive review.

A wide array of leading academic databases, including IEEE Xplore, SpringerLink,
ScienceDirect, ACM Digital Library, and Google Scholar, was utilized to identify peer-
reviewed studies published within the last decade. In addition, to identify industry trends
and incorporate practical perspectives, we also referred to credible websites and news arti-
cles associated with the automotive and drone industry. Articles meeting inclusion criteria
focused on experimental validation or theoretical innovations addressing DL-enabled UAV-
CAV systems. The review excluded studies that lacked empirical grounding or DL designs
unrelated to the vision capability of CAVs and UAVs.

Key insights from the selected literature were synthesized to provide a coherent and
forward-looking perspective on the field. It also highlights the technical and operational
challenges of system integration, such as the complexities of real-time sensor fusion and
the mitigation of adversarial DL attacks, offering a critical analysis of proposed solutions.
Furthermore, emerging trends like the incorporation of Vision Transformers, Large Lan-
guage Models, and advancements in sensor fusion are explored for their potential to redefine
UAV-CAV collaborations. By offering a structured and multidimensional perspective, this
study not only provides a roadmap for addressing current research gaps but also serves as
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a foundational resource for researchers and industry professionals aiming to advance this
interdisciplinary domain.

2 UAV-assisted vehicular networks

UAV-assisted CAV networks comprise sophisticated systems that integrate advanced sen-
sors, data fusion modules, and Al-driven functionalities. By leveraging aerial perspectives,
UAUVs significantly enhance vehicular networks, particularly in emergency scenarios and
regions with limited infrastructure (Amponis et al. 2022). Their support enables adaptive
and dynamic network topologies, thereby improving coverage and reliability for CAVs
across diverse environments, including urban, rural, and highways. Furthermore, UAVs
offer high mobility and flexibility, facilitating on-demand connectivity services such as data
offloading, caching, and relaying. This collaboration not only augments network perfor-
mance and efficiency but also addresses the limitations of traditional cellular networks with
fixed or constrained resources.

2.1 UAV-assisted CAV network architectures

The architecture of UAV-assisted CAV networks can be categorized based on the role played
by the drone within the communication network. These roles range from passive elements
within the CAV system to active relay nodes or dynamic mobile RSUs. Multiple drones
or swarms can also form independent network layers within the CAV ecosystem. Drones
can function as regular vehicles in UAV-assisted CAV networks, transmitting cooperative
awareness messages like other users (Valle et al. 2021). UAVs may also act as relay nodes
to enhance inter-vehicle communication in V2V networks. By hovering above CAVs and
observing network topology, UAVs can integrate themselves as relays to improve connec-
tivity. As proposed by Lin et al. (2020), drone deployment can be optimized by predicting
vehicle distributions, aiding in routing for isolated vehicles, non-line-of-sight communica-
tion, and network load balancing. UAVs can also serve as resource nodes, bridging cover-
age gaps and supporting V2I communication. By repositioning, they can establish reliable
wireless links with infrastructure (Seliem et al. 2018). In Al-Hilo et al. (2020), a cooperative
caching-based approach is proposed where UAVs assist RSUs in fetching, carrying, and
forwarding content without accessing the backhaul. UAVs further enable real-time traffic
monitoring by covering inaccessible areas without interrupting traffic flow (Zhang et al.
2023). Additionally, in jamming scenarios, UAV-assisted CAVs can provide direct, unob-
structed communication links between vehicles and drones (Feng and Haykin 2019a). Mul-
tiple drones can also form a coordinated swarm to support critical communication. These
swarms can act as relays, extending coverage and increasing data transmission rates in infra-
structure-limited areas (Raza et al. 2021). Swarm networks offer flexibility and protocol
diversity, acting as overlay networks that provide redundancy (Raza et al. 2021). In Jacob
et al. (2020), intelligent swarm coordination is proposed to assist vehicular networks and
maintain safe inter-vehicle distances. UAV-enabled CAVs, enhanced with Al, are increas-
ingly contributing to smarter cities. UAV-assisted communication is expected to play a criti-
cal role in optimizing wireless connectivity during high-demand or emergency situations.

@ Springer
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The block diagram in Fig. 3 illustrates the integration of UAVs with CAV networks and
highlights their significance in future mobility systems.

2.2 UAV-assisted CAV communications and use cases

Communication between UAV and CAV networks can be established through various
methods. Authors in Kavas-Torris et al. (2022a) discuss two of the most prominent com-
munication protocols and evaluate them under real-world scenarios: dedicated short-range
communication (DSRC) and fourth-generation (4 G) cellular communication. In Nazib and
Moh (2020); Guillen-Perez et al. (2021, 2016), the authors comprehensively classified rout-
ing protocols utilized in UAV-aided vehicular networks. The study in Zanjie et al. (2014)
explored bandwidth and energy allocation strategies to optimize sensing and data gathering
in UAV-assisted CAV networks. The primary goal was to maximize the overall data rate
while ensuring fairness among all connected users. Furthermore, Poudel and Moh (2019)
reviewed various medium access protocols for UAV-aided networks. Now, we focus on the
different use cases these communication technologies enable.

2.2.1 Use cases for UAV-assisted CAVs

Integrating UAVs into CAV systems unlocks diverse capabilities and services (Menouar et
al. 2017b):

1. Safety Message broadcast: UAVs support rapid and reliable broadcasting of safety
alerts and accident notifications using direct line-of-sight communication (Saputro et
al. 2018).

2. Dynamic Spectrum Provisioning: Drones can augment network capacity by acting as
mobile RSUs, dynamically allocating additional spectrum.
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3. Traffic Monitoring and Law Enforcement: UAVs provide a 3D vantage point for
real-time traffic surveillance, facilitating the detection of violations and criminal activi-
ties (Kang et al. 2020).

4. Connectivity Enhancement: Acting as relay nodes, UAVs improve network resilience
by bridging coverage gaps, alleviating congestion, and balancing traffic load (Ahmed et
al. 2021).

5. Secure Communication: UAVs enhance the robustness of V2V links by offering anti-
jamming capabilities, thereby strengthening communication security (Feng and Haykin
2019b).

6. Edge Computing Support: Equipped with onboard compute resources, UAVs can
function as mobile edge computing (MEC) servers, enabling task offloading from
resource-constrained vehicles (He et al. 2021).

2.3 Integration of CAVs with UAVs

This subsection highlights key research regarding UAV-CAV integration, focusing on
communication, optimization, and security aspects. In communication, Kavas-Torris et al.
(2022b) implemented a V2X system based on a real-world use case, “Quick Clear,” evaluat-
ing four communication protocols: DSRC, User Datagram Protocol, 4 G-based WebSocket,
and Transmission Control Protocol. Su et al. (2023) investigated UAVs as relays to assist
ground user equipment when RSUs are unavailable or provide poor coverage, analyzing
both single- and multi-UAV deployments with user mobility. Similarly, Zou et al. (2022)
addressed data distribution and offloading by proposing a UAV-assisted method that serves
both stationary and mobile edge nodes, ensuring low latency and service reliability for
vehicles. In the domain of optimizing UAV-aided CAV systems, the utilization of UAVs to
enhance mobile edge computing for vehicles in a platoon was explored by Liu et al. (2022).
Their model considered UAV-platoon interaction, ground-to-air communication, onboard
computing, and energy harvesting. Extending this line of work, Liao et al. (2023) introduced
3D-UAYV, an energy-aware deployment strategy designed for complex environments such
as interchange bridges. Their approach addressed line-of-sight challenges, optimizing UAV
altitude and vehicle clustering to maximize uplink rates while minimizing UAV usage in the
Internet of Vehicles (IoV). In security domain Feng and Haykin (2019¢) proposed a UAV-
assisted secure communication framework resilient to hybrid attacks involving malicious
CAVs and UAVs. They introduced a “cognitive dynamic system” utilizing cognitive risk
control and intelligent jamming resistance. Likewise Khan et al. (2022) tackled secure data
exchange in complex UAV-CAV hierarchies, presenting “B-UV2X.,” a blockchain-based
modular V2X infrastructure enabling transparent and secure communication in distributed
vehicle networks. Table 2 summarizes additional integration challenges and considerations.
Parallel to these research efforts, standardization plays a pivotal role in enabling UAV-
CAV interoperability. Notable standards include IEEE 802.11n (Zhou et al. 2015), IEEE
802.11ah (Adame et al. 2014), and IEEE 802.11p (Shilin et al. 2016). IEEE 802.11n (Wi-Fi
4) enhanced data rates, range, and reliability, supporting UAV applications such as video
streaming and telemetry across the 2.4 and 5 GHz bands. IEEE 802.11ah (Wi-Fi HaLow)
was developed for low-power, long-range IoT communication, treating UAVs as networked
“Things.” IEEE 802.11p, designed for vehicular ad-hoc networks (VANETSs), operates in the
5.9 GHz band and supports low-latency communication between vehicles. While primar-
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Table 2 Prospects of integrating UAVs with CAVs

Integration issues Keypoints Details

Air traffic management ~ Communication and Requires robust communication and coordination

and collision avoidance  connectivity systems.

(Kavas-Torris et al. Coordinating airspace Reliable links between UAVs, CAVs, and central

2021) Sensing and perception control are essential.
Regulatory and legal Altitude, weather, and fusion challenges affect
hurdles detection and response. Collaboration is needed for
Interoperability and liability, licensing, and airspace management.
standards Common standards for communication, naviga-
Safety and reliability tion, and control are vital. Robust mechanisms are

needed as faulty UAVs are dangerous.
Energy Efficiency and  Drones are usually battery Optimizing energy usage for both platforms is

Range (Oubbati et al. powered complex. Ensuring sufficient range for integration
2019) of UAVs with CAVs is essential.

Privacy and Security Integration raises privacy  Ensuring security in the aerial dimension, consid-
(Khan et al. 2022) concerns. ering the limited processing power of drones is a

challenge. Securing communication channels is
paramount as the human transportation is involved.

Infrastructure and Urban Variable building heights ~ Adapting urban infrastructure for UAVs/CAVs

Planning (Zhu et al. can obstruct drone route  requires careful planning.

2019; Motlagh et al.

2016)

Collaboration and Test- Diverse UAV & CAV Collaboration among stakeholders is essential.

ing (Khan et al. 2022) makers Comprehensive testing, simulation, and iterative

development are necessary.

Technical (Khabbaz et ~ Communication Establishing reliable communication links between

al. 2019) Sensing and Perception UAVs and CAVs.
Integration of Control Ensuring UAVs can accurately detect and respond
Systems to ground-based CAVs.

Coordinating control algorithms for UAVs and
CAVs to avoid collisions.

Regulatory (Shrestha et ~ Airspace Regulations Complying with airspace regulations and obtaining

al. 2021) Traffic Management necessary permissions. Integrating UAVSs into
existing traffic management systems.

Operational (Xu et al. Scalability Handling a large number of UAV-CAV interactions

2020) in urban environments.

Public acceptance and  Fear of spying Skepticism due to noise, congestion, and perceived

perception (Cawthorne ~ Drone noise disturbance  risks should be addressed.
and Juhl 2022)

Economics of integra- Cost and Scalability Managing costs while ensuring scalable
tion (Motlagh et al. technology.
2016)

ily focused on ground vehicles, it is extensible to UAVs serving as communication relays
within vehicular networks.

The investigation by Kavas-Torris et al. (2022a) focused on the empirical study of hard-
ware implementation and real-life testing of a V2X communication framework between a
CAV and a UAV. Investigators tried to establish reliable communication links using four
methods: DSRC, User Datagram Protocol (UDP), 4 G-based WebSocket, and Transmission
Control Protocol (TCP). The coordinated mission involved transmitting accident location
data from the CAV to the UAV, which was further relayed to a Contingency Management
Platform (CMP) and a web server for situational awareness. The study evaluated the per-
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formance of these communication methods through latency and package drop percentage
metrics. The experimental results of this study are summarized in the Table 3.

2.4 CAVs data fusion with UAVs

Data fusion in connected vehicles employs diverse methodologies to integrate multi-sen-
sor data, enhancing perception accuracy and decision-making reliability. The overviews in
Khezaz et al. (2022a); Ounoughi and Yahia (2023); Butt et al. (2022) cover both intra-CAV
sensor fusion and fusion involving UAVs, although most studies concentrate on the former.
This section elaborates on key techniques applicable to CAV-UAV data fusion.

1. Probabilistic Methods Probabilistic approaches effectively manage uncertainty and
improve estimation accuracy, especially in dynamic environments. Following Kalman
filter variants are widely adopted for real-time applications (Ounoughi and Yahia 2023;
Montaiiez et al. 2023):

(a) Extended Kalman Filter (EKF): Linearizes nonlinear models using the current state
estimate and covariance.

(b) Unscented Kalman Filter (UKF): Uses the unscented transform for more accurate
nonlinear estimation.

(c) Sequential Kalman Filter (SKF): Processes data incrementally as it becomes
available.

(d) Federated Kalman Filter (FKF): Aggregates outputs from multiple Kalman filters
to produce a global estimate.

(e) Cubature Kalman Filter (CKF): Applies third-degree spherical-radial cubature
rules for nonlinear filtering.

These filters iteratively refine state predictions using incoming sensor data, making them
vital for real-time vehicular contexts.

2. Evidence-Based Methods: The Dempster-Shafer theory provides a robust alternative
to traditional probabilistic methods by combining uncertain and imprecise information
(Kusenbach et al. 2020; Cai et al. 2023; Xiang et al. 2023a). It is particularly suitable
when sensor inputs are incomplete or noisy.

(a) Belief Functions: Represent degrees of belief across hypotheses, capturing impreci-
sion beyond what standard probabilities allow.

(b) Combination Rules: Dempster’s Rule of Combination merges evidence from differ-
ent sources via Basic Probability Assignments (BPAs).

Table 3 Package Drop Communication Method Package Drop (%)
Percentage DSRC 036

UDP 1.72

WebSocket 1.56

TCP 10.45
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These features enable more flexible and reliable situational awareness in heterogeneous
vehicular networks.

Knowledge-Based Methods: DL methods facilitate high-level feature extraction and
data fusion from raw sensor streams (Butt et al. 2022; Harun et al. 2022). Traditional
machine learning algorithms, including support vector machines, random forests, and
Gaussian mixture models are also used for classification and sensor integration.
Advanced DL techniques such as convolutional neural networks (CNNs), recurrent
neural networks (RNNs), generative adversarial networks (GANs), and federated learn-
ing process large, nonlinear, and heterogeneous sensor data for object detection and pre-
dictive tasks (Wang et al. 2023b). However, their growing complexity and “black-box”
nature pose challenges in interpretability and trust (Ounoughi and Yahia 2023).
Statistical Methods: Statistical models interpret and fuse sensor data through proba-
bilistic relationships, enabling robust decision-making under uncertainty (Butt et al.
2022).

(a) Bayesian Networks: Graphical models that capture conditional dependencies among
variables to enhance environmental awareness (Lim et al. 2021a).

(b) Particle Filters: Use sample-based approximations for non-linear, non-Gaussian
state estimation (Tekeli et al. 2018).

(c) Expectation-Maximization (EM): Iteratively estimates parameters in latent vari-
able models by alternating between expectation and maximization steps (Kim et al.
2021).

These methods are valued for accurately modeling uncertainty and interdependencies in
real-world sensing environments.

5.

Hybrid Methods: Hybrid approaches integrate multiple data fusion techniques to capi-
talize on their strengths while mitigating individual limitations (Malawade et al. 2022;
Butt et al. 2022; Yeong et al. 2021). Common combinations include:

(a) Kalman Filter and Deep Learning: Merges real-time uncertainty handling with
deep neural feature extraction.

(b) Bayesian Networks and Dempster-Shafer: Combines probabilistic and evidence-
based reasoning for robust decision-making.

(¢) Multi-Sensor Fusion Frameworks: Organize fusion hierarchically—using probabi-
listic techniques at low levels and DL or Dempster-Shafer methods, for high-level
reasoning.

Hybrid methods provide a flexible, adaptive, and comprehensive framework that signifi-
cantly enhances the robustness and reliability of CAV-UAV systems.

2.4.1 Comparative analysis

Sensor fusion techniques for CAVs and UAVs offer distinct advantages and limitations.
Probabilistic methods provide reliable state estimation by effectively handling uncertainty
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but require significant adaptations for highly non-linear or complex data (Ounoughi and
Yahia 2023; Montafiez et al. 2023). In contrast, evidence-based methods, such as Dempster-
Shafer theory, excel in uncertain and incomplete data environments, offering robust situ-
ational awareness through multi-source evidence aggregation, albeit at high computational
cost (Kusenbach et al. 2020; Xiang et al. 2023a).

Knowledge-based methods leverage deep learning to extract high-level features from
heterogeneous, non-linear sensor data, enabling advanced perception tasks such as object
detection and lane recognition. However, their computational intensity and lack of inter-
pretability due to the “black-box” nature pose a challenge for safety-critical autonomous
systems (Butt et al. 2022; Harun et al. 2022). Statistical methods, including Bayesian net-
works and particle filters, accurately model uncertainties and are effective in non-Gaussian,
dynamic environments (Butt et al. 2022; Tekeli et al. 2018). Despite their strengths, these
methods can be complex and resource-intensive. Hybrid methods integrate probabilistic,
evidence-based, and deep learning techniques into a unified framework, offering a balanced
and adaptive solution for data fusion (Malawade et al. 2022; Butt et al. 2022; Yeong et
al. 2021). While their design and implementation can be complex, they achieve enhanced
robustness, scalability, and accuracy.

Given the strengths and limitations of individual approaches, hybrid methods emerge as
the most suitable strategy for CAV-UAV data fusion. Their ability to address diverse and
dynamic real-world scenarios makes them well-aligned with the requirements of intelligent
transportation systems.

3 Deep learning in CAVs

In order to respond to the environment, CAVs should be familiar with their surroundings.
The primary task of environment perception is achieved using various sensing devices such
as radio detection and ranging (RADAR), light detection and ranging (LiDAR), and cam-
eras. Environmental perception is of paramount importance as it is directly related to the
safety of the passengers. Al can play a crucial role in developing environment perception
methods using novel machine learning algorithms. One important application of Al is path
planning and behavior arbitration to accurately plan car routes and arbitrate different driv-
ing strategies. The information from sensors can be fed to an Al black box using modular
or End-to-End learning approach as shown in Fig. 4. Once the AI module is trained on a
certain dataset, it must be tested in different scenarios so that rare situations/corner cases do
not deceive the model and fatal accidents can be avoided.

In addition to path planning and behavior arbitration, a vehicle is also required to avoid
collisions, take safe turns, and make overtaking decisions with adherence to traffic laws. In
this scenario, one important aspect involves interaction with other drivers and their behavior
in certain conditions. An ideal vehicle tries to preempt the behavior of aggressive drivers
and take action to keep itself (and others on the road) safe.

3.1 Environment perception
This section will review different deep-learning techniques applied to sensor data for envi-

ronment perception. In connected and autonomous vehicles, perception systems understand
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Fig. 4 Deep learning aided CAV system. The modular approach and End-to-End learning approach are
shown at the top and bottom, respectively

the surrounding environment utilizing the input from various sensors, such as camera,
RADAR, LiDAR, and inertial sensors (Schoettle 2017). These sensors provide information
regarding the fast-changing environment. The environment perception in CAVs includes
detection of weather conditions such as fog, snow, and rain as well as a range of fixed (traf-
fic signals and signs, buildings, road markings, etc.) and moving objects (cars, pedestrians,
bicycles, etc.), in the surrounding along with their distance from the sensors (Yurtsever et
al. 2020; Hafeez et al. 2020; Wang et al. 2017; Guillen-Perez and Cano 2019). The data pro-
vided by these sensors is utilized for driver assistance and vehicle control. In the detection
process, a bounding box is drawn around important objects, and multiple bounding boxes
capture multiple objects to accomplish environmental perception in real-time. Despite tech-
nological advancements, one sensor cannot satisfy all autonomous driving requirements in
all weather conditions and ranges. Marti et al. (2019). For example, the advanced cameras
that produce high-resolution 2D images suffer severe deterioration in their performance at
low or high-intensity light and unclear weather. Similarly, the RADAR works very well in
bad weather. However, the resolution of RADAR data is not enough for object identifica-
tion (Dickmann et al. 2014). A detailed description regarding environment perception using
sensors and their fusion is covered in Butt et al. (2022). As perceiving the surrounding
environment and extracting information is critical for the operation and safety of a CAV
system, we will review each sensor utilized in CAV along with the employed machine learn-
ing techniques.

3.1.1 Scene perception using cameras

The camera sensors do not transmit any signal and depend upon incoming rays for per-
ceiving the environment. Several types of cameras sense the environment images are uti-
lized in autonomous vehicles, including flash cameras, thermal cameras, and event cameras
(Maqueda et al. 2018). Machine learning algorithms have achieved remarkable success in
object detection and image classification and are considered state-of-the-art these days.
Moreover, image processing using deep learning techniques is vital for detecting unusual
objects. For example, the authors in Ramos et al. (2017) have presented a framework that
employs appearance and contextual information to detect small unforeseen obstacles for
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self-driving cars. These methods can be categorized based on their framework into the fol-
lowing types (Carranza-Garcia et al. 2021; Jiao et al. 2019; Wang et al. 2019).

1. Single-stage detection: The architecture in this category uses a single network to detect
an object while predicting its class simultaneously.

2. Region proposal detection: The architecture in this category utilizes two-stage designs
where general regions of interest are identified, followed by their class identification by
another network.

We will now briefly discuss and compare single-stage and regional proposal detection
methods.

3.1.2 Single stage detection

The single-stage detectors comprise one feed-forward CNN network that produces the
bounding boxes and classifies the object. Several investigations for one-stage-based object
detection have been conducted for autonomous driving. The initial work concerning single
unified architecture was SSD: Single Shot Multi-Box Detector (Liu et al. 2016a) and YOLO
(You Only Look Once) (Redmon et al. 2016). YOLO offers real-time detection of images;
moreover, feature extraction using this unified architecture is straightforward, utilizing input
images to predict bounding boxes and class probabilities. YOLO is good for real-time pro-
cessing and improved accuracy. Moreover, it can be trained end-to-end. With additional
contextual information, YOLO exhibits fewer false positives in background areas. The
shortcoming of YOLO includes reduced localization accuracy which is the main source of
prediction error; moreover, there are only a few close-by objects that YOLO can predict.
The YOLO design triggered a series of investigations that led to improved single-stage
detection architectures.

YOLOV2 (Redmon and Farhadi 2017), the second version of YOLO, incorporates sev-
eral design improvements such as batch normalization (BN), convolution with anchor
boxes, multi-scale training, and addition of fine-tuning process to the classifier neural net-
work. The YOLOV2 achieves 78.6% mAP (mean Average Precision) and 40fps (frame per
second) in comparison to YOLO with 63.4% mAP and 45fps. A further improved version of
YOLO2, YOLO3 was presented in Redmon and Farhadi (2018) which incorporates several
enhancements, including multi-label classification, three different scale feature maps, and a
deeper and more robust feature extractor. The multi-scale predictions lead to better detec-
tion of small objects at the expense of the detection performance of medium and large-sized
objects. The work in Bochkovskiy et al. (2020) proposed YOLOv4, which outperforms the
previous YOLO versions with more accurate results when tested on the MS COCO dataset.
Multiple other incremental improvements on the YOLO construct are proposed by research-
ers such as YOLOVS (Mahaur and Mishra 2023) which focused on improved detection of
small objects along with better performance and speed. YOLOVS is fully written in PyTorch
contrary to using any form of the Darknet framework. In this context, another contribution
(Benjumea et al. 2021) dubbed “YOLO-Z” focused on detection of small objects present in
vehicular networks with higher speed and accuracy. There are several other detectors like
SSD513 (Fu et al. 2017), RefineDet (Zhang et al. 2018), RetinaNet (Lin et al. 2017), and
M2Det512 (Zhao et al. 2019a) with competing performance concerning speed and accuracy.

@ Springer



Unifying ground and air: a comprehensive review of deep... Page 150f72 19

3.1.3 Region proposal detection

Region proposal methods provide higher accuracy than single-stage detectors but at expense
of higher computational complexity. Region Proposal Networks (RPN) use a cumbersome
two-stage detection framework to train and calibrate classifiers. However, their object rec-
ognition and localization accuracy are higher. The region proposal method is a detection
process that comprises the region proposals and the classifier. Several object candidates,
known as Regions of Interest (Rol) are proposed first using reference boxes (anchors) and
in the next step, these proposals are classified. The pioneering deep learning-based work
in this context is R-CNN (Girshick et al. 2014). in (Girshick et al. 2014), authors used
an external selective search to generate proposals fed to a CNN to perform classification
and bounding box regression. A year later, Girshick (2015) proposed an improved version,
namely Fast R-CNN. The Fast R-CNN is composed of a fully convolutional neural network
(CNN) whose inputs are multiple Rols and an entire image. The proposed network produces
two output vectors which are softmax probabilities and per-class bounding-box regression
offsets. Shortly after Fast R-CNN, a further improved version dubbed Faster R-CNN (Ren et
al. 2015), was proposed. Faster R-CNN consisted of two modules, namely a deep CNN that
proposes regions and a Fast R-CNN detector that uses the proposed regions. Faster R-CNN
replaces selective Rol search with a novel region proposal network. The region proposal
network accelerates the formation of proposals because it contributes full-image convolu-
tional features and a common set of convolutional layers with the detection network. More-
over, this research proposes a novel method in which multi-scale anchors are employed as
a reference for different-sized object detection. There is no straight answer regarding which
model is the best, as they have different performances on different datasets and objects. For
real-world applications, there is a trade-off between accuracy and speed. Table 4 provides
the performance comparison of different models’ scene perception capabilities.

3.1.4 Vision transformer in CAVs

Vision Transformers (ViTs) are a type of neural network architecture designed for process-
ing images, based on the Transformer model originally developed for natural language pro-
cessing. State-of-the-art vision transformers are revolutionizing critical tasks such as object
detection, lane detection, and segmentation, and can be integrated with reinforcement learn-
ing for complex pathfinding (Lai-Dang 2024). They excel at processing spatial and temporal
data, surpassing traditional CNNs and RNNs in functions like scene graph generation and
tracking. The self-attention mechanism of Transformers offers a deeper understanding of
dynamic driving environments, which is crucial for the safe navigation of autonomous vehi-
cles. This comprehensive approach makes Transformers particularly effective in enhancing
the performance and safety of CAV systems (Zhu et al. 2024).

In the domain of transformer-based designs, Deshmukh et al. (2023) addressed the vehi-
cle detection challenge in traffic environments with mixed vehicle types and non-standard
traffic behaviour. To tackle the shortcomings of conventional CNNs, a new Swin trans-
former-based vehicle detection (STVD) framework is proposed. This framework enhanced
feature extraction by facilitating thorough information exchange within and between image
patches while incorporating a bi-directional feature pyramid network (BiFPN). The results
demonstrated the framework’s superiority, achieving a 91.32 percent accuracy on DTLD,
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Table 4 Performance of several models on different image datasets

Method FPS AP % Dataset Critical Analysis
™)
YOLOV9 (Wang et al. 2024) N/A 72.8  MS COCO The performance of
YOLOV7 (Wang et al. 2023a) N/A 744 MSCOCO  machine learning models
YOLO-Z (Benjumea et al. 2021) 306 965 MSCOCO  inobjectdetection varies
. significantly across datasets
YOLOv4 (Bochkovskiy et al. 2020) 31 430  MSCOCO such as MS COCO, KITTIL,
YOLOV3 (Bochkovskiy et al. 2020) 35 31.0 MS COCO and VOC 07 due to differ-
YOLOV2 (Lin et al. 2017) N/A  21.6 MSCOCO ences in object types, envi-
SSD (Bochkovskiy et al. 2020) 22 28.8 MSCOCO  ronmental conditions, and
RefineDet (Bochkovskiy et al. 2020) 23 330 wMscoco  Other dataset-specific char-
. X acteristics. This inconsis-
RetinaNet (Bochkovskiy et al. 2020) 13.9 32.5 MS COCO tency makes it difficult to
M2det (Bochkovskiy et al. 2020) 33.4 33.5 MS COCO fairly compare models, as
Faster R-CNN (Bochkovskiy et al. 2020) 9.4 39.8  MS COCO amodel that excels on one
Fast R-CNN (Jiao et al. 2019) NA 197 Mscoco  dataset may underperform
YOLOV2 (Chun et al. 2019) 855 648  KITTI on another. To address this
challenge, there is a need
YOLOV3 (Chun et al. 2019) 436 805  KITTI for a universal dataset or
RefineDet (Chun et al. 2019) 27.8 84.4 KITTI standardized benchmark
SSD (Chun et al. 2019) 289 141 KITTI that enables consistent
YOLO (Zhao et al. 2019¢) 45 634 VOCO7 and objective evaluation.
Such a benchmark would
YOLOV2 (Zhao et al. 2019c) 40 78.6  VOC 07 not only facilitate fair
SSD (Zhao et al. 2019c¢) 19 76.8  VOC 07 comparisons but also drive
Fast R-CNN (Zhang et al. 2018) 0.5 70 vOC 07 the development of more
Faster R-CNN (Zhang et al. 2018) 7 732 VOC 07 robust models capable of
RefineDet (Zhang et al. 2018) 403 800 VOCO07 performing well across di-

verse real-world scenarios.

87.4 percent on IITM-here, and 88.45 percent on KITTI datasets, outperforming existing
methods. Working on similar lines but considering the safety of autonomous vehicles in
mixed traffic and connected environments, the authors in Ji et al. (2024) focused on inter-
preting the intentions of human-driven vehicles when they change lanes. The authors of
this investigation presented an innovative method for identifying lane-changing intentions
by analyzing the driving state and relative motion of the target vehicle and its neighbour-
ing vehicles. This method utilizes various techniques such as short-time Fourier transform,
Gramian angular summation field, and Gramian angular difference field to convert time-
series data into grayscale images, which are then combined into an information fusion
image (IFI). These IFIs are then categorized into lane-keeping, lane-changing left, and lane-
changing right using a Vision Transformer model with transfer learning. This approach has
demonstrated superior performance compared to traditional methods, achieving 95.65 per-
cent accuracy in recognizing lane-changing intentions 3 s prior to the lane change. Ramana
et al. (2023) focused on predicting urban traffic patterns due to severely deteriorating urban
conditions such as population growth, congestion, air pollution, fuel consumption, traffic
violations, noise, accidents, and time loss. The authors proposed a method for accurate traf-
fic prediction using ViTs in combination with CNNs. In this approach, CNNs process traffic
images to generate feature maps, which are then tokenized and projected by ViTs before
being analyzed by LSTM. The results demonstrate that this ViT-based method is especially
effective in predicting traffic flow, even under unusual traffic conditions.
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Considering the importance of Bird’s Eye View (BEV) perception and the reliance of
its accuracy on large data sets, Song et al. (2023) introduced FedBEVT, a federated trans-
former learning approach for BEV perception. They addressed data heterogeneity issues,
such as diverse sensor poses and varying sensor numbers, by using Federated Learning
with Camera-Attentive Personalization and Adaptive Multi-Camera Masking. Their method
outperformed baseline approaches in four typical federated use cases, showing promise for
enhancing BEV perception in autonomous driving.

To address the “black box™ nature and lack of interpretability in deep learning approaches,
Dong et al. (2021) proposed an explainable end-to-end autonomous driving system using
a state-of-the-art self-attention-based Transformer. This system maps visual features from
images collected by onboard cameras to guide driving actions, while providing correspond-
ing explanations. The results show that their model significantly outperforms the benchmark
model in both action and explanation prediction while reducing computational costs. In Li
et al. (2022), proposed a lightweight transformer-based end-to-end model with built-in risk
awareness to reduce the high computational burden in autonomous vehicle decision-making.
The model utilizes a lightweight network combining depth-wise separable convolution and
transformer modules for efficient image semantic extraction from trajectory data sequences.
Driving risk is then assessed using a probabilistic model that accounts for position uncer-
tainty, which is integrated into deep reinforcement learning to identify strategies with mini-
mal expected risk. The method was validated in three lane change scenarios, demonstrating
its effectiveness and superiority. To enhance driver assistance systems, Gao et al. (2022)
proposed a novel hybrid deep learning framework called Multi-Modal CNN-Transformer
(M2-Conformer) for detecting driving behavior using video frames and multivariate vehicle
signals. The M2-Conformer integrates both Transformer and CNN architectures in parallel
branches to extract features from driving scenes and vehicle dynamics. It employs dynamic
token sparsification in the Transformer branch to prune redundant tokens, improving pro-
cessing speed. Additionally, a custom Feature Aggregation Module (FAM) is designed to
combine high-quality features from different branches. Experiments on a naturalistic driv-
ing dataset show that M2-Conformer offers a superior balance between complexity and
accuracy compared to other state-of-the-art methods for driving behavior detection. Kang
et al. (2022) developed ViT-TA, a customized Vision Transformer, to enhance autonomous
vehicles’ safety by accurately classifying critical traffic accident situations and identifying
probable causes. ViT-TA outperformed existing methods in detecting critical moments and
helped systematize the creation of functional scenarios for improvements in CAV safety.
This framework offers a scalable and reliable approach to generating safety plans for CAVs.

In Islam et al. (2023), investigators proposed a novel ensemble framework integrating
transformer and conformer models for crash prediction utilizing connected vehicle trajec-
tory data. Their prominent contribution lies in the synergistic combination of the models,
capitalizing on their complementary strengths to enhance predictive accuracy. Empirical
evaluations demonstrate promising results, underscoring the potential of this approach
for proactive safety interventions. In Tian et al. (2023), authors presented a cutting-edge
approach dubbed “VistaGPT”, leveraging generative parallel transformers. A notable
research strength was enabling efficient processing of multimodal sensor data. The paper’s
experimental results demonstrate impressive performance in complex driving scenarios,
showcasing VistaGPT’s potential for transport automation. While the paper provides a rea-
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sonable basis, further examination is needed to establish the computational efficiency and
scalability of VistaGPT for real-time autonomous driving.

The investigators in Dalwai et al. (2023) focused on sub-optimal performance of con-
ventional DL designs in dynamic scenes and lighting variations and proposed using Vision
Transformers’ self-attention mechanisms to capture spatial relationships and contextual
information in video frames. This solution offered an innovative approach for real-time
vehicle collision detection in CCTV footage. The results showed that this method improves
accuracy, with insights into future research directions highlighting the potential impact of
ViT-based systems.

HM-VIiT, a novel hetero-modal vehicle-to-vehicle cooperative perception framework
leveraging Vision Transformers, is proposed in Xiang et al. (2023b). A key strength of this
research was its ability to fuse multi-modal data for enhanced perception accuracy effec-
tively. While HM-ViT demonstrated promising results in cooperative perception tasks, its
applicability and scalability due to reliance on high-quality sensor calibration require fur-
ther investigation.

3.1.5 Scene perception using LiDAR

To ensure secure driving of the CAVs, the investigators in Feng et al. (2018) model the
uncertainties in vehicle identification and 3D bounding box regression. Moreover, it is also
shown that the uncertainty model can be applied to enhance tracking and detection accu-
racy. The researchers in Velas et al. (2018) segmented the sparse point cloud into the ground
and non-ground points using CNN to LiDAR expressed by multi-channel range images.
The proposed design was shown to significantly improve over the state-of-the-art method
in terms of speed and minor improvements in terms of accuracy. In Yang et al. (2018), the
detection of autonomous vehicles by a CNN-based proposal-free single-stage detector in a
bird’s eye view representation of LiDAR points is suggested. A more complicated neural
network in which the sparse 3D point cloud was encoded with a short multi-view design
description is proposed in Chen et al. (2017). In Capellier et al. (2019b), authors proposed
the processing of LiDAR rings instead of a full LiDAR point cloud for road segmentation
and mapping. In Milioto et al. (2019) RangeNet was proposed, which utilizes range images
as an intermediate representation and a CNN utilizing the rotating LIDAR sensor model. In
contrast, Wu et al. (2018) attained real-time segmentation by using a CNN in-range view of
LiDAR points.

Instead of splitting point clouds into clusters, an evidential end-to-end deep neural net-
work (DNN) for classifying LiDAR objects is proposed in Capellier et al. (2019a), and
their suggested design was able to classify the known objects and identify unknown objects
correctly. The investigators in Asvadi et al. (2017) use point cloud segmentation and seg-
mented obstacles projected onto a dense-depth map followed by bounding boxes fitting to
the segmented objects as vehicle hypotheses. Lastly, the classification objective is achieved
using the bounding boxes as inputs to a Deep CNN. The authors in Lu et al. (2019) present a
new deep learning architecture termed L3 for high localization accuracy using LiDAR. The
proposed framework learns features by PointNet and utilizes convolutional neural networks
and RNNss to predict the optimal pose.
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3.1.6 Scene perception using DL-assisted RADAR

RADAR sensors are useful for scene perception in adverse conditions for connected vehicles
as their performance is not influenced by brilliance. RADARS are active sensors that emit
radio waves that aid localization and speed estimation when they bounce back from objects.
The time of arrival of the reflected signal allows range and localization of the objects in the
environment. In contrast to passive sensors, active sensors are prone to interference from
other systems. RADAR has been used for centuries, and thus it has the advantage due to its
reduced weight and cost-effectiveness.

In the context of CAVs, RADARs can be installed inside the vehicle’s side mirrors.
RADARSs can detect an object at a high range and estimate its velocity, but they are not as
accurate as LiDAR. This accuracy deficiency in estimating the shape of objects is a major
flaw concerning its deployment in perception systems. The importance of RADARs, how-
ever, lies in their complementary role in poor weather conditions. The RADAR also faces
a challenge of a very limited field of view, which is generally sorted using a complex array
of RADAR sensors to cater full field of view. Due to these reasons, the use of RADAR is
widespread in CAVs for its utilization in issuing proximity warnings and adaptive cruise
control. However, Deep learning research using RADAR data for object detection is limited
compared to LiDAR.

In the domain of DL-aided scene perception using radar, investigators in Major et al.
(2019) proposed two ways to process the RADAR tensor. The first technique eliminates the
Doppler dimension by adding the signal power over that dimension providing range-azi-
muth tensor. In contrast, the second strategy provides range-Doppler and azimuth-Doppler
tensors as input. This leads to three model inputs being combined after primary processing
in a range-azimuth-doppler model. In the end, the authors illustrated the model’s viability by
comparing its characteristics with LIDAR-based techniques. Similarly, authors in Patel et al.
(2019) proposed a new design for RADAR-based classification that employs RADAR spec-
tra generated by multi-dimensional Fast Fourier Transform (FFT). Their proposed technique
applies deep CNNs directly to ROIs in the RADAR spectrum and thus achieves precise clas-
sification of various objects. The researchers claim that their proposed technique is a suit-
able substitute for classical RADAR signal processing techniques and performs better than
other DL strategies. The investigators in Sligar (2020) used a physics-assisted electromag-
netic simulation of a multiplex scattering environment to produce a virtual dataset. The data
regarding object’s distance and speed are determined from EM fields and converted into a
range-doppler map. These range-doppler maps are used as input to train popular DL models
based on the YOLOV3 backbone. The researchers emphasize the usability of the model
for various scenarios and environments. In Engelhardt et al. (2019), researchers utilized
raw RADAR data as input to deep neural networks and generated occupancy grids in the
RADAR’s field-of-view. The authors also validated the idea of deep learning-aided object
detection by applying frustum representation. Furthermore, the authors developed a semi-
automatic labeling tool using raw RADAR data collected using a test CAV. In Ristea et al.
(2020), RADAR interference mitigation that relies on CNN is investigated. The proposed
neural network predicts range profile magnitude with compensated noise and interference
using spectrograms of noisy beat signals along with interference.

In Scheiner et al. (2019), the authors presented an architecture in which data is first con-
verted to a common coordinate system and subsequently clustered and labeled before fea-
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ture extraction. It is also claimed that the proposed method enhances overall classification
performance. The research work in Lombacher et al. (2016) investigated the potential for
which static object classes can be recognized in RADAR grids using deep learning methods.
Several static objects which occur near roads, such as buildings, cars, fences, poles, shrubs,
trees, traffic signs, and fields, were successfully classified using this method. Investigators
in Scheiner et al. (2019) worked on similar grounds and evaluated the power of the deep
learning method to detect the different road users. Investigators in Kim et al. (2019) pro-
posed a recurrent convolutional neural network for V2X communications, which classifies
moving targets in an automotive RADAR system.

3.2 Path planning, behaviour arbitration, and DL-assisted driving

An autonomous vehicle’s capability to figure out a route between the starting position and
destination is termed path planning. The path determination process includes evaluating all
likely obstacles in the surroundings and discovering a track along a collision-free route (El
Khatib et al. 2019; Grigorescu et al. 2020). Autonomous driving involves interaction with
all the parties on the road while overtaking, changing lanes, giving proper way to vehicles,
and taking turns on roadways that can lead to speedy arrivals at destinations. Research on
connected vehicles’ decision-making, safety, security, control, and standardization of rules
has increased exponentially in recent years. A wide range of techniques in the deep learning
domain has also been developed for these tasks.

The two main deep learning techniques regarding path planning are Imitation Learning
(IL) (Rehder et al. 2017; Sun et al. 2018; Grigorescu et al. 2019), and Deep Reinforcement
Learning (DRL) (Yu et al. 2018; Paxton et al. 2017). Imitation learning means learning to
plan vehicle motion by imitating the observed behavior of humans. In the domain of IL, the
researchers in Rehder et al. (2017) trained a network from previously observed paths. They
proposed to model motion planning of an intelligent vehicle as a value iteration network.
Moreover, the network performance was demonstrated by training a cost function from
aerial images to resemble human driving behavior. Investigators in Sun et al. (2018) empha-
sized the reduction in computational complexity by proposing a two-layer architecture in
which the layers perform driving policy generation and its execution subsequently. The
authors in Grigorescu et al. (2019) proposed a DNN for perception planning that acquires
the desired state trajectory of the vehicle under test over a finite prediction horizon. In a
similar framework to IL, Inverse Reinforcement Learning is utilized in Gu et al. (2016) to
learn the reward function from an individual driver and subsequently generate human-like
driving trajectories.

On the other hand, DRL-based planning was proposed in Yu et al. (2018), where the
environmental model was condensed into a simple virtual environment model first. Then
DRL training was applied to obtain the optimal control-trajectory sequence. In Paxton et
al. (2017), authors discussed a methodology based on reinforcement learning to learn both
linear temporal logic constraints and control policies to generate task and motion plans,
whereas in Panov et al. (2018), the usability of the DRL approach is evaluated for path
planning on square grids. Driver inattention and vehicle automation interact in a complex
way depending on the level of vehicle autonomy. Instead of using the electrocardiography
or photoplethysmography signal for driver alertness, in Trenta et al. (2019), the research-
ers examined the skin micro-movements and variations in face color due to blood flow to
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extract facial landmarks. The researchers in Zyner et al. (2018) presented an RNN-aided
prediction method that uses LIDAR input and estimates driver plans at an un-signalized
roundabout, whereas Baheti et al. (2018); Kim et al. (2017); Xing et al. (2019) and Le et al.
(2016) focus on using CNN and Faster R-CNN respectively to detect driver alertness. Al
assistance in driving is leading towards a massive increase in different applications for ease
of driving such as blind-spot reduction (Virgilio et al. 2020; Zhao et al. 2019b; Shen and Yan
2018), traffic signal and signs detection (Alghmgham et al. 2019; Tabernik and Skocaj 2020;
Nagpal et al. 2019; Kukreja et al. 2020), lane deviation detection (Wei et al. 2019; Satti et
al. 2021; Du et al. 2020a) and vehicle make and model classification (Satar and Dirik 2018;
Nazemi et al. 2020; Manzoor et al. 2019; Artan et al. 2019).

3.3 End-to-end deep learning

End-to-End deep learning in CAV can be defined as “direct mapping by a neural network
from sensor data to vehicular control instructions”. The inputs to a DNN can be high-dimen-
sional sensor data like images or point clouds interpreted to control commands by End-to-
End networks.

One of the first works on End-to-End learning was introduced in the 1990 s when a
3-layer back-propagation network called Autonomous Land Vehicle In a Neural Network
(ALVINN) (Pomerleau 1988). The ALVINN was devised for following the road and steer-
ing as per the perceived road curvature. The training of ALVINN was carried out using
simulated road images and test results showed that it can efficiently follow actual roads.
In Bojarski et al. (2016), authors illustrated that CNNs are able to learn tasks such as lane
or road following using crude pixel information from a single front-facing camera and can
map directly to steering commands. Their scheme (dubbed DAVE-2) for End-to-End deep
learning can be visualized in Fig. 5 demonstrating that CNNs can learn the entire task of the
road following without any manual breakdown into subtasks.

In Xu et al. (2017), researchers proposed combining a convolutional network and a Long
Short-Term Memory (LSTM) network to learn a general model of vehicle movement from
large-scale video data. In Eraqi et al. (2017), it is taken into account the combination of
visual and dynamic temporal dependencies of the input data where the convolutional long—
short-term memory (C-LSTM) network has been utilized for steering control. In Hecker et
al. (2018), the 360° view of the surrounding area is captured via sensors. All the information
around the vehicle was united into the network model to produce an appropriate control
command. In Rausch et al. (2017), investigators designed a CNN to map pixel data taken
from a frontal camera to steering commands without involving other sensors and compared
their designed system performance with the human steering behavior.

The researchers presented DeepPicar in Bechtel et al. (2018), a deep convolutional neu-
ral network and a low-cost mini-model of DAVE-2 (a self-driving car by NVIDIA). The
vehicles having DeepPicar can estimate the steering angles of a CAV in real-time utilizing
a webcam in conjunction with a Raspberry Pi 3 quad-core platform. In Yang et al. (2017),
the research team used “The open racing car simulator” for data collection and classified
the image features into sky-related, roadside-related, and road-related categories. More-
over, multiple experimental evaluations are employed to investigate the influence of every
feature for training a CNN controller. The investigators in Sallab et al. (2017), incorporated
RNN for information synthesis, equipping the car to handle partly visible situations. The
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End-to-End Deep Learning concept in CAVs
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Fig. 5 NVIDIA End to End Learning for Self-Driving Cars (Bojarski et al. 2016). NVIDIA DevBox and
Torch 7 for training and an NVIDIA DRIVE-PX self-driving car computer also running Torch 7 for de-
termining where to drive. The system was trained using three cameras, a single camera in operation, and
processing 30 frames per second

investigators have also shown its ability to learn complex road curvatures in the racing
car simulator. The researchers in Pan et al. (2018) trained a CNN control policy to map
raw observations to steering and throttle commands that enable a speedy off-road vehicle
movement. An asynchronous advantage actorcritic framework had been adopted in Jaritz et
al. (2018) to learn the car control in a realistic rally game in which the agents can emerge
concurrently on different tracks. In Codevilla et al. (2018), command-conditional imitation
learning is proposed based on learning basic controls and advanced-level commands from
the presentations of an expert. The researchers in Hecker et al. (2018) extended the driving
data set by utilizing eight cameras to capture videos while driving, furthermore presented a
new DNN that can map the sensor inputs to future driving maneuvers. A blend of modular
designs and End-to-End deep learning approaches were suggested in Miiller et al. (2018),
so that driving policy is not revealed to raw input or basic vehicle dynamics. The investiga-
tors in Sauer et al. (2018) proposed a perception method that can map video input to inter-
mediate forms fit for autonomous navigation in complicated urban environments with an
improvement claim of up to 68 percent compared to the latest reinforcement and conditional
imitation learning designs.

In the deep reinforcement learning domain, Kendall et al. (2019) applied the DRL tech-
nique to learn a policy for lane following using a single monocular image as input and
reward as the distance traveled by the vehicle without the driver taking control. In Liang et
al. (2018), the authors presented a novel model termed Controllable Imitative Reinforce-
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ment Learning (CIRL) for challenging vision-aided autonomous driving. The proposed
method takes into account the controllable imitation learning with Deep Deterministic
Policy Gradient (DDPG) policy learning to fix the reinforcement learning poor efficiency
issues. In Amini et al. (2019), authors utilized raw camera data and higher-level road-maps
in a novel variational network to estimate probability distribution over the possible and
deterministic control command for navigation. Authors in Bansal et al. (2018) trained a
policy for driving CAVs through imitation learning where mid-level input and output rep-
resentations that exploit perception and control components are selected to diminish com-
plexity. The mid-level input is fed to an RNN, dubbed ChauffeurNet, whose output drives
trajectory rendered into steering and acceleration by the controller. In Bewley et al. (2019),
a system that uses simulation to learn an End-to-End driving policy readily transferable to
real-world scenarios is presented and validated against several baselines. The researchers in
Codevilla et al. (2018) focused on the issue of the unrealistic approach of modeling a wide
variety of complex environmental conditions and proposed behavior cloning to achieve
state-of-the-art results.

The investigation in Xiao et al. (2020) explored the combination of RGB and depth
modalities producing better end-to-end Al drivers, whereas an End-to-End conditional imi-
tation learning by linking lateral and longitudinal control on vehicles is explored in Hawke
et al. (2020). The research in Maanpai et al. (2021) is an effort to extend End-to-End learn-
ing using multi-modal data collected by 28 h of driving on several roads in adverse weather
conditions. The work in Chi and Mu (2017) focuses on a vision-based model that autono-
mously drives a car solely from its camera’s visual observation by mapping it to steering
angles. The novelty is claimed based on learning from real human driving videos instead
of being trained from synthetic data, taking informative historical states of a vehicle into
account, and using the visual back-propagation scheme for visualizing image regions. In
Gurghian et al. (2016), the images from laterally mounted down-facing cameras are used
in a convolutional neural network for lane detection. The research claims to achieve high-
accuracy lane position for keeping vehicle lane alignment to center and real-time naviga-
tion. In Koci¢ et al. (2019), the investigators proposed a very light neural network that leads
to lower latency and successful autonomous driving with similar effectiveness compared to
the state-of-the-art models in autonomous driving.

3.4 LLM-based designs in CAVs

Large Language Models are advanced deep learning models trained on massive amounts
of text data to understand, generate, and manipulate human language. While traditionally
used in natural language processing (NLP) tasks such as translation, summarization, and
conversation, LLMs are now being explored for their potential in designing and operating
CAVs (Cui et al. 2024). LLMs are capable of sophisticated human—machine interactions,
allowing vehicles to understand and respond to complex voice commands and predict pas-
senger needs based on conversational cues. LLMs can also be adapted to process CAVs’
multi-modal data, providing a unified understanding of the vehicle’s environment (Cui et
al. 2024; Tong and Solmaz 2024). LLMs can also generate realistic driving scenarios and
dialogues for training and testing autonomous systems. This trait enables CAVs to handle a
wide range of situations, including rare and complex events and associated policy-making.
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In Cui et al. (2024), authors presented a survey on multimodal large language models
(LLMs) for autonomous driving, focusing on heterogeneous modalities and cross-modal
learning. This investigation introduced the topic well, however, without an in-depth analy-
sis. In the domain of end-to-end autonomous driving systems based on LLMs, Xu et al.
(2024b) introduced DriveGPT4, as an innovative, interpretable solution. DriveGPT4 could
process multi-frame video inputs and textual queries, enabling it to interpret vehicle actions,
provide reasoning, and predict low-level control signals. This pioneering effort employed
LLMs for autonomous driving, using a custom visual instruction tuning dataset and a mix-
finetuning strategy to achieve driving capabilities. Tong and Solmaz (2024) explored the
integration of LLM-based DL with CAVs focusing on improving the traffic conditions. The
authors proposed "ConnectGPT," a pipeline that connects LLMs with CAVs, using GPT-4 to
monitor traffic, identify hazards, and automatically generate standardized safety messages
for smooth CAVs operations.

Sha et al. (2023) employed LLMs to address challenges of complex autonomous driving
scenarios. They created cognitive pathways for comprehensive reasoning with LLMs and
developed algorithms to translate their decisions into driving commands. By integrating
LLM decisions with low-level controllers using guided parameter matrix adaptation, their
approach outperformed baseline methods in both single-vehicle tasks and multi-vehicle
coordination. Cui et al. (2023b) presented a pioneering approach, Drivellm, that harnesses
the power of large language models for autonomous driving. The authors demonstrate a
promising direction, leveraging LLMs’ capabilities in processing complex scenarios. While
this approach pioneers the application of large language models in autonomous driving,
its methodology raises concerns. The authors’ reliance on pre-trained LLMs without thor-
ough fine-tuning may lead to biased or inaccurate decision-making in complex driving sce-
narios. Chen et al. (2024b) presents a novel approach leveraging LLMs for autonomous
driving. A significant strength is the authors’ innovative fusion of object-level vector modal-
ity, enabling explainable decision-making. The paper’s experimental results demonstrate
improved performance in various driving scenarios, showcasing the potential of LLMs in
autonomous driving. Yildirim et al. (2024) presented an innovative approach, called High-
wayLLM, combining reinforcement learning and language models for highway driving. A
notable strength is the authors’ attempt to leverage language models for decision-making,
showcasing promising results in simulated environments. Additionally, the paper’s discus-
sion on integrating reinforcement learning and language models highlights potential ben-
efits for autonomous driving.

3.5 Critical analysis of modular versus end-to-end learning & LLM-based designs

The conventional method for controlling autonomous vehicles is the modular CAV design.
This approach breaks down the driving task into smaller sub-problems, where distinct DL
modules can be trained for environmental perception, path planning, and motion control.
The modular design is favored for its transparency and interpretability compared to the
End-to-End (E2E) design. However, it is susceptible to error propagation, where inaccura-
cies in one module can lead to compounded errors in subsequent modules. Conversely,
the E2E approach integrates all driving tasks into a single model, facilitating easier error
detection and correction. This design enables the learning of advanced driving strategies
and generally performs well on simple datasets. Despite these advantages, the E2E approach
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has significant limitations, notably a lack of interpretability crucial for safety assurance.
Additionally, its single-step mapping can result in less efficient learning processes. further-
more, E2E models require vast amounts of training data to learn to drive safely in various
conditions. Collecting, annotating, and curating such data can be resource-intensive. E2E
models are often considered "black boxes," making it challenging to understand why a par-
ticular decision was made (Chib and Singh 2023). This lack of interpretability is a signifi-
cant concern for safety and regulatory approval. The learned behavior in E2E models might
not be easily transferable to different geographic locations, weather conditions, or vehicle
types, while modular approaches can be more adaptable. Modular systems often struggle
to handle corner cases or rare, unanticipated scenarios because each module may not have
been explicitly designed for them. E2E systems, on the other hand, exhibit better general-
ization across diverse scenarios due to their learning from extensive and varied datasets.
Furthermore, modular systems can experience delayed decision-making due to the sequen-
tial processing stages. In contrast, E2E systems potentially reduce latency by processing all
relevant information in a single step. Another advantage of E2E systems is their continuous
trainability on new data, allowing adaptation to evolving road conditions, traffic patterns,
and regulations. Modular systems, in comparison, might require manual updates and adjust-
ments to individual modules (Tampuu et al. 2020).

There has been a growing trend in recent years of testing DL-enabled autonomous driving
models using open-source simulators. Figure 6 illustrates a generic simulator architecture.

Several simulators are available for testing DL-enabled autonomous driving models,
including CarSim (Johansson et al. 2004), PreScan (Ortega et al. 2020), Gazebo (Ahamed et
al. 2018), LGSVL (LG—Autonomous 2023) and CARLA (Dosovitskiy et al. 2017). Notably,
CARLA (CAR Learning to Act) (Dosovitskiy et al. 2017) supports developing, training, and
validating autonomous urban driving systems. CARLA’s versatility lies in its capacity to
allow flexible specification of sensor suites and environmental conditions. This simulation
platform is particularly effective in evaluating three distinct approaches to autonomous driv-
ing: a traditional modular pipeline, an E2E model trained through imitation learning, and an
E2E model trained via reinforcement learning. Authors in Niranjan et al. (2021) highlighted
the usability of the CARLA simulator for testing object detection algorithms and getting
meaningful results. They utilized CARLA to generate a dataset for training an object detec-
tion model, which was subsequently evaluated on test images to assess its performance
within the CARLA environment.

Fig. 6 Simulator architecture
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The CARLA leaderboard serves as an evaluative tool for gauging the proficiency of
autonomous driving systems in uncertain environments. This tool presents vehicles with
predetermined routes that encompass challenging scenarios, including sudden lane changes
and unforeseen pedestrian crossings. The evaluation criteria include measuring the dis-
tance successfully navigated by the vehicle within a specified time frame on a designated
town route and the tally of infractions incurred during the journey. The assessment employs
multiple metrics, offering a thorough analysis of the driving system’s performance. This
comprehensive evaluation framework enables a detailed understanding of how autonomous
vehicles respond to and manage unpredictable driving situations.

Average driving proficiency score or Driving Score (DS) is a metric that reflects the aver-
age route completion percentage with average infraction penalty. Similarly, route comple-
tion depicts the average percentage of Routes Completed (RS) by the model. Based on the
submission in the CARLA leaderboard till August 2024, we can deduce that E2E models,
including ResonNet and InterFuser (Shao et al. 2023b, a), are leading the leaderboard with
DS value of 79.95 and 76.18 respectively. Corresponding RS values for the two leading
models are 89.89 and 88.23. Modular approaches, such as Rosero et al. (2022) and Rosero
et al. (2020) with DS of 15.40 and 4.56 as well as RS values of 50.05 and 23.80, respec-
tively, were lagging in comparison with E2E designs. These values show that the modular
approaches perform significantly less when benchmarked in CARLA leaderboard KPIs.

In the autonomous vehicle industry, companies are adopting different approaches based
on the requirements of their systems, safety protocols, and operational challenges. Tesla, a
leader in autonomous driving, is shifting from the modular approach towards end-to-end
learning Cohen (2023). As this approach relies heavily on DL models that process raw sen-
sory inputs directly into control outputs, it gives the liberty to jointly optimize perception,
planning, and control, potentially resulting in better overall performance. This approach
is beneficial in optimizing real-time decision-making, such as lane changes or complex
maneuvers. However, the data dependence of Tesla’s approach is a significant concern.
Tesla requires massive amounts of driving data to train its neural networks, and while its
fleet provides real-world data, the model’s lack of transparency poses a risk when things go
wrong. The system operates as a “black box,” which makes debugging and understanding
the decision-making process difficult. This raises safety concerns, especially in corner cases
where the system’s behavior might not be fully understood or predictable.

Waymo, another leader in autonomous driving, employs a modular learning architecture,
which divides its learning module into distinct components such as perception, planning,
and control (Cortese 2025). This approach ensures reliability, safety, and transparency, all
of which are crucial aspects for self-driving vehicles operating in real-world environments.
Modular systems allow each module to be specialized and optimized independently, making
it easier to test and validate the system in varied scenarios. However, this separation often
leads to challenges in integrating these modules efficiently, resulting in performance losses
and slower adaptation to dynamic conditions.

In conclusion, there is a growing shift towards end-to-end driving systems, as demon-
strated by companies like Motional and other autonomous vehicle developers, is consistent
with the findings of deep learning models tested on simulation platforms such as CARLA
(Shao et al. 2023b). While modular approaches have shown considerable advantages in
terms of reliability and transparency, which are essential for ensuring the safety of both
vehicle occupants and other road users, they also face certain specific challenges (Hussain
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et al. 2025). In particular, the integration of separate modules may result in suboptimal per-
formance and a delayed response to dynamic environmental changes. The ongoing research
into end-to-end systems aims to address these issues by improving adaptability and perfor-
mance across complex, real-world scenarios, suggesting a potential path forward for the
future of autonomous driving (Coelho and Oliveira 2022).

The integration of Large Language Models (LLMs) into Connected and Autonomous
Vehicles represents a promising frontier in the advancement of autonomous driving tech-
nologies. However, despite the innovative potential of LLM-based designs, several critical
shortcomings must be addressed to ensure their practical applicability and safety in real-
world scenarios.

One of the primary concerns with LLM-based designs, such as those proposed in Driv-
ellm (Cui et al. 2023Db), is the lack of rigorous experimental evaluation. These designs often
fail to rigorously test critical corner cases, omitting essential comparisons with established
autonomous driving approaches. This oversight can lead to significant gaps in understand-
ing how these models perform under challenging and unpredictable conditions, which are
common in real-world driving environments. The experimental setups in these studies often
rely heavily on simulated scenarios, which, while useful, may not fully capture the com-
plexities and uncertainties of real-world driving. Consequently, the applicability of these
LLM-based systems in actual driving situations remains uncertain, raising concerns about
their reliability and robustness.

The investigation by Chen et al. (2024b) also has some room for improvement. The
reliance on pre-trained LLMs may lead to biases and limitations in handling corner cases.
Additionally, the explainability aspects, while promising, require further development to
provide more insightful interpretations. The paper’s evaluation could benefit from more
comprehensive metrics, including safety and robustness assessments. Nevertheless, investi-
gation by Chen et al. (2024b) contributes meaningfully to the emerging field of LLM-based
autonomous driving, offering a promising direction for future research.

In the similar manner, the investigation by Yildirim et al. (2024) relies heavily on sim-
ulated scenarios, which may not fully capture real-world complexities. Furthermore, the
evaluation metrics could be more comprehensive, incorporating safety, robustness, and
computational efficiency assessments. Nevertheless, HighwayLLM (Yildirim et al. 2024)
contributes to the growing body of research exploring Al-driven autonomous driving solu-
tions, and its ideas warrant further exploration and refinement.

3.6 Corner cases in DL-assisted CAVs

The recent developments in autonomous driving and deep learning techniques rely upon
the availability of huge amounts of training data for training purposes. The use of deep
learning systems in CAVs is a black-box approach that furnishes a quick mapping solution.
However, it also poses a risk. Recently, real-world accidents related to CAVs confirm the
lack of robustness in these systems (Bolte et al. 2019). One cause of such accidents is the
deficiency in training data concerning capturing all critical situations (Tian et al. 2018). A
classic example of a corner case is the crash between a Tesla car and a trailer due to unsuc-
cessful differentiation of “white color against a brightly lit sky” and the “high ride height”
by Tesla’s DL system (Ouyang et al. 2021). At the conceptual level, the corner-case role in
DNN is just like conventional software logic bugs. However, these cases lead to potentially
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fatal collisions. To avoid such situations, testing, evaluation and update are crucial steps
in developing a safe CAV system. In the testing phase, the CAV is evaluated in safety-
critical situations, which infrequently happen in a common driving environment. How to
systematically generate these corner cases aiming for training is a challenging task. Several
investigations aim to develop a corner case. detection system to identify unusual scenarios.
In Bolte et al. (2019), a formal definition for a corner case for driving a CAV, along with
a system framework that provides both the online and the offline use case for cameras and
subsequently outputs a corner case score, is offered. In Sun et al. (2021), a single frame-
work is introduced to generate corner cases for the decision-making systems where the high
dimensionality issue is addressed using the Markov decision process. In Tian et al. (2018),
a systematic testing tool dubbed “DeepTest” was designed and evaluated to automatically
detect erroneous behaviors of DNN-driven vehicles to avoid fatal crashes. “DeepTest” was
found capable of detecting numerous erroneous behaviors under different practical driv-
ing conditions like rain, lightning, fog, and blurring, leading to lethal accidents in three
high-performing DNNs of the Udacity self-driving car challenge. In Yu et al. (2021), the
Multi-Relation Graph Convolution Network (MR-GCN) and attention layers are introduced
to model the risk of driving manoeuvres. In Zhao et al. (2017a, 2017b), authors proposed
important sampling techniques to generate test cases regarding lane-changing manoeuvres
and car-following scenarios. The overvalue problem of most serious cases is addressed in
Feng et al. (2021, 2020a, 2020b, 2020c) by defining the manoeuvre challenge and exposure
frequency and by forming cases on several environment settings such as car-following sce-
narios, cut-in scenarios, and highway driving environment. Some investigators offered the
risky index and the probabilistic model of the environment to assist in creating critical cases,
such as Akagi et al. (2019) used a self-defined risky index and naturalistic driving data to
sample critical cut-in scenarios. Adding to this effort, O’Kelly et al. (2018) utilized a deep
learning framework to calibrate a naturalistic driving model. Investigators in Ding et al.
(2020) modeled the environment as the union of blocks and used REINFORCE algorithm
to create corner cases in limited traffic load. The adaptive stress testing method is proposed
by Koren et al. (2018) that suggested Monte Carlo tree search and deep reinforcement learn-
ing to resolve the pedestrian-crossing problem. However, this study also considered limited
traffic and pedestrians. The study by Karunakaran et al. (2020) used the Deep Q Network
(DQN) to generate corner cases. Despite all these efforts, due to difficulties in modeling
complex scenarios, the generation and identification of corner cases that are a true repre-
sentation of actual situations with high coverage and variability remain an open challenge.

A number of potential solutions are also suggested by researchers concerning the corner
cases problem. The lack of robustness in deep learning systems due to deficiency in train-
ing data regarding uncommon situations dubbed “corner cases” must be addressed by the
automotive industry to ensure safety in CAVs (Sun et al. 2021). The first straightforward
solution concerning the testing and evaluation of CAVs is to purposely and systematically
generate these corner cases. The corner cases are unpredictable, and engineers can’t figure
out and cover all the scenarios without road tests in the real world. Consequently, the CAV
industry is working on virtual simulation to simulate the unusual scenarios that seldom hap-
pen in the real world and subsequently train CAVs. The other dimension in resolving this
issue is multi-sensor fusion. Because CAV’s sensors perceive the environment differently,
a corner case for one sensor might be a common scenario for others, such as in dim light or
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night. A camera might not detect a black car, whereas, for a RADAR, this scenario does not
fall in a corner case category.

The CAV’s ability to autonomously find the most similar corner case relevant to the cur-
rent situation can further improve the performance of well-coordinated sensor fusion algo-
rithms. The sensor fusion algorithms combine data from several sensors to determine the
most accurate object information. For example, if LIDAR provided the most accurate data
in a certain “corner case” previously, the sensor fusion algorithm will assign more weight to
the LiDAR sensor considering its better performance in a similar situation.

4 Deep learning in UAVs

DL constructs for UAVs differ significantly from those used in CAVs, largely due to varia-
tions in data characteristics. UAV datasets benefit from flexible data collection without geo-
graphic constraints but also face challenges such as varying sensor-object distances, wide
viewing angles, and substantial illumination changes. These factors contribute to low spatial
resolution, diverse object sizes, complex backgrounds, and a higher object count per image
(Wu et al. 2022; Jain et al. 2021).

Aerial detection is further complicated by occlusions caused by buildings and trees.
Additionally, UAV-specific limitations such as power consumption, payload capacity, flight
time, and operational range must be considered when designing DL algorithms (Carrio et
al. 2017). These distinctions necessitate specialized DL approaches tailored to aerial data-
sets rather than directly applying models developed for connected vehicles. The following
subsections detail various DL architectures explored for object detection using UAV sensor
data.

4.1 Scene perception using image sensors

Deep learning methods for UAV-based scene perception rely mainly on CNNs for feature
extraction (Karim Amer et al. 2019). Scene perception tasks include object identification
and scene classification. In Gangopadhyay et al. (2015), a statistical aggregation approach
using CNNs was proposed to classify videos of natural dynamic scenes. For object detec-
tion, Lee et al. (2017) applied Faster R-CNNs, proposing a computational split between
low-level object detection and short-term navigation for online processing. In Wang et al.
(2018), the performance of SSD, Faster R-CNN, and RetinaNet was evaluated on the Stan-
ford Drone Dataset. Similarly, Ammour et al. (2017) used a pre-trained CNN with a linear
SVM to detect car regions, while Radovic et al. (2017) demonstrated that parameter tuning
significantly improved CNN classification accuracy on aerial images.

DL techniques trained on UAV aerial datasets have attracted interest, especially for
surveillance and rescue. Mittal et al. (2020) provided a comprehensive review of state-of-
the-art DL algorithms implemented on low-altitude UAV datasets. In Kim and Chervonen-
kis (2015), DL-based image segmentation detected accidents and abnormal traffic using
UAV vision systems. Antonio and Maria-Dolores (2022); Guillen-Perez and Cano (2019)
proposed an end-to-end Multi-Agent Deep Reinforcement Learning framework for col-
laborative CAV control at intersections, capturing complex traffic dynamics. Despite their
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effectiveness, UAV constraints such as flight time, energy, and payload necessitate low-
complexity DL algorithms tailored for onboard deployment (Carrio et al. 2017).

Addressing these constraints, an empirical study by Purdue and CCAT (Zong et al.
2023) focused on intersection monitoring for crash risk assessment under rainy weather
using UAVs. The study leveraged the VisDrone dataset comprising 400 videos (265,228
frames) captured via drone-mounted cameras in diverse scenes. They developed a moni-
toring framework evaluated using Multiple Object Tracking Accuracy (MOTA), reporting
64.89% on the training set and 63.12% on testing. The study also introduced a denoising
framework evaluated through Peak Signal-to-Noise Ratio (PSNR) and Structural Similar-
ity Index (SSIM). However, a key limitation was the use of synthesized rain images, with
minimal validation of their real-world fidelity.

In another empirical study, Barmpounakis and Geroliminis (2020) conducted a big data-
based traffic congestion analysis by creating an extensive UAV-based traffic stream data
repository. The work offered an opportunity to test traffic models developed from diverse
disciplines. A swarm of 10 drones hovered over the central business district of Athens
over multiple days. This swarm of drones recorded traffic streams in a congested area of a
1.3km? area with more than 100 km lanes of road network, around 100 busy intersections
(signalized or not), including many bus stops, and close to half a million trajectories. The
experiment aimed to record traffic streams in a multimodal congested environment. Analy-
sis of the dataset revealed that taxis, stopping randomly for 5 — 15 seconds, and buses,
stopping at fixed locations for 30 — 40 seconds, frequently created static and moving bottle-
necks. For instance, a taxi stop caused a queue behind it, with a waiting time of more than
10 seconds for affected vehicles before a lane change was possible. Similarly, a bus stop
near a traffic light resulted in a queue where no vehicles passed the stop line for a 20-second
interval, underutilizing the green phase. In contrast, another bus stop of similar duration
had no capacity loss due to better traffic flow management, emphasizing the variability of
impacts. These findings underline the significant role of such stops in affecting lane capacity
and multimodal traffic interactions.

4.1.1 Vision transformers in UAVs

This subsection reviews the application of ViTs in UAV-based computer vision tasks such
as image classification, object detection, segmentation, and tracking. ViTs have gained sig-
nificant focus in UAV imagery, particularly for object detection, due to their potential to
enhance autonomy, accuracy, and efficiency. However, challenges like data quality, class
imbalance, real-time processing, and object scale variation caused by varying altitudes and
motion blur during low-altitude flights complicate deployment. Various transformer archi-
tectures have been proposed to address these issues.

Several ViT variants, ViT-Base, ViT-Large, ViT-Hybrid, and Swin Transformer, have
been tailored for UAV tasks using datasets like UAVid, VisDrone, Campus, UAV123,
UAVDT, MDOT, AU-AIR, and SynDrone (Rizzoli et al. 2023). Zhao et al. (2023) intro-
duced TPH-YOLOVS5, an enhanced YOLOVS with an added tiny-object prediction head and
transformer-based heads. Its successor, TPH-YOLOvS5++, integrates a cross-layer asym-
metric transformer module to reduce computational cost while maintaining performance.

Tahir et al. (2024) proposed PVswin-YOLOVS8s for pedestrian and vehicle detection,
combining Swin Transformer based global feature extraction with channel and spatial atten-
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tion modules. Soft-NMS was employed to improve occlusion handling. A comprehensive
evaluation of the PVswin-YOLOvVS8s model benchmarked against various YOLO versions
(YOLOvV3, YOLOvS, YOLOv6, and YOLOv7) and classical object detectors (Faster-
RCNN, Cascade R-CNN, RetinaNet, and CenterNet), revealed a significant improvement
in average detection accuracy (mAP) of 4.8% over YOLOvVS8s on the VisDrone2019 dataset,
thereby validating its efficacy in detecting small objects and enhancing overall detection
performance.

Tran et al. (2024) developed an unsupervised transformer-based framework for anomaly
detection in aerial surveillance. By predicting future frames and analyzing reconstruction
errors, their model outperformed state-of-the-art methods on the UIT-ADrone and Drone-
Anomaly datasets. Chen et al. (2024a) addressed decentralized, scalable UAV naviga-
tion with a transformer-based multi-agent reinforcement learning (T-MARL) algorithm.
T-MARL integrates the Transformer’s adaptability and attention mechanism with deep RL
to optimize cooperative UAV trajectories for area coverage. Xu et al. (2022a) tackled dense
object distribution using Foreground Enhancement Attention Swin Transformer (FEA-
Swin), which enriches Swin Transformer with contextual information and integrates an
improved BiFPN to retain small object details. The model demonstrated a balanced trade-
off between accuracy and efficiency.

In visual tracking, Xu et al. (2022b) proposed STN-Track, combining STN-YOLOX
detection and G-Byte tracking to improve accuracy and identity retention on UAVDT and
VisDrone MOT datasets. Similarly, Ye et al. (2023) introduced RTD-Net for real-time object
detection. The model integrates a Feature Fusion Module (FFM) for small object detection,
a Lightweight Extraction Module (LEM) for real-time efficiency, and a Convolutional Mul-
tihead Self-Attention (CMHSA) block to enhance occluded object recognition, achieving
86.4% mAP on a UAV dataset.

In summary, ViT-based models significantly advance UAV perception by improving
object detection and tracking, particularly for small or occluded objects. Despite these
gains, challenges such as data variability and real-time constraints necessitate continued
innovation in ViT architectures for UAV deployment.

4.2 Scene perception using acoustic sensors, RADAR and LiDAR

DL has demonstrated superior performance over traditional computer vision methods in
processing UAV aerial data. While CNNs are the most commonly employed architectures
for aerial image analysis, other DL models have also been applied across various UAV sens-
ing modalities.

In acoustic sensing, a partially shared deep neural network was used in Morito et al.
(2016) to extract human voices from noise-suppressed signals for detecting help requests in
disaster scenarios. Similarly, Jeon et al. (2017) explored acoustic classification using Gauss-
ian Mixture Models and CNNs. These studies highlight the growing use of machine learning
in UAV-based emergency response.

The recent advances in RADAR research point toward the increasing use of machine
learning techniques in advanced target classification (Mendis et al. 2016; Huizing et al.
2019; Park et al. 2021; Samaras et al. 2019). Mendis et al. (2016) proposed using deep belief
networks to classify spectral correlation function signatures of micro UAV systems. Huizing
et al. (2019) utilized CNN and LSTM-RNN architectures to classify targets based on micro-
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Doppler signatures. Park et al. (2021) introduced a ResNet-SP model, an enhancement over
ResNet-18, trained on RADAR spectrogram images. Their model achieved higher accuracy
with reduced computational complexity.

For LiDAR data processing, Maturana and Scherer (2015) presented a 3D-CNN frame-
work coupled with a volumetric occupancy map for identifying safe UAV landing zones.
UAV-based LiDAR has also been explored in infrastructure monitoring. For example, Liu
et al. (2019b) applied a random forest model to classify pavement distresses such as cracks,
potholes, and rutting using low-altitude UAV-generated point clouds. A broader review of
UAV LiDAR applications in road safety, traffic surveillance, and infrastructure management
is provided in Outay et al. (2020).

These works collectively underscore the versatility of DL in fusing data from acoustic,
RADAR, and LiDAR sensors to enhance UAV-based perception across safety, surveillance,
and control tasks.

4.3 UAV’s path planning, navigation, and control

DL has significantly advanced UAV path planning, navigation, and control, particularly in
unstructured and dynamic environments. Situational awareness, i-e, UAVs’ understanding
of their state and environment is crucial for selecting optimal routes. Chang et al. (2019a)
provided a comprehensive review of DL methods for UAV path planning. For localization,
Lin et al. (2015) proposed matching ground-level query images with aerial views using
CNNs. Padhy et al. (2021) presented a deep neural network framework that utilizes RGB
images from a UAV’s front camera to enable corridor navigation.

In autonomous landing, LI and HU (2021) developed a model integrating: i) a DNN-
based bounding box detector, ii) an extended Kalman filter-based coordinate combiner, and
iii) PointRefine-Net for improving detection accuracy. For adaptive navigation, Theile et al.
(2020) proposed a double deep Q-network to handle diverse mission scenarios, while Luo
et al. (2018) introduced “Deep-Sarsa,” an on-policy reinforcement learning algorithm that
facilitates path planning and obstacle avoidance via environmental feedback.

The capability of neural networks to handle high-dimensional data has enabled their
application in complex control problems, where classical control theory falls short under
model variations or disturbances (e.g., damaged propellers, wind, or rain). Shah et al. (2016)
introduced “DeepFly,” an autonomous flight system using a monocular camera and dispar-
ity images to select obstacle-free waypoints. Lin et al. (2014) proposed a recurrent wavelet
neural network (RWNN)-based control system for robust motion tracking under crosswind
and control disturbances. Punjani and Abbeel (2015) designed a hierarchical ReLU-based
network for executing complex helicopter maneuvers.

Recent studies focus on deep reinforcement learning (DRL) for tasks like target track-
ing, attitude control, and landing on static and mobile platforms. Li et al. (2017) proposed
a hierarchical control scheme that combines model-free policy gradient methods with PID
controllers for safe target tracking. Koch et al. (2019) addressed control issues in unpredict-
able environments by developing intelligent DRL-based flight controllers. Polvara et al.
(2018) utilized low-resolution, earth-oriented camera images in a DRL-based framework for
autonomous landing. Qing et al. (2018) employed an adaptive radial basis function neural
network and backstepping control to manage unknown disturbances during UAV landing.
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In Ma et al. (2024), authors introduced GN-Trans, a hybrid Graph Neural Network
(GNN) and Transformer architecture for mission planning in UAV-CAV systems. The model
combines a global Transformer for high-level behavior modeling and a local Transformer
for region-specific task allocation and path planning. Evaluations on the Stanford Drone
and CityScapes datasets showed GN-Trans achieved 92% task allocation accuracy and
88% resource utilization—outperforming Dijkstra’s algorithm (70%) and RL-based mod-
els (82 — —89%). Ablation studies demonstrated complementary benefits of GNNs (87%)
and Transformers (89%), while GN-Trans yielded 12 — —15% improvements in dynamic
scenarios. The model scaled to 50 UAVs and 30 CAVs, achieving robust performance
across varied environments (97.5% UAV accuracy in urban settings). GN-Trans effectively
bridges relational and contextual Al, setting a new benchmark in autonomous IoT mission
coordination.

4.4 Large language models in UAVs

The integration of Large Language Models (LLMs) into UAV systems represents a sig-
nificant advancement, enabling enhanced decision-making, natural language interaction,
and autonomous mission planning. By employing their predictive and generative capabili-
ties, LLMs support real-time adaptability, efficient communication, and greater autonomy,
particularly valuable in domains such as search and rescue, environmental monitoring,
remote sensing, and military operations. Furthermore, LLMs extended to the vision domain
have demonstrated strong multi-modal reasoning, opening new avenues in UAV-based
applications.

Several notable contributions illustrate the application of LLMs in UAVs. Zhan et al.
(2024) proposed SkyEyeGPT, a multi-modal LLM (MLLM) designed for remote sensing.
It employs a two-stage tuning strategy to improve instruction-following and multi-turn dia-
logue across different granularities, achieving superior performance on eight remote sensing
vision-language datasets. Similarly, Xu et al. (2024a) introduced RS-Agent, an autonomous
remote sensing agent that combines LLMs with advanced remote sensing image processing
tools. This RS-Agent excels in tasks such as scene classification, visual question answering,
and object counting across multiple benchmarks.

Beyond remote sensing, LLM integration into future wireless networks has been
explored. Javaid et al. (2024b) emphasized LLMs’ potential to reduce latency, optimize data
flow, enhance signal processing, and manage network traffic through advanced prediction
and real-time decision-making. Extending this idea, Jiang et al. (2024) demonstrated how
collaborative, self-improving LLM-enhanced agents can address complex problems in 6 G
communication. A broader survey by Javaid et al. (2024a) reviewed LLM architectures
suited for UAV deployment, summarizing current trends, design frameworks, and potential
integration pathways for future LLM-based UAV systems.

In Wang et al. (2023c), authors explore the integration of Large Language Models (LLMs)
into autonomous driving systems, applying LLMs to behavior planning and safety enhance-
ment. From a UAV perspective, De Curtod et al. (2023) combined LLMs and Vision-Lan-
guage Models (VLMs) to enable zero-shot scene-to-text descriptions using UAV imagery
via a state-of-the-art detection pipeline. Lastly, Abu Tami et al. (2024) proposed an MLLM
framework that utilizes object-level question-answering prompts to enhance safety-critical
event detection, offering actionable insights through robust logical and visual reasoning.
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4.5 Critical analysis of UAVs-supported detection in CAV networks

This section discusses the use of UAVs for real-time detection and tracking of objects such
as vehicles, pedestrians, and obstacles within vehicular networks. Despite their unobstructed
aerial view advantages, UAVs face several challenges in object detection:

e UAV imagery is typically captured from altitudes far exceeding inter-vehicular distanc-
es. This results in relatively small object representations, distorted views due to oblique
angles, and motion blur from UAV-object relative movement, increasing false detection
rates (Zhou et al. 2022; Li et al. 2018).

e Occlusion is caused by environmental elements or poor illumination, impairs visibility,
and leads to missed or false detections (Scott et al. 2016). Researchers have proposed
various methods to address occlusion under diverse conditions.

e Further issues in deep learning-based detection include scale variation, object similarity,
and real-time processing demands (Bouguettaya et al. 2022).

To tackle these challenges, numerous DL-based vehicle detectors have been developed.
Single-stage detectors, especially the YOLO series, have evolved to enhance real-time per-
formance and improve detection of small-scale targets in complex scenes.

YOLOV3 (Bochkovskiy et al. 2020) significantly improved computational efficiency and
resource utilization. Innovations like YOLO-GCC and Traffic-DQN presented in Li et al.
(2021a; 2021b) further refined small-object detection in UAV imagery. Enhanced bounding
box accuracy was achieved through Soft-NMS and K-means++ algorithms, aiding occlu-
sion management and complex background scenarios. YOLOv4 introduced additional data
augmentation techniques and clustering improvements (Iftikhar et al. 2023). Its Drone-spe-
cific model incorporated receptive field block (RFB) and ultra-lightweight subspace atten-
tion mechanism (ULSAM) modules for better precision (Koay et al. 2021).

YOLOv6 (Norkobil Saydirasulovich et al. 2023) and YOLOv7 (Wang et al. 2023a)
achieved gains in detection speed and accuracy. YOLOVS introduced an anchor-free archi-
tecture, simplifying detection and achieving higher precision than YOLOvS on MS-COCO
(Sirisha et al. 2023). Aerial image detection enhancements in Li et al. (2023) utilized
YOLOVS-s for real-time detection, integrating bidirectional path aggregation network-fea-
ture pyramid networks (Bi-PAN-FPN) into the network neck to strengthen multiscale fea-
ture fusion. This approach addresses common aerial image issues such as small object size,
variable lighting, and diverse backgrounds, while maintaining edge-device compatibility
and reducing parameter costs.

In the domain of two-stage detectors, the low detection accuracy issue of vehicular
objects from aerial images is addressed in Wang et al. (2020c) utilizing a modified ver-
sion of Faster R-CNN. Working on similar lines, authors in Benjdira et al. (2019) showed
the competitive performance between YOLOvV3 and Faster R-CNN. Their results indicated
YOLOV3 and Faster R-CNN are comparable regarding precision, while YOLOV3 outper-
formed Faster R-CNN in terms of sensitivity and processing time. Authors in Avola et al.
(2021) proposed a model dubbed “Multi-Stream Faster R-CNN” which employed different
kernel sizes for each captured stream to simulate a multi-scale image analysis, thus effi-
ciently detecting objects at different heights. Author in Khezaz et al. (2022b) highlighted
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the limited role of RADAR and LiDAR sensors, i.e., aiding the vision sensors to enhance
perception accuracy, for object detection in vehicular networks.

5 Deep learning related cybersecurity threats in CAVs and UAVs

This section covers a comprehensive study of ML techniques that can be utilised to attack
CAVs and UAVs. Deep learning has been successfully applied to several applications in
recent years, and among them, many applications are critical as human safety depends upon
their error-free operations. The deep learning-aided CAVs is one such application (Sarker et
al. 2020). The crucial association of human safety with Al is a big concern in the cyberse-
curity domain. The immense power of deep learning-aided designs necessitates a high level
of responsibility (Yuan et al. 2019). Conventional cyberattacks typically involve exploit-
ing vulnerabilities in the CAV’s software or its communication capabilities. In contrast,
adversarial attacks target loopholes in perception systems, i.e., cameras, lidar, RADAR,
and their software counterpart that identify vehicular entities. The pioneer investigation by
authors in Papernot et al. (2016b) explored the weakness of DL constructs that make them
vulnerable against carefully altered input samples, termed “adversarial examples.” These
precisely crafted samples can easily deceive a nicely working deep learning systems with
little changes dubbed “perturbations,” which are generally undetectable by humans.

Current investigations also reveal that adversarial examples can be applied to deceive
autonomous systems by altering input segments in an object detection system (Xie et al.
2017). As a cyber-physical system (Rong-xiao et al. 2020), UAVs are part of the distributed
flying ad-hoc network (FANET) deployed in smart cities to assist CAVs on the ground and
are also vulnerable to various deep learning-supported malicious attacks by hostile nodes.
An adversarial example can be formally defined as “inputs to machine learning models that
have been intentionally modified in a subtle way to cause the model to make a mistake.” The
adversarial example can be expressed as

x=x+argmin{|| n || f(z+n=1)} )
n

where X is an adversarial sample, x is the correctly classified sample, 1 is perturbation, f{)
is the ML classifier, and ¢ is the targeted class. The adversarial attacks target the input of a
deep learning module by adding adversarial perturbations, so they can be discussed in an
integrated fashion without differentiating whether UAVs or CAVs captured these images.

5.1 Adversarial attacks

As discussed earlier in this section, adversarial attacks can be conducted using an input
crafted by a distinct method to obtain incorrect results from the model. In the literature,
adversarial attacks that impact the training process of machine learning are designated as
poisoning attacks, whereas the adversarial attacks that affect the inference stage of machine
learning are called evasion attacks (Jiang et al. 2020). The evasion attacks occur if test
samples or live inputs of a model are manipulated in order to generate an inaccurate out-
come. Adversarial attacks can also be divided into three main categories, namely white-
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Fig. 7 Deep Learning related cybersecurity threats and defence in CAVs and UAVs

box, grey-box, and black-box attacks, depending on the availability of information needed
for execution. In order to execute white-box attacks, a deep understanding of the target is
needed, including its training data, neural network structure, parameters, hyperparameters,
access to gradients, and prediction results. Gray-box attacks assume a partial knowledge
about the targeted model, whereas black-box attacks only necessitate the ability to query the
model using arbitrary input and obtain the corresponding prediction. In the case of black-
box attacks, attackers can construct a substitute model based on interactions with the tar-
get model, utilizing input—output pairs. Subsequently, they can transform this substitute
model into their own white-box model, enabling them to generate adversarial examples.
These adversarial examples can then be employed to launch attacks on the original black-
box target model, a phenomenon referred to as the transferability of adversarial examples.
Numerous other classifications of adversarial attacks depending upon their perturbations
generation method and attack recurrence exist in literature (Qayyum et al. 2020); however,
in order to present a holistic overview of threats and defences to the reader, we will con-
centrate on adversarial attack generation and their combat methods. Figure 7 represents
different categories of adversarial cybersecurity threats and defense mechanisms within the
context of CAVs and UAVs. These categories visually demonstrate the diversity of these
threats and highlight the proposed defense strategies, offering a clear representation of ways
through which the DL models can be compromised and the countermeasures in that domain.
Before discussing the attack types, we explain the terminology useful for understanding
adversarial attacks.
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A dataset comprising N samples is expressed as {xiyi}ij\il, where x; refers to the input
data and y; represents the corresponding labels. The neural network is modelled by the
function f{.), which makes predictions f{x) based on the input x. The adversarial loss func-
tion is written as J (0, x, y), with 8 denoting the parameters of the model. For classification
problems, the cross-entropy loss, represented by J(f(x), ), is commonly used. Additionally,
the adversarial version of the input x is represented by x and formulated as

x: D(x,x) <mn, f() #v. 2

Here, D(x) represents the distance metric, and 7 is the permissible perturbation, typically
chosen to be minimal in order to ensure that x and X remain similar.

Adversarial attacks are a topic of extensive discussion (Sadeghi et al. 2020; Hafeez et
al. 2019; Sharma et al. 2019; Assion et al. 2019; Qayyum et al. 2020; Ren et al. 2020) and
these can be generated and launched employing several methods. Here we will take a brief
but holistic survey of the attacks and perturbations that can severely impact the output of a
deep learning model.

5.1.1 L-BFGS algorithm

The vulnerability of deep neural networks regarding adversarial examples was first dis-
cussed in Papernot et al. (2016b). In this investigation, Papernot et al. crafted adversarial
examples using the Limited Broyden—Fletcher—Goldfarb—Shanno (L-BFGS) method. The
L-BFGS method finds the adversarial perturbations with the minimum L, norm, which is
expressed as

min =|| x — x ||, subjectto f(Z) # ¥. )

where ¥ is the adversarial target label, (y # y). The L-BFGS method introduced pertur-
bations that were almost imperceptible, resulting in misclassified DNN output. The work
in Papernot et al. (2016b) also explored that these adversarial examples can be general-
ized across various models and datasets. noticed that the generated adversarial examples
could be generalized to different models and datasets. Another investigation by Papernot et
al. (2016c¢) demonstrated the potential of binary search to get the optimal perturbation for
executing an L-BFGS attack.

5.1.2 Fast gradient sign method

The issue of extended search time for obtaining the optimal value to launch L-BFGS attack
was investigated in Goodfellow et al. (2015). Goodfellow et al. (2015) suggested “Fast Gra-
dient Sign Method” (FGSM) to generate perturbations. FGSM was speedy, as it follows the
steepest direction toward the optimal value and could execute the one-step update towards
the direction of the gradient of the adversarial loss J(0, x, y). The FGSM-generated adver-
sarial sample can be mathematically written as

x =x+ e.sgn[VyJ(0,%,9)], )
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where e denotes the size of the perturbation, FGSM can be adapted to perform an attack by
moving along the gradient’s direction with respect to the loss function .J(8, x, i), where ¥ is
the target label. The corresponding update rule is given by

X =x+ e.sgn[VyJ(0,%,7)]- 5)

Another variant, suggested by Rozsa et al. (2018), dubbed “Fast Gradient Value Method
(FGVM)” changed the gradient sign with the raw gradient, i.e., n = V«J(0,x,y). The
FGVM can generate images with much higher local differences and without pixel restrictions.

5.1.3 Basiciterative method (BIM)

The BIM method explored in Kurakin et al. (2017), refined FGSM by applying it repeatedly
with a small step size. In each iteration, pixel values are clipped to limit significant modifi-
cations, ensuring minimal changes per pixel. This iterative addition of perturbations gener-
ated adversarial examples that closely resemble the original input, leading to higher chances
of misleading the network. The update rule for the #-th iteration is given by

f(t_,_l == Cllp [)Zt + a.sgn {VXJ(G, )Zt, y)}] . (6)

This method utilized three hyper-parameters, namely, the step size «, the maximum allow-
able perturbation, and the number of iterations. Another variant of BIM dubbed “Projected
Gradient Descent (PGD)” offers a version free of the constraint o1' = ¢. PGD applies
smaller adversarial perturbations using the update rule given below

X1 = proj{x; + a.sign [V J (0,%, y)|} (7
where proj denotes the projection operation.
5.1.4 Momentum iterative attack

Authors in Dong et al. (2018) proposed a momentum iterative FGSM attack based on the
findings that one-step attacks are easily transferable as well as relatively simple to defend.
Momentum iterative FGSM boosts FGSM with momentum to produce adversarial exam-
ples with additional iterations. Mathematically, momentum iterative FGSM updates the
adversarial sample iteratively as given below

xt+1 = Clip [it + a.sgn {gt+1 }] ®

where gradient g is updated according to

va(aaftvy)
— NREE A LA 9
Bt =88 G T8 %) | ©)
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Additionally, Dong et al. (2018) suggested incorporating gradients from multiple models
with respect to input and identifying a gradient direction that transfers more effectively to
other models.

5.1.5 Distributionally adversarial attack

Authors in Zheng et al. (2020) explored the incorporation of probability space to form a
novel attack type dubbed “Distributionally Adversarial Attack (DAA)”. In contrast to the
Projected Gradient Descent’s loss function-dependent generation of adversarial samples,
DAA focuses on optimizing over possible adversarial distributions. The basic idea was to
incorporate the Kraft—-McMillan (KL) divergence between the adversarial and benign data
distributions to evaluate the loss function. The optimization function can be stated as

maz / J(0,%, y)dp + KL(i || 7(x)) (10)

12
1%

where g and 7(z) represents adversarial and non-adversarial data distributions, respec-
tively. DAA discovers new adversarial patterns and is recognized as one of the most effec-
tive attacks against multiple defence models.

5.1.6 Carlini and Wagner (C&W) attack

Carlini and Wagner (2017) introduced a new set of attack algorithms and demonstrated that
defensive distillation offers limited improvement in neural network’s robustness. C&W pro-
posed a series of optimization-based adversarial attacks, capable of generating adversarial
examples measured by different norms, known as CWy, CW5, and CW . The objective
function for these attacks is given below

m;sz'n D(x,x+8) + c. f(z +0), wherex+ & € [0,1] (11)

where § represents the perturbation, D is the distance metric, and f(z + J) is the adversarial
loss, which holds true under the condition f(x + 0) < 0, indicating that the attack success-
fully causes the DNN to misclassify the target. Subsequent work by authors of Sharma et
al. (2020); Alsheikh and Mahmoud (2020) showed that C&W’s attack is effective against
several adversarial defences.

Concerning image classification attacks of UAVs, optimization base attacks are consid-
ered relatively more time-consuming, however, can achieve the objective of targeted wrong
classification (Wu et al. 2019).

5.1.7 Jacobian-based saliency map approach
The investigations in Papernot et al. (2016a), resulted in an effective target attack dubbed
“Jacobian-based saliency map approach” (JSMA) that can fool neural networks with minor

perturbations. Initially, this technique evaluates the Jacobian matrix of the logit outputs. The
Jacobian matrix of the sample x is given by
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(12)

]vel...,Mm.,jel....,M(,,.j,,,

where M;,, and M, represent the number of neurons in the input and output layers, respec-
tively, and ~ and j are the indices of the input x and output components. The Jacobian
matrix addresses the question of how elements in the input x influence the logit outputs
that are ready for classification. Specifically, the adversarial saliency map, derived from
the Jacobian matrix, identifies the pixels that can be perturbed to achieve a desired change
in the logit outputs. By altering a small subset of input elements, the network can be eas-
ily fooled into misclassifying the data. Recently, authors in Tian et al. (2022a) exposed the
vulnerability of WiFi-supported UAVs against such attacks. The proposed approach dubbed
“Forward Derivative-Based Attack” is claimed as an efficient non-targeted attack regarding
image classification tasks.

5.1.8 DeepFool

In Moosavi-Dezfooli et al. (2016), the Deep Fool algorithm was proposed in order to find
the smallest distance from an original input to the decision boundary of an adversarial exam-
ple. This method involves the affine binary classifier and a general binary differentiable
classifier. Initially, the authors showed that in the case of an affine classifier, the minimal
perturbation is the same as the distance to the separating affine hyperplane

F={x:w'x+b=0}. (13)

The perturbation for an affine classifier f'can be denoted as —%w. For a general differ-

entiable classifier, DeepFool assumes F' as linear around zt¢ and iteratively computes the
perturbation 8t as

argmin H 4] H2 subject to f((i‘t) + Vf(:it)T& =0. (14)
LP

This result can be extended to multi-class classifiers by hunting the nearest hyperplanes and
identifying more general [, norms. Studies on the DeepFool algorithm have shown that the
perturbations generated by DeepFool are relatively small compared to those produced by
FGSM and JSMA on several datasets.

5.1.9 GAN-based attacks

The investigation in Xiao et al. (2018) first discussed the generation of adversarial samples
with the GAN. GAN will be elaborated here for clarity before describing the loss model
and other details. On the basis of a huge dataset, GAN can form a totally new dataset that
closely resembles the original dataset. The two essential parts of typical generative adver-
sarial networks are 1) a Generator and 2) a Discriminator. The functionality of the genera-
tor is to make new instances of an object, while the Discriminator’s task is to determine
whether these instances are part of the original dataset. The Generator gets feedback from
the Discriminator and employs it to compose more “real” images. Let the neural networks
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formed by GAN be represented by a Generator network G and a Discriminator network as
D. Furthermore, let the real data distribution be Py, the noise vector input to the generator
be z that is formed utilizing the distribution P,, whereas the generated samples are referred
to as G(z). The Discriminator acts as a binary classifier, taking real and generated samples
as input and estimating the probability of a sample being real. Training a GAN involves
solving the optimization problem formulated in Goodfellow et al. (2020).

min maz V(D,G) = xNEI'Ddam [log(D(x))] +
£, ltog(1 = D(G))] 1

where, V(D, G) represents objective function, D(x) is the probability that D discriminates
x as real data, G(z) denotes sample generated by the generator, and D(G(z)) represents the
probability that D identifies as the sample formed by generator G(z). A number of GAN
variants emerged after the pioneering work, such as the Conditional Generative Adversarial
Net (Mirza and Osindero 2014), Auxiliary Classifier GAN (Odena et al. 2017), while with
further enhancement in training performance introduced by Arjovsky et al. (2017) and (Gul-
rajani et al. 2017).

5.1.10 Hot/Cold

In Rozsa et al. (2016), authors investigated Hot/Cold method to discover several adversarial
examples for every single image. Their idea was to permit small translations and rotations
if they are imperceptible. The judge the identifiable similarity to humans, a new metric,
“Psychometric Perceptual Adversarial Similarity Score” was defined. The proposed Hot/
Cold method was designed to ignore the unnoticeable difference based on pixels and to use
PASS instead of commonly used /,, distance. A two-step procedure adopted by PASS was
to a) align the modified image with the original image; 2) measure the similarity between
the aligned image and the original one. Let ¢(Z, z) be a homography transform from the
adversarial example x to the original example x. H is the tomography matrix, with size
3 x 3, His solved by maximizing the enhanced correlation coefficient between x and x. The
optimization function can be written as

‘ 2 exx) H 16
argHmln‘ &l ||7¢>()_(,X)|| (16)

where [.] represents image normalization.
5.1.11 Universal adversarial attack

The adversarial attacks are usually designed to target specific benign samples. Due to this
case, adversarial perturbations generally do not transfer across benign samples. Investi-
gators in this domain are enthusiastic about discovering a universal perturbation that can
deceive the network across a wide range of benign samples. The study in Moosavi-Dezfooli
et al. (2017) represents an effort to identify the minimum additional perturbation required
to compromise samples. In a further step, the minimum additional perturbation is then aug-
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mented to the current perturbation. Over time, this iterative process identifies a perturbation
that can fool the network on the majority of benign samples.

Several universal adversarial perturbation (UAP) techniques have been proposed, includ-
ing the Vanilla Universal Attack (Moosavi-Dezfooli et al. 2017), SV-UAP (Khrulkov and
Oseledets 2018), F-UAP (Zhang et al. 2020), and the Network for Adversary Generation
(NAG) (Mopuri et al. 2018). These approaches highlight the potential of universal attacks
to broadly compromise network robustness.

5.1.12 Adversarial patch

Adversarial patches are perturbations in a specific region of the benign samples. Precisely
crafted adversarial patches can easily deceive a deep-learning model. In this domain, Sharif
etal. (2016) revealed that cutting-edge face recognition systems can be deceived by forming
some accessories, e.g., eyeglass frames. Work in Parkhi et al. (2015) extended the investiga-
tion in this context by demonstrating the venerability of commonly employed adversarial
loss, e.g., cross-entropy in the case where a locally generated perturbation is employed to
trick the VGG-Face convolutional neural network. In Brown et al. (2017), it was revealed
that a DNN could be fooled by totally replacing a portion of an image with their carefully
crafted patch. In Liu et al. (2021), investigators offered a black-box adversarial patch dubbed
“D-PATCH” capable of simultaneously targeting both the object classification and bound-
ing box regression of models. Authors in Athalye et al. (2018b), showed a general-purpose
algorithm “expectation over transformation (EOT)”, can create robust adversarial examples,
and effectively fabricate three-dimensional adversarial objects. In Liu et al. (2018b), authors
proposed using trojan patches attached to benign samples to generate adversarial examples.
Regarding UAVs remote sensing of images, an adversarial patch attack for multi-scale
objects along with a novel optimization technique was proposed by Zhang et al. (2021).

5.1.13 Ad? Attack

This work in Fu et al. (2022) proposed an attack against UAV object tracking dubbed *“Ad>
Attack”. The attack theme utilizes the image resampling technique instead of crafting adver-
sarial using perturbations. The proposed scheme adaptively attains a complex adversarial
mapping from low-resolution image to higher resolution image by first directly downs-
ampled in order to lose pixel features and, subsequently, resampling of a lower-resolution
image utilizing super-resolution upsampling network to generate adversarial examples and
mislead UAV tracking capability. According to Fu et al. (2022), the proposed method can
successfully deceive advanced siamese trackers, and the approach can assist in exposing the
drawbacks of UAV trackers.

5.1.14 Miscellaneous attacks

This subsection briefly overviews several commonly referenced attacks to save space.
Researchers have investigated several variations of the attack-generating methods such as
Obfuscated-gradient circumvention attacks (Athalye et al. 2018a), Elastic-net attack (Chen
et al. 2018), CPPN EA Fool (Nguyen et al. 2015), and Model-based Ensembling Attack
(Liu et al. 2016b). Additionally, various concerns have been raised regarding the practical
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applications of these attacks, such as the potential for adversarial perturbations to be neutral-
ized by environmental noise and natural transformations, as well as challenges in applying
perturbations to the background of images.

5.2 Countermeasures against adversarial attacks in UAV assisted CAVs

The research concerning practical applications of adversarial attacks on CAVs and their
countermeasures is huge. Various machine learning approaches such as long short-term
memory solutions, bi-LSTM, convolution neural networks, recurrent neural networks, and
deep reinforcement learning techniques are also proposed in the literature to protect UAVs
(Challita et al. 2019). Other futuristic technologies like Blockchain are investigated in Alo-
qaily et al. (2022). Data sharing between UAVs are subject to adversarial attacks, in which
case an attacker can mingle with the swarm and personify a UAV, thus modifying shared
data. Federated learning schemes (Wang et al. 2021; Nie et al. 2021; Do et al. 2021; Song et
al. 2021; Pham et al. 2021; Ng et al. 2021; Brik et al. 2020; Shiri et al. 2020; Ng et al. 2020;
Zhang and Hanzo 2020; Lim et al. 2021b, c) are proposed as countermeasures.

Recent investigations also explored attacks against the federated learning model. For
example, Almutairi and Barnawi (2024) benchmarked Byzantine-robust aggregation meth-
ods against model poisoning attacks in federated learning-enabled CAVs. The investiga-
tors evaluated performance under various data distributions and adversarial scenarios. Their
results challenge existing assumptions about data security and highlight the effectiveness
of client-selection strategies. Federated learning is also vulnerable to Advanced Persistent
Threats (APTs), which are stealthy, prolonged cyberattacks designed to infiltrate systems
and exfiltrate sensitive data. To counter such threats, GK et al. (2025) investigated a Feder-
ated Deep Neural Network (FDNN) with a privacy-preserving technique to detect APTs
in [oT-enabled vehicular networks. The framework is evaluated on three benchmark data-
sets, achieving high detection accuracy while maintaining data privacy. Furthermore, the
interpretability of the model is improved using Shapley Additive Explanations (SHAP),
which quantifies the contribution of each input feature to the prediction of the model, thus
identifying the most influential indicators of APT activity. In the investigation conducted
by Cui et al. (2023a), two novel optimization-based data poisoning attacks are explored,
namely, “black-box” and “clean-label” targeting federated learning in CAVs. Their inves-
tigated attacks use hybrid methods combining particle swarm optimization with simulated
annealing and genetic algorithms. Experiments conducted by them on traffic sign recog-
nition demonstrate significant model degradation from minimal poisoned data, revealing
critical FL vulnerabilities.

The existing defence strategies against adversarial cyber-threats are primarily founded
on two key methods (Moosavi-Dezfooli et al. 2018; Wang et al. 2020b). These are the
proactive approach, where the cyber-physical system is prepped for potential threats and
attacks before they occur, and the reactive approach, where defensive measures are imple-
mented after an attack has taken place. The majority of defence techniques rely on the pro-
active approach to minimize potential damage. A detailed description of these techniques
and their associated research efforts is given below.

e Proactive defences rely on the enhanced robustness of the model during the training
phase, making the model inherently more resistant to adversarial perturbations. These
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techniques can be integrated into the model development process utilizing the follow-
ing methods (Bai et al. 2017; Tramer et al. 2017; Xie et al. 2019; Carlini et al. 2018;
Goodfellow et al. 2015; Kurakin et al. 2016; Kannan et al. 2018; Zheng et al. 2016;
Engstrom et al. 2018).

1. Adversarial training is one of the most widely used proactive defence strategies.
This method involves incorporating adversarial examples directly into the training
dataset, enabling the model to learn from these challenging inputs. By doing so, the
model becomes more adept at identifying and mitigating adversarial attacks during
inference. Various techniques within adversarial training include:

(a) PGD Adversarial Training

(b) Ensemble Adversarial Training
(c) Adversarial Logic Pairing

(d) Generative Adversarial Training

These methods collectively contribute to the model’s ability to generalize better and with-
stand adversarial manipulations.

2. Network distillation method is primarily known for DNN size reduction by trans-
ferring knowledge from a large, complex model (teacher network) to a smaller, sim-
pler model (student network). Apart from this role, this technique can be tailored
to defend against adversarial attacks. Smoother decision boundaries of the distilled
model make it less susceptible to adversarial perturbations. This approach employs
the knowledge transfer process to enhance the model’s ability to resist adversarial
examples (Papernot et al. 2016d; Hinton et al. 2015; Soll et al. 2019; Papernot and
McDaniel 2017).

3. Classifier and model modification defence strategies involve modifying the classi-
fier or model architecture to make it more robust against adversarial attacks. The
methods under this category investigated by researchers in Bradshaw et al. (2017);
Abbasi and Gagné (2017); Alabdulmohsin et al. (2014); Biggio et al. (2010, 2015);
Papernot and McDaniel (2018); Srisakaokul et al. (2018); Lecuyer et al. (2019);
Raghunathan et al. (2018); Wong and Kolter (2018), and are listed below

(a) Creating classifiers specifically designed to be resilient to adversarial inputs.

(b) At inference time, randomly selecting a classifier from a pool of classifiers to
prevent adversaries from predicting the model’s behaviour.

(c) Aggregating outputs from multiple classifiers to improve robustness.

(d) Integrating k-Nearest Neighbors with DNNs to leverage the strengths of both
methods.

(e) Constructing a family of classifiers from the target classifier, with random
selection at test time to increase unpredictability.

(f) Altering the architecture to create provably robust models against certain types
of adversarial attacks.
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4. Model ensemble techniques combine multiple models’ predictions to arrive at a
final decision. This approach is particularly effective in enhancing robustness. Even
if one model is vulnerable to an adversarial attack, the other models in the ensemble
can provide a corrective influence, reducing the overall risk of a successful attack.
By aggregating the strengths of multiple models, the ensemble approach offers a
more resilient defense against adversarial manipulations. Kurakin et al. (2018); Liu
et al. (2018a); Pang et al. (2019).

5. Network regularization techniques aim to improve model robustness by introduc-
ing regularization terms into the training objective function. These regularizers are
designed to penalize large perturbations in the input space, thereby discouraging the
model from making drastic changes in its predictions due to small input variations.
Perturbation-based regularization has been shown to significantly enhance the
robustness of models against adversarial attacks (Yan et al. 2018; Gu and Rigazio
2014; Cisse et al. 2017).

e Reactive defences, in contrast to proactive defences, are deployed during the model’s
inference phase. These techniques focus on detecting and mitigating adversarial attacks
after they have been attempted.

1. Adversarial detection involves using specialized detectors to identify adversarial
examples before they can impact the model’s decision-making process. Zheng
and Hong (2018); Gu et al. (2019) Specialized detectors analyze input features,
check for inconsistencies, and verify feature representations within the model. This
approach also helps trace and identify compromised images. The effectiveness of
adversarial detection lies in accurately distinguishing between benign and adver-
sarial inputs, making it a critical part of a robust defense strategy (Zheng and Hong
2018; Gu et al. 2019; Gao et al. 2019; Chen et al. 2021; Wang et al. 2019).

2. Adversarial transformation techniques are designed to reverse the effects of adver-
sarial perturbations by converting the adversarial examples back into their origi-
nal clean versions (Guo et al. 2017). These methods usually involve preprocessing
steps that filter or modify the input before it is fed into the model. By removing the
adversarial noise, these transformations help to restore the input to a state that the
model can correctly interpret, reducing the risk of incorrect predictions caused by
adversarial attacks (Guo et al. 2017; Samangouei et al. 2018; Jin et al. 2019; Liao et
al. 2018).

5.2.1 ViT and diffusion model-based adversarial purification

In line with our previous discussion, adversarial perturbations can compromise image clas-
sification and object detection systems, jeopardizing the safety and reliability of vehicular
networks. Although Vision Transformers have shown considerable promise in image rec-
ognition tasks due to their attention mechanisms and ability to model spatial relationships,
they remain susceptible to adversarial examples (Sun et al. 2024). Furthermore, current
adversarial defence solutions are designed primarily for traditional CNN-based constructs
and display limited effectiveness when applied to ViT-based models (Wu et al. 2024). Cur-
rent investigations in this domain include the research effort by Sun et al. (2024) in which a

@ Springer



19 Page 46 of 72 M. U. Zia et al.

novel detection method dubbed “ViTGuard” was introduced. This method utilized Masked
Auto-encoders and Vision Transformer features to defend against adversarial attacks,
including patch-based threats, without requiring adversarial training. The approach outper-
forms seven existing methods across multiple datasets and demonstrates robustness against
adaptive attacks. The investigation by Song et al. (2024) enhanced the under-display Cam-
era’s image restoration by introducing a defence framework that combines diffusion-based
adversarial purification with fine-tuning to neutralize adversarial attacks while maintain-
ing image quality. Wu et al. (2024) introduced “CeTaD”, a novel Rapid Plug-in Defender
that fine-tunes normalization layers of pre-trained transformer models to efficiently counter
adversarial perturbations without altering the target model or clean data. CeTaD demon-
strates adaptability to various attacks and scenarios, showcasing effectiveness, transferabil-
ity, and potential for continuous learning.

The diffusion models are known for their robust generative capabilities. There are lim-
ited research efforts in this domain; however, investigations have demonstrated effective-
ness in mitigating noise and perturbations in image restoration tasks (Nie et al. 2022). This
capability aligns well with the requirements for adversarial purification, where the goal is
to neutralize adversarial perturbations while preserving image quality. In Nie et al. (2022),
proposed “DiffPure”, a novel adversarial purification method utilizing diffusion models
to remove adversarial perturbations and recover clean images through a reverse genera-
tive process. Their approach achieves state-of-the-art performance, outperforming existing
adversarial training and purification methods across multiple datasets and architectures.

As diffusion models operate by iteratively refining an image through a denoising process,
their iterative nature can provide the following advantages.

e Adversarial perturbations can be considered as high-frequency noise embedded in the
image. Diffusion models, by their design, iteratively reverse noise processes, offering a
natural mechanism for purifying adversarial perturbations.

e Unlike conventional denoising methods, diffusion models preserve the semantic integ-
rity of images while removing adversarial noise, making them ideal for applications
requiring high-accuracy image recognition.

e The iterative nature of diffusion models enables them to adapt to a wide range of adver-
sarial attacks, including both global and localized (patch-based) perturbations.

While diffusion models have been explored in image restoration, their integration with ViTs
for adversarial purification is uncharted territory. Building on insights from previous work
on vision transformers (ViTs) and diffusion models, a hybrid ViT diffusion-based purifica-
tion method can be effectively integrated into UAV-supported vehicular networks for robust
image defence. The novel framework proposed here is composed of a dual-stage process:

e Stage 1: Diffusion-based purification to neutralize adversarial perturbations at the pixel
level.

e Stage 2: Attention-aware refinement using ViT attention maps to ensure no semantic
distortions remain after purification.

The method can be specifically tailored for UAV-supported vehicular networks, where
adversarial perturbations can significantly impact navigation and situational awareness.
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The lightweight and modular nature of diffusion models makes them suitable for real-time
deployment in resource-constrained UAV systems. Furthermore, Diffusion models, com-
bined with adversarial training or fine-tuning, can be iteratively updated to counter adaptive
attacks. This dynamic capability aligns with the evolving threat landscape in adversarial
machine learning. By employing diffusion models for adversarial purification, the proposed
method not only enhances the robustness of UAV-supported vehicular networks but also
establishes a novel integration of generative modelling with ViTs for adversarial defence.

5.3 Critical analysis of adversarial attacks

The rise of adversarial attacks on CAVs is becoming a big issue in the cybersecurity domain.
It is crucial to thoroughly examine these attacks in order to safeguard CAVs and to properly
train deep learning modules to recognize and counteract such threats. This analysis is vital
for preventing potential damage to CAV systems. Qayyum et al. (2020). The continuous
evolution of CAVs leads to the emergence of new vulnerabilities, making it challenging
to ensure foolproof security (Girdhar et al. 2023). Researchers are continuously striving to
develop comprehensive frameworks to counter potential attacks. Here, we critically analyze
adversarial threats and state-of-the-art defense mechanisms.

Firstly, we consider the attacks based on the perturbation generation method that directly
generates adversarial examples by adding the sign of the loss gradient with respect to each
pixel in original images, such as FGSM (Goodfellow et al. 2015), BIM (Kurakin et al.
2017), MI-FGSM (Dong et al. 2018). The success of these attacks depends upon the adver-
sarial knowledge (white or gray box) and the loopholes present in adversarial defense strate-
gies. The work in Deng et al. (2020) concluded that these attacks are moderately potent and
thus require a compound defense.

Concerning the second class of attacks, the adversarial example can be formulated as an
optimization problem such as DAA (Zheng et al. 2020), C &W (Carlini and Wagner 2017).
As discussed earlier, C &W attack attacks have not only evaded the DNN classifiers but
also evaded the defensive distillation successfully. The C &W (Carlini and Wagner 2017)
and DeepFool (Moosavi-Dezfooli et al. 2016) attacks rely on the attributes of classification
models and hence are more deadly in crafting a targeted attack against a particular model.
Lastly, the methods harnessing the power of generative models such as Generative Adver-
sarial Network (Xiao et al. 2018) to create adversarial examples also pose a serious threat.
These generative adversarial network variants are formidable due to their capacity to gener-
ate subtle, realistic perturbations that can deceive machine learning models in CAVs. These
methods often require more computational resources and time to execute but can yield more
convincing and resilient adversarial examples.

It’s important to consider the level of sophistication of adversarial attacks. Studies have
shown that even minor changes to input data, such as adding imperceptible alterations
to images or modifying road signs, can trick the perception systems of CAVs. Defend-
ing against these attacks is challenging and often involves developing robust perception
algorithms to detect and minimize the impact of such deceptive examples. Techniques like
adversarial training, anomaly detection, and sensor fusion are crucial for enhancing the
resilience of these systems. Although adversarial attacks on autonomous vehicles have been
demonstrated in research environments, there have been no significant real-world incidents
reported to date. However, the research community is aware of the importance of actively
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addressing this vulnerability and is exploring all possible measures to counter adversarial
alterations (Tian et al. 2022b; Qayyum et al. 2020; Girdhar et al. 2023; Sharma et al. 2019).
In this study, we have identified key methodologies of crafting adversarial perturbations,
recognizing their equally potent nature concerning UAV-assisted CAV networks. Here, we
summarize the lesson learned from this comprehensive state-of-the-art review.

1. No single “one-size-fits-all” defense technique can completely eliminate adversarial
attacks in connected vehicles. Adversarial attacks are a complex and evolving threat,
and effective defense often requires a combination of defense techniques.

2. White-box attacks are significantly more impactful than black-box attacks; this fact
highlights the significance of safeguarding model particulars (such as model architec-
ture and hyperparameters) through model obfuscation.

3. If computational resources allow, opting for driving models possessing intricate archi-
tectures is preferable, as they exhibit greater resilience against adversarial attacks com-
pared to simpler models.

4. In contrast to the method of random testing, employing worst-case analysis has emerged
as a potent technique to differentiate between a system that might fail once in a billion
trials and a system that boasts flawless reliability. When an adversary aiming to induce
deliberate malfunctions within a system cannot succeed, it bolsters the assurance that
the system will uphold its proper functioning even in the face of unanticipated variables.

5. To foster the progress of robust machine learning techniques, comprehending the rea-
sons behind the failures of ML algorithms within specific contexts holds paramount
importance.

6. The assessment of adversarial robustness should encompass both targeted and untar-
geted attacks. In any scenario, it is crucial to clearly indicate the types of attacks taken
into account during the evaluation process. While theoretically, an untargeted attack
is deemed inherently less challenging than a targeted attack, in practice, executing an
untargeted attack could yield more favorable outcomes than attempting to target mul-
tiple classes.

7. Conducting ablation analysis involves systematically eliminating a set of defense com-
ponents and confirming whether the attack prevails against a comparable yet unpro-
tected model. This practice proves highly valuable, as it aids in a straightforward
understanding of the goals and gauging the efficacy of combining multiple defense
strategies.

8. The assessment should be carried out across a spectrum of scenarios, encompassing
testing against random noise, validating against more comprehensive threat models,
and carefully evaluating the attack hyperparameters to determine the optimal settings
yielding maximum robustness.

9. To ensure the effectiveness of a defense strategy, it is crucial to evaluate the proposed
method in broader contexts. Important vectors regarding this are given below.

Evaluating the defense across multiple databases.

Create adversarial examples by ensembling over the randomness.

Check the transferability of the defense to other models

Establish robustness bounds by testing the model against all types of attacks.
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e Implementing the input processing mechanisms offered by researchers to filter out
adversarial perturbations.
e Regularly updating the defense model to counter new attacks.

It is vital for researchers, industry experts, and regulatory bodies to collaborate in order
to establish best practices, standards, and regulations that can effectively reduce the risks
associated with adversarial attacks.

6 Challenges and trends

Various deep-learning designs applied to CAV sensors are already discussed in previous
sections. The massive amount of literature indicates significant interest in the research of
such systems. However, these systems are still far from ready for widespread commercial
deployment due to certain challenges. This section will discuss how the research commu-
nity works to solve these issues.

6.1 Challenges in DL-assisted CAVs and UAVs

1. CAV’s modular design dependency:
The modular Al-aided CAV system consists of a series of Al black boxes that aid in
a certain problem, and the solution of one problem is the input to another one, thus
forming a multilevel decision-making system (Furda and Vlacic 2011). Researchers
have noted significantly good performance in certain parts. However, the dependency
of individual parts on the overall performance of a CAV system calls for joint optimiza-
tion, which is very challenging.

2. Adaptability in CAVs:
In Muhammad et al. (2021); Gupta et al. (2018), researchers suggest that the adapt-
ability of a designed Al system is a big challenge. The mainstream Al techniques for
CAV trained on data collected in a certain environment (weather conditions, surround-
ing objects, and vehicles in urban and rural environments) are found unreliable in
cross-environments.

3. Gigantic data in CAVs:
The massive variations in vehicle type, road structure, and objects worldwide demand
a considerable amount of data that should be collected worldwide for high accuracy in
vehicle, and object detection (Mahmood et al. 2018; Kumari et al. 2017). Currently,
no such data is available, which poses a key hurdle in generic Al-aided system design.
Adding to this complexity, the data taken from different environments gets multiplied
by the number of available sensors. Researchers have shown that it is infeasible for an
Al system to process all captured data as it has immense redundancies, and thus data
prioritization mechanisms are needed (Muhammad et al. 2019; Hussain et al. 2020).

4. Adversarial resilience ML:
Although, the high caliber of DL techniques in scene perception and object identifica-
tion is an edge, however, these algorithms are also vulnerable to well-crafted adversar-
ial attacks as discussed in Section V. These carefully crafted adversarial perturbations
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can cause havoc in UAV-assisted CAV systems by attacking either CAV or UAV sen-
sors. The imminent threat of adversarial perturbations demands novel deep-learning
approaches that are robust against these attacks. Till now, the defense strategies con-
cerning ML attacks are focused on implementing novel attacks and better training of
ML models against those attacks, whereas comparatively limited attention was devoted
to defensive frameworks as well as more robust ML models. In a study by Giirel et al.
(2021), the investigators explored a comprehensive defence strategy to reduce the sus-
ceptibility of ML/DL models to adversarial attacks. Additionally, the distributed storage
of CAV sensor data pose security vulnerabilities that need to be addressed. Authors of
Giirel et al. (2021) emphasised that robust security mechanisms for training and testing
data should be ensured, as connected vehicles’ control and decision-making processes
rely on accurate and error-free datasets. The standardisation of defence techniques for
safeguarding UAV-assisted CAV systems is imperative to guarantee the safety of pas-
sengers and pedestrians.

5. Safety concerns in DL-assisted CAVs:
The automotive safety standards have not fully evolved to address the challenges of
deep learning safety, such as verification and performance limitations. The issue with
deep learning methods is their optimization for average cost function, and they do not
guarantee safety for all cases. There is a need to develop strategies to keep the vehicle
on the road safely at the time of partial or full-scale vehicle malfunction. Moreover,
safety margins are needed to be clearly defined, i.e., the difference between the model’s
performance on the training set and operational performance in the real world (Mohseni
et al. 2019). The performance of a deep learning module should be investigated in rare
and unseen situations dubbed “corner cases” in literature.

6. CAV’s conceptual model for Accountability:
One of the challenges in dealing with DL-aided systems is that while using such neural
networks, it is tough for humans to understand the rules learned by simply examining
their weights. Researchers are working day and night to investigate different ways to
visualize and understand the logic and decision provided by Al models in scenarios
where such decisions ultimately impact humans’ safety (Arrieta et al. 2020). Authors in
Adadi and Berrada (2018) proposed the eXplainable Al (XAI) technique, which reveals
the internals and knowledge learned by DL models and assists in tracking and post-mor-
tem analysis of wrong decisions, thus providing accountability and a means for model
refinement. More efforts in this domain can be found in Samek et al. (2017); Montavon
etal. (2018).

7. CAV’s human—machine control divide:
Currently, there are no guidelines or hard and fast rules regarding
a) How will the human driver respond to various system alerts, and how much should he/
she trust DL-assisted system warnings compared to his visual analysis and experience?
b) In what scenarios a human driver should prefer having control in his hand instead of
a DL-assisted system?
¢) What type of alerts can indicate the driver to assume control of the vehicle, and how
much control can be shared in specific scenarios?
All these questions are challenging and are currently being investigated by the research
community.

8. Crash rescue system for CAVs:
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10.

11.

12.

Considering the possibility of Al-assisted CAV being involved in traffic accidents due
to unanticipated vehicle malfunction, a cash rescue system is necessary, especially in
sparsely populated areas or in the case of a sole driver in a CAV who is unable to call
for help. Researchers are investigating deep learning-aided systems that can detect such
scenarios and send a distress message to the proper authorities promptly (Chang et al.
2019b; Rahim and Hassan 2021; Wang et al. 2020a).

UAV’s model uncertainty:

Several challenges arise concerning the employment of DL techniques in UAVs, start-
ing with their intellectual understanding. The troubleshooting and update of a system
according to needs and changing environment constitutes a significant part of system
design and analysis (Khan and Al-Mulla 2019). Regarding this essential demand, the
lack of knowledge about the relation between the neural network optimized weights,
and system dynamics and unawareness of the reasons behind specific architectures out-
performing others pose big challenges (Osco et al. 2021).

UAV’s data dimensions and labels:

Nowadays, collecting unlabeled data is feasible and technologically easy compared
to labeled data. Success in acquiring such databases leads to the massive use of unsu-
pervised learning algorithms. Unsupervised Learning mimics human behavior to learn
the systems by simply observing them. In addition, the practical scenarios commonly
involve high-dimensional state spaces (possible actions) that severely diminish the trac-
tability with modern techniques (Zeggada et al. 2017).

The acquisition of UAV data using comprehensive measurements in diverse areas, such
as rural, urban, and areas having high mobility or loaded with sky-skippers, to test
the accuracy of the DL algorithms is minuscule. These DL algorithms’ performance is
highly volatile in scenarios with actively changing environments, which complicates
the realization of the UAV-assisted CAV system.

UAV’s DL resources:

The feature extraction constitutes the core application of a DL-aided UAV system due
to its gifted capability to learn and interpret raw sensor data. In contrast to feature
extraction, the DL-aided UAV supervision/planning system that translates the learned
features to implement different functions is far more complex. Despite having an edge
of being straightforward, the feature extraction systems still require high computational
resources (Carrio et al. 2017). The UAV’s limited resources make it challenging to
integrate all resources needed for an autonomous online UAV that acts according to
changing situations and environments.

Even with advances in energy-efficient hardware, the high-end communication and
computational resources requirements pose the significant challenge of developing
energy-efficient low computation demanding deep learning architectures to researchers
(Carrio et al. 2017).

CAV-UAV testing platforms:

Like CARLA for testing the performance of CAV’s DL designs, a comprehensive soft-
ware testing platform is essential to validate and ensure the reliability of deep learning-
supported connected vehicles that work in conjunction with UAVs. Currently, there
are no such platforms that can perform a rigorous assessment of enhanced perception
capabilities after integrating DL-enabled CAVs and UAVs’ sensor data. Additionally,
by providing a controlled environment to test and fine-tune DL algorithms, the platform
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helps optimize the performance and safety of integrated CAV-UAV systems before
deployment in real-world scenarios.
13. DL-aided UAVs in cross environments:

The DL-aided UAV’s performance trained on sensor data in static weather is still oblivi-
ous in diverse weather conditions. The design of a deep learning UAV system that
works with robustness and reliability in all cross-weather environments and counter
uncertainty and data deficiency pose a serious challenge to machine learning experts
(Azar et al. 2021).

6.2 Emerging trends and future directions

This subsection will discuss directions that academia and industry should follow for the
deployment of up-and-running UAV-assisted CAV system.

1. Online learning:
Researchers are trying to tackle the problem of varying environments with online learn-
ing (also known as incremental or out-of-core learning) strategy that updates the model
with new data. Investigators have recently applied online learning strategies in many
domains, such as surveillance, where the deep model iteratively fine-tunes itself. Sto-
chastic Online Learning (Cui et al. 2019) and Deep Online Learning via meta-learning
(Nagabandi et al. 2018) are new trends in this domain.

2. Edge computing:
The traditional deep learning training process is performed on devices with high com-
putational capabilities, and then the trained models are applied on the edge devices. This
scheme is not efficient concerning its future deployment using the Deep Online Learn-
ing construct, where there is a need for updating the knowledge captured by the model.
Edge Computing can contribute to this scenario as proposed by Liu et al. (2019a).

3. Federated learning:
Federated learning framework has been recently proposed as an effective tool to reduce
the transmission overhead while achieving privacy by transmitting only model updates
of the learnable parameters rather than the complete dataset. Several researchers, such
as Zeng et al. (2022); Pokhrel and Choi (2020); Savazzi et al. (2021); Du et al. (2020b)
are investigating significant challenges in its implementation from the machine learning
and communication perspective.

4. Energy efficiency:
Several investigations showed that CNN have obtained unprecedented success in vari-
ous object detection tasks associated with CAVs, however, their immense memory and
computational requirements diminish their usefulness (Muhammad et al. 2021). Thus,
energy-friendly and efficient CNN models are under investigation to improve the driv-
ing safety of CAVs.

5. Industrial standardization:
The lack of large-scale industrialization standards is a critical hurdle in developing a
universally accepted CAV system. Several companies like Google and NVIDIA are
investing massive resources in building powerful Al-based self-driving cars, neglecting
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the integration and generalization of the CAV system. Many researchers are pointing
towards this gap that could be a big issue when integration is needed in the future.

6. Benchmark dataset:
Many researchers are focusing on the need for a universal benchmark dataset. Although
the availability of several publicly accessible datasets such as MS-COCO, KITTI, VOC
07, and VOC 12 aid in evaluating different aspects of CAV systems. However, for stan-
dardization and evaluation of the overall performance of CAV systems, the need for a
universal benchmark dataset is eminent.

7. Fully autonomous UAVs:
UAV’s autonomous working with least or best possible no human guidance is currently
an essential research domain that will likely remain hot in the near future (Lee et al.
2021). The fully autonomous UAV research encompasses environmental perception,
decision-making, navigation, control, data transfer, and UAV’s emergency response
(Bithas et al. 2019; Azar et al. 2021; Lee et al. 2021). Indeed, we will observe the prog-
ress concerning energy-efficient deep learning designs for these tasks in the forthcom-
ing years.

8. Quantum neural networks:
In general the complexity of bit-based conventional neural networks increases with
the increase of hidden layers and neurons, quantum neural networks (QNN) can
be employed due to their higher performance and low complexity for 6 G cell-free
MIMO networks to optimize their performance (Narottama and Duong 2022). QNN
has recently been proposed for optimal resource allocation in future wireless systems
(Narottama and Shin 2022). Designing quantum gates, the required number of Qubits
and integration of the quantum processing unit in the UAV-CAV network could be a
challenging problem. Qubits are used to speed up the process in the network. It is also
reliable and more accurate. The addition of a quantum module in the vehicular net-
work needs the training to make QNN self-capable when handling large datasets with
enhanced prediction accuracy in less time.

9. Emerging technologies:
Some of the emerging technologies from which UAV-CAV network can benefit are
6 G-V2X, quantum computing-assisted V2X, satellite-assisted V2X, hybrid radio fre-
quency-visible light communication, and intelligent reflecting surfaces-assisted V2X.
To attain enhanced cybersecurity and data privacy, blockchain-assisted V2X and quan-
tum federated learning (QFL) (Chehimi and Saad 2022; Huang et al. 2022) are cur-
rently under investigation by academia on a massive scale (Noor-A-Rahim et al. 2022).

7 Conclusion

In this paper, we have thoroughly investigated the emergence of next-generation CAVs
assisted by UAVs in the context of artificial intelligence. We have pinpointed the challenges
faced by CAVs that UAVs can address, leveraging the aerial perspective for traffic analysis
and pattern recognition. We delved into deep learning constructs in connected vehicles,
offering a detailed overview of modular and end-to-end DL approaches, followed by a criti-
cal assessment of their advantages and disadvantages. Notably, end-to-end models have
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demonstrated promising outcomes in driving simulators like CARLA, with the potential
for real-world application being a subject of keen interest. We also explored Vision Trans-
formers and LLM-based designs. LLM-based approaches have demonstrated their utility in
interpreting complex instructions, enabling more nuanced human-vehicle interactions and,
enhancing system autonomy.

In addition to exploring the DL designs adopted by UAVs utilizing sensors such as cam-
eras, RADAR, and LiDAR, we scrutinized DL architectures employed by UAVs for object
detection in vehicular networks. In the realm of UAV-supported detection of autonomous
vehicles, the choice between single-stage and two-stage designs remains pivotal. Single-
stage approaches, such as YOLO and SSD, emphasize real-time processing crucial for
dynamic road scenarios, while two-stage methods like Faster R-CNN prioritize accuracy
for precise localization and vehicle recognition. The trade-off between speed, accuracy,
and computational efficiency must be tailored to autonomy requirements. Furthermore, in
examining DL-associated cybersecurity threats in CAVs and UAVs, we analyzed adver-
sarial attack strategies and their corresponding countermeasures, underscoring the severity
of these threats and the necessity of a holistic and resilient defense strategy.

The paper concludes with a discussion of open challenges and future research directions.
Traditional DL models are insufficient for the evolving demands of CAV-UAV ecosystems.
Therefore, we recommend adopting online or incremental learning methods that enable
real-time adaptation to changing environments. Meta-learning strategies should be pursued
for continual model refinement across diverse conditions. Federated learning emerges as a
critical avenue to reduce data transmission overhead and enhance privacy by exchanging
model parameters instead of raw data. Moreover, promoting the development of unified
industry-wide standards is essential to ensure the interoperability and scalability of CAV
systems. For UAVs, there is a pressing need to research and develop systems capable of full
autonomy with minimal human oversight especially in navigation, perception, and emer-
gency handling. There is a pressing need for a universal benchmark dataset that helps in
standardized evaluation of the overall performance of CAV systems.

Finally, we emphasize that no singular or universal defense mechanism can fully mitigate
adversarial attacks within connected vehicle environments. Given the dynamic and multi-
faceted nature of these threats, robust security demands an adaptive, multi-layered strategy.
This comprehensive survey thus provides valuable insights into cutting-edge Al practices
and technological trajectories in UAV-assisted CAV networks, offering a foundation for both
future academic research and industrial innovation.
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