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Abstract
The tremendous advancements in artificial intelligence (AI) techniques, particularly those 
pertinent to computer vision and image recognition, are revolutionizing the automotive 
industry towards the development of intelligent transportation systems for smart cities. In-
tegrating AI techniques into connected autonomous vehicles (CAVs) and unmanned aerial 
vehicles (UAVs) and their data fusion, enables a new paradigm that allows for unparal-
leled real-time awareness of the surrounding environment. The potential of emerging wire-
less technologies can be fully exploited by establishing communication and cooperation 
among AI-augmented CAVs and UAVs. However, configuring appropriate deep learning 
(DL) models for connected vehicles is a complex task. Any errors can result in severe con-
sequences, including loss of vehicles, infrastructure, and human lives. These systems are 
also susceptible to cyber attacks, necessitating a thorough and timely threat analysis and 
countermeasures to prevent catastrophic events. Our findings highlight the effectiveness 
of AI-driven data fusion in enhancing cooperative perception between CAVs and UAVs, 
identify security vulnerabilities in DL-based systems, and demonstrate how V2X-enabled 
UAVs can significantly improve situational awareness in corner cases.

Keywords  Deep learning · Artificial intelligence · Connected and autonomous vehicles · 
Unmanned aerial vehicles · Cybersecurity

1  Introduction

The last decade has seen immense progress in making the dream of connected and autono-
mous vehicles (CAVs) a reality. Deep learning (DL) is undoubtedly the primary technology 
behind many breakthroughs in image recognition, and robotics (Bonsignorio et al. 2020). 
The success of DL techniques in the mentioned fields has led to widespread deployment 
of this technology with the aim of passenger safety, elimination of roadside accidents, and 
optimal path planning in self-driving cars (Grigorescu et al. 2020; Kuutti et al. 2020; Rao 
and Frtunikj 2018; Ni et al. 2020). The automotive industry has started testing CAVs on 
“controlled” roads with different capabilities termed “scales” graded from zero to five. The 
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lower scales feature basic driver assistance, while higher scales indicate a vehicle that needs 
no human intervention in driving (Yurtsever et al. 2020). A complete CAV system combines 
technologies, sensors, algorithms, and communication infrastructure. The involvement of 
DL blocks in a CAV system also depends on its scale. A fully automated car operating on 
scale five may have a distinct DL module attached to its key decision and control systems.

To complement CAVs in challenges like surveillance, acquiring aerial data, and com-
bating emergencies, a promising solution is to adopt unmanned aerial vehicles (UAVs) 
(Hildmann and Kovacs 2019; Amer et al. 2020; Moukahal et al. 2020; Guillen-Perez and 
Cano 2018). A UAV is an unmanned autonomous or semi-autonomous machine that can 
be controlled remotely and allows us to monitor activities at different locations. UAVs can 
play a vital role in assisting a CAV’s network in conjunction with Vehicle-to-Everything 
(V2X) communication technology and other advanced network technologies, such as soft-
ware-defined networking, network function virtualization, mobile edge computing (MEC), 
and fog computing (Mishra and Natalizio 2020). Recently, UAVs’ applications in the com-
munications domain, along with their challenges and open problems, are investigated in 
Mozaffari et al. (2019). Due to UAV’s versatile nature, automation, and low cost, it enjoys 
widespread use in civilian applications like surveillance, disaster rescue, parcel delivery, 
power line inspection, agriculture support, and mobile sensing platforms (Giordan et al. 
2020; Menouar et al. 2017a). Integrating UAVs in CAV networks unveils many benefits 
and new use cases. Figure 1 depicts a typical scenario of a composite UAV-assisted CAV 
network, illustrating the various entities involved and their corresponding communication 
link types, thereby providing a clear and comprehensive representation of the considered 
operational environment. Besides surveillance and aerial information exchange, a UAV can 
take the roles of flying or emergency roadside unit (RSU), base station, or reconfigurable 
intelligent surface (RIS) (Hildmann and Kovacs 2019; Menouar et al. 2017a). These use 
cases can be extremely helpful in hardware malfunctions and disaster situations like fire or 
earthquake, thus guaranteeing an operational CAV system at all times.

Fig. 1  A pictorial view of UAV-assisted CAVs in a vehicular network
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1.1  Research motivation

The motivation for this review stems from a gap identified in the existing literature regard-
ing DL-assisted CAVs and UAVs. Previous surveys, as referenced in Table 1, have focused 
on aspects specific to either CAVs or UAVs, failing to provide an integrated view of how 
the unique capabilities of UAVs, particularly their aerial view (that presents a holistic view 
of traffic conditions), can address significant challenges in the deployment of the connected 
vehicular system. Numerous issues, such as handling corner cases, computer vision errors, 
adapting to diverse driving conditions, accurately predicting human behaviour and legal, 
ethical, and regulatory obstacles still need to be addressed for the real-world deployment 
of CAVs.

To this end, the key contributions of this article are highlighted as follows: 

1.	 We provide a comprehensive system-level overview of UAVs-assisted CAV network 
architecture, integration efforts, CAV-UAV data fusion, CAVs and UAVs DL designs, 
along with highlighting the potential use cases of integrating UAVs with CAVs.

2.	 We compare two state-of-the-art deep learning frameworks applicable to CAVs, namely, 
the pipeline-based modular approach and the single block processing approach, also 
known as “End-to-End (E2E)” learning. Furthermore, we discuss the role of the latest 
Large Language Models (LLM) based DL designs in CAVs and UAVs, critically ana-
lyzing the strengths and limitations of these models.

3.	 We analyze the domains where deep learning can assist UAVs in enhancing their per-
ception, path planning, navigation, and control. We also explore the state-of-the-art 
DL designs that enable UAVs to detect entities of vehicular networks and discuss their 
limitations.

Table 1  Literature comparison
Detailed research 
analysis

UAV-CAV 
Networking

Deep 
learn-
ing in 
CAVs

Deep 
learn-
ing in 
UAVs

Cyberse-
curity in 
CAVs and 
UAVs

Critical 
analysis

Challenges Trends 
and 
future 
directions

Oubbati et al. 
(2021)

✓ × ✓ × × × ×

Shin et al. (2022) ✓ ✓ ✓ × × ✓ ×
Shi et al. (2018) ✓ × × × × ✓ ✓
Bouguettaya et 
al. (2021)

✓ ✓ ✓ × × ✓ ✓

Hu et al. (2021) ✓ ✓ ✓ × × ✓ ✓
Telikani et al. 
(2024)

× ✓ ✓ × × ✓ ✓

Biswas et al. 
(2022)

✓ × × ✓ × ✓ ✓

Abir et al. (2023) ✓ ✓ × × × ✓ ✓
Ahmad et al. 
(2024)

× ✓ × ✓ × ✓ ×

Telikani et al. 
(2025)

✓ × ✓ × ✓ ✓ ✓

Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓
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4.	 We conduct a comprehensive review of AI-based cyberattacks of various types that can 
affect CAVs and UAVs. We also conduct a critical analysis of AI-based attacks, identi-
fying the severity of each type. Furthermore, we explore the deep learning techniques 
that can be tailored as countermeasures against adversarial attacks.

5.	 We conclude our work by identifying current and prospective future challenges faced 
by UAV-assisted CAVs and propose future directions that can help overcome these 
challenges, leading to a successful deployment of CAVs in smart cities.

To clearly describe the scope of our investigation, the section breakdown of the paper is 
depicted in Fig. 2.

The research landscape on UAV-assisted CAVs has made notable strides, yet several 
critical gaps remain, requiring more focused efforts in the integration and enhancement of 
their coordination and vision capabilities. First, there is a clear need for extensive work on 
the integration of CAV-UAV systems, particularly in the joint testing of their coordination 
and vision capabilities through advanced deep learning constructs. The current literature 
predominantly addresses these domains separately, leaving an unexplored potential for their 
combined functionality in real-world scenarios. Second, the current body of work lacks 
an in-depth exploration of how these constructs can provide a more accurate and holistic 

Fig. 2  Sections breakdown of the paper
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understanding of the CAV environment, essential for enabling reliable self-driving systems. 
At last, there is an urgent need to critically examine the cybersecurity threats that could 
compromise both autonomous driving and UAV-CAV coordination. Specifically, adversarial 
attacks that target the integrity of machine learning models present a significant risk to the 
safety and reliability of these systems. Future studies must address these vulnerabilities by 
proposing robust defense mechanisms that ensure resilience against cyber threats. Table 1 
presents a comprehensive list of literature works on UAV-assisted CAVs, highlighting the 
contributions of each work.

1.2  Research methodology

This study was initiated to establish a foundational understanding of modular and end-to-
end approaches in deep learning-enabled CAVs. The rapid advancement in both approaches 
necessitated a comprehensive review of their pros and cons to answer the crucial question of 
the most promising approach. Through comparative analysis and the identification of corner 
cases, we recognized the importance of incorporating aerial support to address unresolved 
scenarios. Consequently, we presented an integrated system that combines deep learning-
enabled CAVs and UAVs to realize the vision of a successful driving system capable of 
overcoming challenges in diverse scenarios.

The literature selection process adhered to a rigorous and systematic methodology 
designed to ensure comprehensiveness and high relevance. To collate relevant studies, 
we have adopted a two-pronged search strategy. Initially, we combined key terms such 
as “CAVs or ITS”, “Perception”, “Path Planning”, “Motion Control” “Modular Vs End-
to-End” and “Cameras”, “RADAR”, “LiDAR”. Later, we conducted an exhaustive search 
with terminologies such as “Deep Learning in UAVs”, “Deep Learning in CAVs-UAVs 
systems” “UAVs-CAVs integration” “UAV-CAV Sensor Fusion”, “UAV-CAV Cyber-threats 
and Countermeasures”. Finally, terms like ”UAV-CAV Vision Transformers”, “UAVs-CAVs 
LLM-based designs” and “UAV-CAV Challenges, Trends and Future Directions” were uti-
lized to complete this comprehensive review.

A wide array of leading academic databases, including IEEE Xplore, SpringerLink, 
ScienceDirect, ACM Digital Library, and Google Scholar, was utilized to identify peer-
reviewed studies published within the last decade. In addition, to identify industry trends 
and incorporate practical perspectives, we also referred to credible websites and news arti-
cles associated with the automotive and drone industry. Articles meeting inclusion criteria 
focused on experimental validation or theoretical innovations addressing DL-enabled UAV-
CAV systems. The review excluded studies that lacked empirical grounding or DL designs 
unrelated to the vision capability of CAVs and UAVs.

Key insights from the selected literature were synthesized to provide a coherent and 
forward-looking perspective on the field. It also highlights the technical and operational 
challenges of system integration, such as the complexities of real-time sensor fusion and 
the mitigation of adversarial DL attacks, offering a critical analysis of proposed solutions. 
Furthermore, emerging trends like the incorporation of Vision Transformers, Large Lan-
guage Models, and advancements in sensor fusion are explored for their potential to redefine 
UAV-CAV collaborations. By offering a structured and multidimensional perspective, this 
study not only provides a roadmap for addressing current research gaps but also serves as 

1 3

Page 5 of 72     19 



M. U. Zia et al.

a foundational resource for researchers and industry professionals aiming to advance this 
interdisciplinary domain.

2  UAV-assisted vehicular networks

UAV-assisted CAV networks comprise sophisticated systems that integrate advanced sen-
sors, data fusion modules, and AI-driven functionalities. By leveraging aerial perspectives, 
UAVs significantly enhance vehicular networks, particularly in emergency scenarios and 
regions with limited infrastructure (Amponis et al. 2022). Their support enables adaptive 
and dynamic network topologies, thereby improving coverage and reliability for CAVs 
across diverse environments, including urban, rural, and highways. Furthermore, UAVs 
offer high mobility and flexibility, facilitating on-demand connectivity services such as data 
offloading, caching, and relaying. This collaboration not only augments network perfor-
mance and efficiency but also addresses the limitations of traditional cellular networks with 
fixed or constrained resources.

2.1  UAV-assisted CAV network architectures

The architecture of UAV-assisted CAV networks can be categorized based on the role played 
by the drone within the communication network. These roles range from passive elements 
within the CAV system to active relay nodes or dynamic mobile RSUs. Multiple drones 
or swarms can also form independent network layers within the CAV ecosystem. Drones 
can function as regular vehicles in UAV-assisted CAV networks, transmitting cooperative 
awareness messages like other users (Valle et al. 2021). UAVs may also act as relay nodes 
to enhance inter-vehicle communication in V2V networks. By hovering above CAVs and 
observing network topology, UAVs can integrate themselves as relays to improve connec-
tivity. As proposed by Lin et al. (2020), drone deployment can be optimized by predicting 
vehicle distributions, aiding in routing for isolated vehicles, non-line-of-sight communica-
tion, and network load balancing. UAVs can also serve as resource nodes, bridging cover-
age gaps and supporting V2I communication. By repositioning, they can establish reliable 
wireless links with infrastructure (Seliem et al. 2018). In Al-Hilo et al. (2020), a cooperative 
caching-based approach is proposed where UAVs assist RSUs in fetching, carrying, and 
forwarding content without accessing the backhaul. UAVs further enable real-time traffic 
monitoring by covering inaccessible areas without interrupting traffic flow (Zhang et al. 
2023). Additionally, in jamming scenarios, UAV-assisted CAVs can provide direct, unob-
structed communication links between vehicles and drones (Feng and Haykin 2019a). Mul-
tiple drones can also form a coordinated swarm to support critical communication. These 
swarms can act as relays, extending coverage and increasing data transmission rates in infra-
structure-limited areas (Raza et al. 2021). Swarm networks offer flexibility and protocol 
diversity, acting as overlay networks that provide redundancy (Raza et al. 2021). In Jacob 
et al. (2020), intelligent swarm coordination is proposed to assist vehicular networks and 
maintain safe inter-vehicle distances. UAV-enabled CAVs, enhanced with AI, are increas-
ingly contributing to smarter cities. UAV-assisted communication is expected to play a criti-
cal role in optimizing wireless connectivity during high-demand or emergency situations. 
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The block diagram in Fig. 3 illustrates the integration of UAVs with CAV networks and 
highlights their significance in future mobility systems.

2.2  UAV-assisted CAV communications and use cases

Communication between UAV and CAV networks can be established through various 
methods. Authors in Kavas-Torris et al. (2022a) discuss two of the most prominent com-
munication protocols and evaluate them under real-world scenarios: dedicated short-range 
communication (DSRC) and fourth-generation (4 G) cellular communication. In Nazib and 
Moh (2020); Guillen-Perez et al. (2021, 2016), the authors comprehensively classified rout-
ing protocols utilized in UAV-aided vehicular networks. The study in Zanjie et al. (2014) 
explored bandwidth and energy allocation strategies to optimize sensing and data gathering 
in UAV-assisted CAV networks. The primary goal was to maximize the overall data rate 
while ensuring fairness among all connected users. Furthermore, Poudel and Moh (2019) 
reviewed various medium access protocols for UAV-aided networks. Now, we focus on the 
different use cases these communication technologies enable.

2.2.1  Use cases for UAV-assisted CAVs

Integrating UAVs into CAV systems unlocks diverse capabilities and services (Menouar et 
al. 2017b): 

1.	 Safety Message broadcast: UAVs support rapid and reliable broadcasting of safety 
alerts and accident notifications using direct line-of-sight communication (Saputro et 
al. 2018).

2.	 Dynamic Spectrum Provisioning: Drones can augment network capacity by acting as 
mobile RSUs, dynamically allocating additional spectrum.

Fig. 3  UAV’s role in assisting CAVs
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3.	 Traffic Monitoring and Law Enforcement: UAVs provide a 3D vantage point for 
real-time traffic surveillance, facilitating the detection of violations and criminal activi-
ties (Kang et al. 2020).

4.	 Connectivity Enhancement: Acting as relay nodes, UAVs improve network resilience 
by bridging coverage gaps, alleviating congestion, and balancing traffic load (Ahmed et 
al. 2021).

5.	 Secure Communication: UAVs enhance the robustness of V2V links by offering anti-
jamming capabilities, thereby strengthening communication security (Feng and Haykin 
2019b).

6.	 Edge Computing Support: Equipped with onboard compute resources, UAVs can 
function as mobile edge computing (MEC) servers, enabling task offloading from 
resource-constrained vehicles (He et al. 2021).

2.3  Integration of CAVs with UAVs

This subsection highlights key research regarding UAV-CAV integration, focusing on 
communication, optimization, and security aspects. In communication, Kavas-Torris et al. 
(2022b) implemented a V2X system based on a real-world use case, “Quick Clear,” evaluat-
ing four communication protocols: DSRC, User Datagram Protocol, 4 G-based WebSocket, 
and Transmission Control Protocol. Su et al. (2023) investigated UAVs as relays to assist 
ground user equipment when RSUs are unavailable or provide poor coverage, analyzing 
both single- and multi-UAV deployments with user mobility. Similarly, Zou et al. (2022) 
addressed data distribution and offloading by proposing a UAV-assisted method that serves 
both stationary and mobile edge nodes, ensuring low latency and service reliability for 
vehicles. In the domain of optimizing UAV-aided CAV systems, the utilization of UAVs to 
enhance mobile edge computing for vehicles in a platoon was explored by Liu et al. (2022). 
Their model considered UAV-platoon interaction, ground-to-air communication, onboard 
computing, and energy harvesting. Extending this line of work, Liao et al. (2023) introduced 
3D-UAV, an energy-aware deployment strategy designed for complex environments such 
as interchange bridges. Their approach addressed line-of-sight challenges, optimizing UAV 
altitude and vehicle clustering to maximize uplink rates while minimizing UAV usage in the 
Internet of Vehicles (IoV). In security domain Feng and Haykin (2019c) proposed a UAV-
assisted secure communication framework resilient to hybrid attacks involving malicious 
CAVs and UAVs. They introduced a “cognitive dynamic system” utilizing cognitive risk 
control and intelligent jamming resistance. Likewise Khan et al. (2022) tackled secure data 
exchange in complex UAV-CAV hierarchies, presenting “B-UV2X,” a blockchain-based 
modular V2X infrastructure enabling transparent and secure communication in distributed 
vehicle networks. Table 2 summarizes additional integration challenges and considerations. 
Parallel to these research efforts, standardization plays a pivotal role in enabling UAV-
CAV interoperability. Notable standards include IEEE 802.11n (Zhou et al. 2015), IEEE 
802.11ah (Adame et al. 2014), and IEEE 802.11p (Shilin et al. 2016). IEEE 802.11n (Wi-Fi 
4) enhanced data rates, range, and reliability, supporting UAV applications such as video 
streaming and telemetry across the 2.4 and 5 GHz bands. IEEE 802.11ah (Wi-Fi HaLow) 
was developed for low-power, long-range IoT communication, treating UAVs as networked 
“Things.” IEEE 802.11p, designed for vehicular ad-hoc networks (VANETs), operates in the 
5.9 GHz band and supports low-latency communication between vehicles. While primar-
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ily focused on ground vehicles, it is extensible to UAVs serving as communication relays 
within vehicular networks.

The investigation by Kavas-Torris et al. (2022a) focused on the empirical study of hard-
ware implementation and real-life testing of a V2X communication framework between a 
CAV and a UAV. Investigators tried to establish reliable communication links using four 
methods: DSRC, User Datagram Protocol (UDP), 4 G-based WebSocket, and Transmission 
Control Protocol (TCP). The coordinated mission involved transmitting accident location 
data from the CAV to the UAV, which was further relayed to a Contingency Management 
Platform (CMP) and a web server for situational awareness. The study evaluated the per-

Table 2  Prospects of integrating UAVs with CAVs
Integration issues Keypoints Details
Air traffic management 
and collision avoidance 
(Kavas-Torris et al. 
2021)

Communication and 
connectivity
Coordinating airspace
Sensing and perception
Regulatory and legal 
hurdles
Interoperability and 
standards
Safety and reliability

Requires robust communication and coordination 
systems.
Reliable links between UAVs, CAVs, and central 
control are essential.
Altitude, weather, and fusion challenges affect 
detection and response. Collaboration is needed for 
liability, licensing, and airspace management.
Common standards for communication, naviga-
tion, and control are vital. Robust mechanisms are 
needed as faulty UAVs are dangerous.

Energy Efficiency and 
Range (Oubbati et al. 
2019)

Drones are usually battery 
powered

Optimizing energy usage for both platforms is 
complex. Ensuring sufficient range for integration 
of UAVs with CAVs is essential.

Privacy and Security 
(Khan et al. 2022)

Integration raises privacy 
concerns.

Ensuring security in the aerial dimension, consid-
ering the limited processing power of drones is a 
challenge. Securing communication channels is 
paramount as the human transportation is involved.

Infrastructure and Urban 
Planning (Zhu et al. 
2019; Motlagh et al. 
2016)

Variable building heights 
can obstruct drone route

Adapting urban infrastructure for UAVs/CAVs 
requires careful planning.

Collaboration and Test-
ing (Khan et al. 2022)

Diverse UAV & CAV 
makers

Collaboration among stakeholders is essential. 
Comprehensive testing, simulation, and iterative 
development are necessary.

Technical (Khabbaz et 
al. 2019)

Communication
Sensing and Perception
Integration of Control 
Systems

Establishing reliable communication links between 
UAVs and CAVs.
Ensuring UAVs can accurately detect and respond 
to ground-based CAVs.
Coordinating control algorithms for UAVs and 
CAVs to avoid collisions.

Regulatory (Shrestha et 
al. 2021)

Airspace Regulations
Traffic Management

Complying with airspace regulations and obtaining 
necessary permissions. Integrating UAVs into 
existing traffic management systems.

Operational (Xu et al. 
2020)

Scalability Handling a large number of UAV-CAV interactions 
in urban environments.

Public acceptance and 
perception (Cawthorne 
and Juhl 2022)

Fear of spying
Drone noise disturbance

Skepticism due to noise, congestion, and perceived 
risks should be addressed.

Economics of integra-
tion (Motlagh et al. 
2016)

Cost and Scalability Managing costs while ensuring scalable 
technology.
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formance of these communication methods through latency and package drop percentage 
metrics. The experimental results of this study are summarized in the Table 3.

2.4  CAVs data fusion with UAVs

Data fusion in connected vehicles employs diverse methodologies to integrate multi-sen-
sor data, enhancing perception accuracy and decision-making reliability. The overviews in 
Khezaz et al. (2022a); Ounoughi and Yahia (2023); Butt et al. (2022) cover both intra-CAV 
sensor fusion and fusion involving UAVs, although most studies concentrate on the former. 
This section elaborates on key techniques applicable to CAV-UAV data fusion. 

1.	 Probabilistic Methods Probabilistic approaches effectively manage uncertainty and 
improve estimation accuracy, especially in dynamic environments. Following Kalman 
filter variants are widely adopted for real-time applications (Ounoughi and Yahia 2023; 
Montañez et al. 2023): 

(a)	 Extended Kalman Filter (EKF): Linearizes nonlinear models using the current state 
estimate and covariance.

(b)	 Unscented Kalman Filter (UKF): Uses the unscented transform for more accurate 
nonlinear estimation.

(c)	 Sequential Kalman Filter (SKF): Processes data incrementally as it becomes 
available.

(d)	 Federated Kalman Filter (FKF): Aggregates outputs from multiple Kalman filters 
to produce a global estimate.

(e)	 Cubature Kalman Filter (CKF): Applies third-degree spherical-radial cubature 
rules for nonlinear filtering.

 These filters iteratively refine state predictions using incoming sensor data, making them 
vital for real-time vehicular contexts.

2.	 Evidence-Based Methods: The Dempster-Shafer theory provides a robust alternative 
to traditional probabilistic methods by combining uncertain and imprecise information 
(Kusenbach et al. 2020; Cai et al. 2023; Xiang et al. 2023a). It is particularly suitable 
when sensor inputs are incomplete or noisy. 

(a)	 Belief Functions: Represent degrees of belief across hypotheses, capturing impreci-
sion beyond what standard probabilities allow.

(b)	 Combination Rules: Dempster’s Rule of Combination merges evidence from differ-
ent sources via Basic Probability Assignments (BPAs).

Communication Method Package Drop (%)
DSRC 0.36
UDP 1.72
WebSocket 1.56
TCP 10.45

Table 3  Package Drop 
Percentage
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 These features enable more flexible and reliable situational awareness in heterogeneous 
vehicular networks.

3.	 Knowledge-Based Methods: DL methods facilitate high-level feature extraction and 
data fusion from raw sensor streams (Butt et al. 2022; Harun et al. 2022). Traditional 
machine learning algorithms, including support vector machines, random forests, and 
Gaussian mixture models are also used for classification and sensor integration.

	 Advanced DL techniques such as convolutional neural networks (CNNs), recurrent 
neural networks (RNNs), generative adversarial networks (GANs), and federated learn-
ing process large, nonlinear, and heterogeneous sensor data for object detection and pre-
dictive tasks (Wang et al. 2023b). However, their growing complexity and “black-box” 
nature pose challenges in interpretability and trust (Ounoughi and Yahia 2023).

4.	 Statistical Methods: Statistical models interpret and fuse sensor data through proba-
bilistic relationships, enabling robust decision-making under uncertainty (Butt et al. 
2022). 

(a)	 Bayesian Networks: Graphical models that capture conditional dependencies among 
variables to enhance environmental awareness (Lim et al. 2021a).

(b)	 Particle Filters: Use sample-based approximations for non-linear, non-Gaussian 
state estimation (Tekeli et al. 2018).

(c)	 Expectation-Maximization (EM): Iteratively estimates parameters in latent vari-
able models by alternating between expectation and maximization steps (Kim et al. 
2021).

 These methods are valued for accurately modeling uncertainty and interdependencies in 
real-world sensing environments.

5.	 Hybrid Methods: Hybrid approaches integrate multiple data fusion techniques to capi-
talize on their strengths while mitigating individual limitations (Malawade et al. 2022; 
Butt et al. 2022; Yeong et al. 2021). Common combinations include: 

(a)	 Kalman Filter and Deep Learning: Merges real-time uncertainty handling with 
deep neural feature extraction.

(b)	 Bayesian Networks and Dempster-Shafer: Combines probabilistic and evidence-
based reasoning for robust decision-making.

(c)	 Multi-Sensor Fusion Frameworks: Organize fusion hierarchically–using probabi-
listic techniques at low levels and DL or Dempster-Shafer methods, for high-level 
reasoning.

 Hybrid methods provide a flexible, adaptive, and comprehensive framework that signifi-
cantly enhances the robustness and reliability of CAV-UAV systems.

2.4.1  Comparative analysis

Sensor fusion techniques for CAVs and UAVs offer distinct advantages and limitations. 
Probabilistic methods provide reliable state estimation by effectively handling uncertainty 
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but require significant adaptations for highly non-linear or complex data (Ounoughi and 
Yahia 2023; Montañez et al. 2023). In contrast, evidence-based methods, such as Dempster-
Shafer theory, excel in uncertain and incomplete data environments, offering robust situ-
ational awareness through multi-source evidence aggregation, albeit at high computational 
cost (Kusenbach et al. 2020; Xiang et al. 2023a).

Knowledge-based methods leverage deep learning to extract high-level features from 
heterogeneous, non-linear sensor data, enabling advanced perception tasks such as object 
detection and lane recognition. However, their computational intensity and lack of inter-
pretability due to the ”black-box” nature pose a challenge for safety-critical autonomous 
systems (Butt et al. 2022; Harun et al. 2022). Statistical methods, including Bayesian net-
works and particle filters, accurately model uncertainties and are effective in non-Gaussian, 
dynamic environments (Butt et al. 2022; Tekeli et al. 2018). Despite their strengths, these 
methods can be complex and resource-intensive. Hybrid methods integrate probabilistic, 
evidence-based, and deep learning techniques into a unified framework, offering a balanced 
and adaptive solution for data fusion (Malawade et al. 2022; Butt et al. 2022; Yeong et 
al. 2021). While their design and implementation can be complex, they achieve enhanced 
robustness, scalability, and accuracy.

Given the strengths and limitations of individual approaches, hybrid methods emerge as 
the most suitable strategy for CAV-UAV data fusion. Their ability to address diverse and 
dynamic real-world scenarios makes them well-aligned with the requirements of intelligent 
transportation systems.

3  Deep learning in CAVs

In order to respond to the environment, CAVs should be familiar with their surroundings. 
The primary task of environment perception is achieved using various sensing devices such 
as radio detection and ranging (RADAR), light detection and ranging (LiDAR), and cam-
eras. Environmental perception is of paramount importance as it is directly related to the 
safety of the passengers. AI can play a crucial role in developing environment perception 
methods using novel machine learning algorithms. One important application of AI is path 
planning and behavior arbitration to accurately plan car routes and arbitrate different driv-
ing strategies. The information from sensors can be fed to an AI black box using modular 
or End-to-End learning approach as shown in Fig. 4. Once the AI module is trained on a 
certain dataset, it must be tested in different scenarios so that rare situations/corner cases do 
not deceive the model and fatal accidents can be avoided.

In addition to path planning and behavior arbitration, a vehicle is also required to avoid 
collisions, take safe turns, and make overtaking decisions with adherence to traffic laws. In 
this scenario, one important aspect involves interaction with other drivers and their behavior 
in certain conditions. An ideal vehicle tries to preempt the behavior of aggressive drivers 
and take action to keep itself (and others on the road) safe.

3.1  Environment perception

This section will review different deep-learning techniques applied to sensor data for envi-
ronment perception. In connected and autonomous vehicles, perception systems understand 
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the surrounding environment utilizing the input from various sensors, such as camera, 
RADAR, LiDAR, and inertial sensors (Schoettle 2017). These sensors provide information 
regarding the fast-changing environment. The environment perception in CAVs includes 
detection of weather conditions such as fog, snow, and rain as well as a range of fixed (traf-
fic signals and signs, buildings, road markings, etc.) and moving objects (cars, pedestrians, 
bicycles, etc.), in the surrounding along with their distance from the sensors (Yurtsever et 
al. 2020; Hafeez et al. 2020; Wang et al. 2017; Guillen-Perez and Cano 2019). The data pro-
vided by these sensors is utilized for driver assistance and vehicle control. In the detection 
process, a bounding box is drawn around important objects, and multiple bounding boxes 
capture multiple objects to accomplish environmental perception in real-time. Despite tech-
nological advancements, one sensor cannot satisfy all autonomous driving requirements in 
all weather conditions and ranges. Marti et al. (2019). For example, the advanced cameras 
that produce high-resolution 2D images suffer severe deterioration in their performance at 
low or high-intensity light and unclear weather. Similarly, the RADAR works very well in 
bad weather. However, the resolution of RADAR data is not enough for object identifica-
tion (Dickmann et al. 2014). A detailed description regarding environment perception using 
sensors and their fusion is covered in Butt et al. (2022). As perceiving the surrounding 
environment and extracting information is critical for the operation and safety of a CAV 
system, we will review each sensor utilized in CAV along with the employed machine learn-
ing techniques.

3.1.1  Scene perception using cameras

The camera sensors do not transmit any signal and depend upon incoming rays for per-
ceiving the environment. Several types of cameras sense the environment images are uti-
lized in autonomous vehicles, including flash cameras, thermal cameras, and event cameras 
(Maqueda et al. 2018). Machine learning algorithms have achieved remarkable success in 
object detection and image classification and are considered state-of-the-art these days. 
Moreover, image processing using deep learning techniques is vital for detecting unusual 
objects. For example, the authors in Ramos et al. (2017) have presented a framework that 
employs appearance and contextual information to detect small unforeseen obstacles for 

Fig. 4  Deep learning aided CAV system. The modular approach and End-to-End learning approach are 
shown at the top and bottom, respectively
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self-driving cars. These methods can be categorized based on their framework into the fol-
lowing types (Carranza-García et al. 2021; Jiao et al. 2019; Wang et al. 2019). 

1.	 Single-stage detection: The architecture in this category uses a single network to detect 
an object while predicting its class simultaneously.

2.	 Region proposal detection: The architecture in this category utilizes two-stage designs 
where general regions of interest are identified, followed by their class identification by 
another network.

We will now briefly discuss and compare single-stage and regional proposal detection 
methods.

3.1.2  Single stage detection

The single-stage detectors comprise one feed-forward CNN network that produces the 
bounding boxes and classifies the object. Several investigations for one-stage-based object 
detection have been conducted for autonomous driving. The initial work concerning single 
unified architecture was SSD: Single Shot Multi-Box Detector (Liu et al. 2016a) and YOLO 
(You Only Look Once) (Redmon et al. 2016). YOLO offers real-time detection of images; 
moreover, feature extraction using this unified architecture is straightforward, utilizing input 
images to predict bounding boxes and class probabilities. YOLO is good for real-time pro-
cessing and improved accuracy. Moreover, it can be trained end-to-end. With additional 
contextual information, YOLO exhibits fewer false positives in background areas. The 
shortcoming of YOLO includes reduced localization accuracy which is the main source of 
prediction error; moreover, there are only a few close-by objects that YOLO can predict. 
The YOLO design triggered a series of investigations that led to improved single-stage 
detection architectures.

YOLOv2 (Redmon and Farhadi 2017), the second version of YOLO, incorporates sev-
eral design improvements such as batch normalization (BN), convolution with anchor 
boxes, multi-scale training, and addition of fine-tuning process to the classifier neural net-
work. The YOLOv2 achieves 78.6% mAP (mean Average Precision) and 40fps (frame per 
second) in comparison to YOLO with 63.4% mAP and 45fps. A further improved version of 
YOLO2, YOLO3 was presented in Redmon and Farhadi (2018) which incorporates several 
enhancements, including multi-label classification, three different scale feature maps, and a 
deeper and more robust feature extractor. The multi-scale predictions lead to better detec-
tion of small objects at the expense of the detection performance of medium and large-sized 
objects. The work in Bochkovskiy et al. (2020) proposed YOLOv4, which outperforms the 
previous YOLO versions with more accurate results when tested on the MS COCO dataset. 
Multiple other incremental improvements on the YOLO construct are proposed by research-
ers such as YOLOv5 (Mahaur and Mishra 2023) which focused on improved detection of 
small objects along with better performance and speed. YOLOv5 is fully written in PyTorch 
contrary to using any form of the Darknet framework. In this context, another contribution 
(Benjumea et al. 2021) dubbed “YOLO-Z” focused on detection of small objects present in 
vehicular networks with higher speed and accuracy. There are several other detectors like 
SSD513 (Fu et al. 2017), RefineDet (Zhang et al. 2018), RetinaNet (Lin et al. 2017), and 
M2Det512 (Zhao et al. 2019a) with competing performance concerning speed and accuracy.
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3.1.3  Region proposal detection

Region proposal methods provide higher accuracy than single-stage detectors but at expense 
of higher computational complexity. Region Proposal Networks (RPN) use a cumbersome 
two-stage detection framework to train and calibrate classifiers. However, their object rec-
ognition and localization accuracy are higher. The region proposal method is a detection 
process that comprises the region proposals and the classifier. Several object candidates, 
known as Regions of Interest (RoI) are proposed first using reference boxes (anchors) and 
in the next step, these proposals are classified. The pioneering deep learning-based work 
in this context is R-CNN (Girshick et al. 2014). in (Girshick et al. 2014), authors used 
an external selective search to generate proposals fed to a CNN to perform classification 
and bounding box regression. A year later, Girshick (2015) proposed an improved version, 
namely Fast R-CNN. The Fast R-CNN is composed of a fully convolutional neural network 
(CNN) whose inputs are multiple RoIs and an entire image. The proposed network produces 
two output vectors which are softmax probabilities and per-class bounding-box regression 
offsets. Shortly after Fast R-CNN, a further improved version dubbed Faster R-CNN (Ren et 
al. 2015), was proposed. Faster R-CNN consisted of two modules, namely a deep CNN that 
proposes regions and a Fast R-CNN detector that uses the proposed regions. Faster R-CNN 
replaces selective RoI search with a novel region proposal network. The region proposal 
network accelerates the formation of proposals because it contributes full-image convolu-
tional features and a common set of convolutional layers with the detection network. More-
over, this research proposes a novel method in which multi-scale anchors are employed as 
a reference for different-sized object detection. There is no straight answer regarding which 
model is the best, as they have different performances on different datasets and objects. For 
real-world applications, there is a trade-off between accuracy and speed. Table 4 provides 
the performance comparison of different models’ scene perception capabilities.

3.1.4  Vision transformer in CAVs

Vision Transformers (ViTs) are a type of neural network architecture designed for process-
ing images, based on the Transformer model originally developed for natural language pro-
cessing. State-of-the-art vision transformers are revolutionizing critical tasks such as object 
detection, lane detection, and segmentation, and can be integrated with reinforcement learn-
ing for complex pathfinding (Lai-Dang 2024). They excel at processing spatial and temporal 
data, surpassing traditional CNNs and RNNs in functions like scene graph generation and 
tracking. The self-attention mechanism of Transformers offers a deeper understanding of 
dynamic driving environments, which is crucial for the safe navigation of autonomous vehi-
cles. This comprehensive approach makes Transformers particularly effective in enhancing 
the performance and safety of CAV systems (Zhu et al. 2024).

In the domain of transformer-based designs, Deshmukh et al. (2023) addressed the vehi-
cle detection challenge in traffic environments with mixed vehicle types and non-standard 
traffic behaviour. To tackle the shortcomings of conventional CNNs, a new Swin trans-
former-based vehicle detection (STVD) framework is proposed. This framework enhanced 
feature extraction by facilitating thorough information exchange within and between image 
patches while incorporating a bi-directional feature pyramid network (BiFPN). The results 
demonstrated the framework’s superiority, achieving a 91.32 percent accuracy on DTLD, 
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87.4 percent on IITM-here, and 88.45 percent on KITTI datasets, outperforming existing 
methods. Working on similar lines but considering the safety of autonomous vehicles in 
mixed traffic and connected environments, the authors in Ji et al. (2024) focused on inter-
preting the intentions of human-driven vehicles when they change lanes. The authors of 
this investigation presented an innovative method for identifying lane-changing intentions 
by analyzing the driving state and relative motion of the target vehicle and its neighbour-
ing vehicles. This method utilizes various techniques such as short-time Fourier transform, 
Gramian angular summation field, and Gramian angular difference field to convert time-
series data into grayscale images, which are then combined into an information fusion 
image (IFI). These IFIs are then categorized into lane-keeping, lane-changing left, and lane-
changing right using a Vision Transformer model with transfer learning. This approach has 
demonstrated superior performance compared to traditional methods, achieving 95.65 per-
cent accuracy in recognizing lane-changing intentions 3 s prior to the lane change. Ramana 
et al. (2023) focused on predicting urban traffic patterns due to severely deteriorating urban 
conditions such as population growth, congestion, air pollution, fuel consumption, traffic 
violations, noise, accidents, and time loss. The authors proposed a method for accurate traf-
fic prediction using ViTs in combination with CNNs. In this approach, CNNs process traffic 
images to generate feature maps, which are then tokenized and projected by ViTs before 
being analyzed by LSTM. The results demonstrate that this ViT-based method is especially 
effective in predicting traffic flow, even under unusual traffic conditions.

Table 4  Performance of several models on different image datasets
Method FPS 

(M)
AP % Dataset Critical Analysis

YOLOv9 (Wang et al. 2024) N/A 72.8 MS COCO The performance of 
machine learning models 
in object detection varies 
significantly across datasets 
such as MS COCO, KITTI, 
and VOC 07 due to differ-
ences in object types, envi-
ronmental conditions, and 
other dataset-specific char-
acteristics. This inconsis-
tency makes it difficult to 
fairly compare models, as 
a model that excels on one 
dataset may underperform 
on another. To address this 
challenge, there is a need 
for a universal dataset or 
standardized benchmark 
that enables consistent 
and objective evaluation. 
Such a benchmark would 
not only facilitate fair 
comparisons but also drive 
the development of more 
robust models capable of 
performing well across di-
verse real-world scenarios.

YOLOv7 (Wang et al. 2023a) N/A 74.4 MS COCO
YOLO-Z (Benjumea et al. 2021) 30.6 96.5 MS COCO
YOLOv4 (Bochkovskiy et al. 2020) 31 43.0 MS COCO
YOLOv3 (Bochkovskiy et al. 2020) 35 31.0 MS COCO
YOLOv2 (Lin et al. 2017) N/A 21.6 MS COCO
SSD (Bochkovskiy et al. 2020) 22 28.8 MS COCO
RefineDet (Bochkovskiy et al. 2020) 22.3 33.0 MS COCO
RetinaNet (Bochkovskiy et al. 2020) 13.9 32.5 MS COCO
M2det (Bochkovskiy et al. 2020) 33.4 33.5 MS COCO
Faster R-CNN (Bochkovskiy et al. 2020) 9.4 39.8 MS COCO
Fast R-CNN (Jiao et al. 2019) N/A 19.7 MS COCO
YOLOv2 (Chun et al. 2019) 85.5 64.8 KITTI
YOLOv3 (Chun et al. 2019) 43.6 80.5 KITTI
RefineDet (Chun et al. 2019) 27.8 84.4 KITTI
SSD (Chun et al. 2019) 28.9 14.1 KITTI
YOLO (Zhao et al. 2019c) 45 63.4 VOC 07
YOLOv2 (Zhao et al. 2019c) 40 78.6 VOC 07
SSD (Zhao et al. 2019c) 19 76.8 VOC 07
Fast R-CNN (Zhang et al. 2018) 0.5 70 VOC 07
Faster R-CNN (Zhang et al. 2018) 7 73.2 VOC 07
RefineDet (Zhang et al. 2018) 40.3 80.0 VOC 07
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Considering the importance of Bird’s Eye View (BEV) perception and the reliance of 
its accuracy on large data sets, Song et al. (2023) introduced FedBEVT, a federated trans-
former learning approach for BEV perception. They addressed data heterogeneity issues, 
such as diverse sensor poses and varying sensor numbers, by using Federated Learning 
with Camera-Attentive Personalization and Adaptive Multi-Camera Masking. Their method 
outperformed baseline approaches in four typical federated use cases, showing promise for 
enhancing BEV perception in autonomous driving.

To address the “black box” nature and lack of interpretability in deep learning approaches, 
Dong et al. (2021) proposed an explainable end-to-end autonomous driving system using 
a state-of-the-art self-attention-based Transformer. This system maps visual features from 
images collected by onboard cameras to guide driving actions, while providing correspond-
ing explanations. The results show that their model significantly outperforms the benchmark 
model in both action and explanation prediction while reducing computational costs. In Li 
et al. (2022), proposed a lightweight transformer-based end-to-end model with built-in risk 
awareness to reduce the high computational burden in autonomous vehicle decision-making. 
The model utilizes a lightweight network combining depth-wise separable convolution and 
transformer modules for efficient image semantic extraction from trajectory data sequences. 
Driving risk is then assessed using a probabilistic model that accounts for position uncer-
tainty, which is integrated into deep reinforcement learning to identify strategies with mini-
mal expected risk. The method was validated in three lane change scenarios, demonstrating 
its effectiveness and superiority. To enhance driver assistance systems, Gao et al. (2022) 
proposed a novel hybrid deep learning framework called Multi-Modal CNN-Transformer 
(M2-Conformer) for detecting driving behavior using video frames and multivariate vehicle 
signals. The M2-Conformer integrates both Transformer and CNN architectures in parallel 
branches to extract features from driving scenes and vehicle dynamics. It employs dynamic 
token sparsification in the Transformer branch to prune redundant tokens, improving pro-
cessing speed. Additionally, a custom Feature Aggregation Module (FAM) is designed to 
combine high-quality features from different branches. Experiments on a naturalistic driv-
ing dataset show that M2-Conformer offers a superior balance between complexity and 
accuracy compared to other state-of-the-art methods for driving behavior detection. Kang 
et al. (2022) developed ViT-TA, a customized Vision Transformer, to enhance autonomous 
vehicles’ safety by accurately classifying critical traffic accident situations and identifying 
probable causes. ViT-TA outperformed existing methods in detecting critical moments and 
helped systematize the creation of functional scenarios for improvements in CAV safety. 
This framework offers a scalable and reliable approach to generating safety plans for CAVs.

In Islam et al. (2023), investigators proposed a novel ensemble framework integrating 
transformer and conformer models for crash prediction utilizing connected vehicle trajec-
tory data. Their prominent contribution lies in the synergistic combination of the models, 
capitalizing on their complementary strengths to enhance predictive accuracy. Empirical 
evaluations demonstrate promising results, underscoring the potential of this approach 
for proactive safety interventions. In Tian et al. (2023), authors presented a cutting-edge 
approach dubbed “VistaGPT”, leveraging generative parallel transformers. A notable 
research strength was enabling efficient processing of multimodal sensor data. The paper’s 
experimental results demonstrate impressive performance in complex driving scenarios, 
showcasing VistaGPT’s potential for transport automation. While the paper provides a rea-
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sonable basis, further examination is needed to establish the computational efficiency and 
scalability of VistaGPT for real-time autonomous driving.

The investigators in Dalwai et al. (2023) focused on sub-optimal performance of con-
ventional DL designs in dynamic scenes and lighting variations and proposed using Vision 
Transformers’ self-attention mechanisms to capture spatial relationships and contextual 
information in video frames. This solution offered an innovative approach for real-time 
vehicle collision detection in CCTV footage. The results showed that this method improves 
accuracy, with insights into future research directions highlighting the potential impact of 
ViT-based systems.

HM-ViT, a novel hetero-modal vehicle-to-vehicle cooperative perception framework 
leveraging Vision Transformers, is proposed in Xiang et al. (2023b). A key strength of this 
research was its ability to fuse multi-modal data for enhanced perception accuracy effec-
tively. While HM-ViT demonstrated promising results in cooperative perception tasks, its 
applicability and scalability due to reliance on high-quality sensor calibration require fur-
ther investigation.

3.1.5  Scene perception using LiDAR

To ensure secure driving of the CAVs, the investigators in Feng et al. (2018) model the 
uncertainties in vehicle identification and 3D bounding box regression. Moreover, it is also 
shown that the uncertainty model can be applied to enhance tracking and detection accu-
racy. The researchers in Velas et al. (2018) segmented the sparse point cloud into the ground 
and non-ground points using CNN to LiDAR expressed by multi-channel range images. 
The proposed design was shown to significantly improve over the state-of-the-art method 
in terms of speed and minor improvements in terms of accuracy. In Yang et al. (2018), the 
detection of autonomous vehicles by a CNN-based proposal-free single-stage detector in a 
bird’s eye view representation of LiDAR points is suggested. A more complicated neural 
network in which the sparse 3D point cloud was encoded with a short multi-view design 
description is proposed in Chen et al. (2017). In Capellier et al. (2019b), authors proposed 
the processing of LiDAR rings instead of a full LiDAR point cloud for road segmentation 
and mapping. In Milioto et al. (2019) RangeNet was proposed, which utilizes range images 
as an intermediate representation and a CNN utilizing the rotating LiDAR sensor model. In 
contrast, Wu et al. (2018) attained real-time segmentation by using a CNN in-range view of 
LiDAR points.

Instead of splitting point clouds into clusters, an evidential end-to-end deep neural net-
work (DNN) for classifying LiDAR objects is proposed in Capellier et al. (2019a), and 
their suggested design was able to classify the known objects and identify unknown objects 
correctly. The investigators in Asvadi et al. (2017) use point cloud segmentation and seg-
mented obstacles projected onto a dense-depth map followed by bounding boxes fitting to 
the segmented objects as vehicle hypotheses. Lastly, the classification objective is achieved 
using the bounding boxes as inputs to a Deep CNN. The authors in Lu et al. (2019) present a 
new deep learning architecture termed L3 for high localization accuracy using LiDAR. The 
proposed framework learns features by PointNet and utilizes convolutional neural networks 
and RNNs to predict the optimal pose.
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3.1.6  Scene perception using DL-assisted RADAR

RADAR sensors are useful for scene perception in adverse conditions for connected vehicles 
as their performance is not influenced by brilliance. RADARs are active sensors that emit 
radio waves that aid localization and speed estimation when they bounce back from objects. 
The time of arrival of the reflected signal allows range and localization of the objects in the 
environment. In contrast to passive sensors, active sensors are prone to interference from 
other systems. RADAR has been used for centuries, and thus it has the advantage due to its 
reduced weight and cost-effectiveness.

In the context of CAVs, RADARs can be installed inside the vehicle’s side mirrors. 
RADARs can detect an object at a high range and estimate its velocity, but they are not as 
accurate as LiDAR. This accuracy deficiency in estimating the shape of objects is a major 
flaw concerning its deployment in perception systems. The importance of RADARs, how-
ever, lies in their complementary role in poor weather conditions. The RADAR also faces 
a challenge of a very limited field of view, which is generally sorted using a complex array 
of RADAR sensors to cater full field of view. Due to these reasons, the use of RADAR is 
widespread in CAVs for its utilization in issuing proximity warnings and adaptive cruise 
control. However, Deep learning research using RADAR data for object detection is limited 
compared to LiDAR.

In the domain of DL-aided scene perception using radar, investigators in Major et al. 
(2019) proposed two ways to process the RADAR tensor. The first technique eliminates the 
Doppler dimension by adding the signal power over that dimension providing range-azi-
muth tensor. In contrast, the second strategy provides range-Doppler and azimuth-Doppler 
tensors as input. This leads to three model inputs being combined after primary processing 
in a range-azimuth-doppler model. In the end, the authors illustrated the model’s viability by 
comparing its characteristics with LiDAR-based techniques. Similarly, authors in Patel et al. 
(2019) proposed a new design for RADAR-based classification that employs RADAR spec-
tra generated by multi-dimensional Fast Fourier Transform (FFT). Their proposed technique 
applies deep CNNs directly to ROIs in the RADAR spectrum and thus achieves precise clas-
sification of various objects. The researchers claim that their proposed technique is a suit-
able substitute for classical RADAR signal processing techniques and performs better than 
other DL strategies. The investigators in Sligar (2020) used a physics-assisted electromag-
netic simulation of a multiplex scattering environment to produce a virtual dataset. The data 
regarding object’s distance and speed are determined from EM fields and converted into a 
range-doppler map. These range-doppler maps are used as input to train popular DL models 
based on the YOLOv3 backbone. The researchers emphasize the usability of the model 
for various scenarios and environments. In Engelhardt et al. (2019), researchers utilized 
raw RADAR data as input to deep neural networks and generated occupancy grids in the 
RADAR’s field-of-view. The authors also validated the idea of deep learning-aided object 
detection by applying frustum representation. Furthermore, the authors developed a semi-
automatic labeling tool using raw RADAR data collected using a test CAV. In Ristea et al. 
(2020), RADAR interference mitigation that relies on CNN is investigated. The proposed 
neural network predicts range profile magnitude with compensated noise and interference 
using spectrograms of noisy beat signals along with interference.

In Scheiner et al. (2019), the authors presented an architecture in which data is first con-
verted to a common coordinate system and subsequently clustered and labeled before fea-
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ture extraction. It is also claimed that the proposed method enhances overall classification 
performance. The research work in Lombacher et al. (2016) investigated the potential for 
which static object classes can be recognized in RADAR grids using deep learning methods. 
Several static objects which occur near roads, such as buildings, cars, fences, poles, shrubs, 
trees, traffic signs, and fields, were successfully classified using this method. Investigators 
in Scheiner et al. (2019) worked on similar grounds and evaluated the power of the deep 
learning method to detect the different road users. Investigators in Kim et al. (2019) pro-
posed a recurrent convolutional neural network for V2X communications, which classifies 
moving targets in an automotive RADAR system.

3.2  Path planning, behaviour arbitration, and DL-assisted driving

An autonomous vehicle’s capability to figure out a route between the starting position and 
destination is termed path planning. The path determination process includes evaluating all 
likely obstacles in the surroundings and discovering a track along a collision-free route (El 
Khatib et al. 2019; Grigorescu et al. 2020). Autonomous driving involves interaction with 
all the parties on the road while overtaking, changing lanes, giving proper way to vehicles, 
and taking turns on roadways that can lead to speedy arrivals at destinations. Research on 
connected vehicles’ decision-making, safety, security, control, and standardization of rules 
has increased exponentially in recent years. A wide range of techniques in the deep learning 
domain has also been developed for these tasks.

The two main deep learning techniques regarding path planning are Imitation Learning 
(IL) (Rehder et al. 2017; Sun et al. 2018; Grigorescu et al. 2019), and Deep Reinforcement 
Learning (DRL) (Yu et al. 2018; Paxton et al. 2017). Imitation learning means learning to 
plan vehicle motion by imitating the observed behavior of humans. In the domain of IL, the 
researchers in Rehder et al. (2017) trained a network from previously observed paths. They 
proposed to model motion planning of an intelligent vehicle as a value iteration network. 
Moreover, the network performance was demonstrated by training a cost function from 
aerial images to resemble human driving behavior. Investigators in Sun et al. (2018) empha-
sized the reduction in computational complexity by proposing a two-layer architecture in 
which the layers perform driving policy generation and its execution subsequently. The 
authors in Grigorescu et al. (2019) proposed a DNN for perception planning that acquires 
the desired state trajectory of the vehicle under test over a finite prediction horizon. In a 
similar framework to IL, Inverse Reinforcement Learning is utilized in Gu et al. (2016) to 
learn the reward function from an individual driver and subsequently generate human-like 
driving trajectories.

On the other hand, DRL-based planning was proposed in Yu et al. (2018), where the 
environmental model was condensed into a simple virtual environment model first. Then 
DRL training was applied to obtain the optimal control-trajectory sequence. In Paxton et 
al. (2017), authors discussed a methodology based on reinforcement learning to learn both 
linear temporal logic constraints and control policies to generate task and motion plans, 
whereas in Panov et al. (2018), the usability of the DRL approach is evaluated for path 
planning on square grids. Driver inattention and vehicle automation interact in a complex 
way depending on the level of vehicle autonomy. Instead of using the electrocardiography 
or photoplethysmography signal for driver alertness, in Trenta et al. (2019), the research-
ers examined the skin micro-movements and variations in face color due to blood flow to 
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extract facial landmarks. The researchers in Zyner et al. (2018) presented an RNN-aided 
prediction method that uses LiDAR input and estimates driver plans at an un-signalized 
roundabout, whereas Baheti et al. (2018); Kim et al. (2017); Xing et al. (2019) and Le et al. 
(2016) focus on using CNN and Faster R-CNN respectively to detect driver alertness. AI 
assistance in driving is leading towards a massive increase in different applications for ease 
of driving such as blind-spot reduction (Virgilio et al. 2020; Zhao et al. 2019b; Shen and Yan 
2018), traffic signal and signs detection (Alghmgham et al. 2019; Tabernik and Skočaj 2020; 
Nagpal et al. 2019; Kukreja et al. 2020), lane deviation detection (Wei et al. 2019; Satti et 
al. 2021; Du et al. 2020a) and vehicle make and model classification (Satar and Dirik 2018; 
Nazemi et al. 2020; Manzoor et al. 2019; Artan et al. 2019).

3.3  End-to-end deep learning

End-to-End deep learning in CAV can be defined as “direct mapping by a neural network 
from sensor data to vehicular control instructions”. The inputs to a DNN can be high-dimen-
sional sensor data like images or point clouds interpreted to control commands by End-to-
End networks.

One of the first works on End-to-End learning was introduced in the 1990  s when a 
3-layer back-propagation network called Autonomous Land Vehicle In a Neural Network 
(ALVINN) (Pomerleau 1988). The ALVINN was devised for following the road and steer-
ing as per the perceived road curvature. The training of ALVINN was carried out using 
simulated road images and test results showed that it can efficiently follow actual roads. 
In Bojarski et al. (2016), authors illustrated that CNNs are able to learn tasks such as lane 
or road following using crude pixel information from a single front-facing camera and can 
map directly to steering commands. Their scheme (dubbed DAVE-2) for End-to-End deep 
learning can be visualized in Fig. 5 demonstrating that CNNs can learn the entire task of the 
road following without any manual breakdown into subtasks.

In Xu et al. (2017), researchers proposed combining a convolutional network and a Long 
Short-Term Memory (LSTM) network to learn a general model of vehicle movement from 
large-scale video data. In Eraqi et al. (2017), it is taken into account the combination of 
visual and dynamic temporal dependencies of the input data where the convolutional long–
short-term memory (C-LSTM) network has been utilized for steering control. In Hecker et 
al. (2018), the 360o view of the surrounding area is captured via sensors. All the information 
around the vehicle was united into the network model to produce an appropriate control 
command. In Rausch et al. (2017), investigators designed a CNN to map pixel data taken 
from a frontal camera to steering commands without involving other sensors and compared 
their designed system performance with the human steering behavior.

The researchers presented DeepPicar in Bechtel et al. (2018), a deep convolutional neu-
ral network and a low-cost mini-model of DAVE-2 (a self-driving car by NVIDIA). The 
vehicles having DeepPicar can estimate the steering angles of a CAV in real-time utilizing 
a webcam in conjunction with a Raspberry Pi 3 quad-core platform. In Yang et al. (2017), 
the research team used “The open racing car simulator” for data collection and classified 
the image features into sky-related, roadside-related, and road-related categories. More-
over, multiple experimental evaluations are employed to investigate the influence of every 
feature for training a CNN controller. The investigators in Sallab et al. (2017), incorporated 
RNN for information synthesis, equipping the car to handle partly visible situations. The 
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investigators have also shown its ability to learn complex road curvatures in the racing 
car simulator. The researchers in Pan et al. (2018) trained a CNN control policy to map 
raw observations to steering and throttle commands that enable a speedy off-road vehicle 
movement. An asynchronous advantage actorcritic framework had been adopted in Jaritz et 
al. (2018) to learn the car control in a realistic rally game in which the agents can emerge 
concurrently on different tracks. In Codevilla et al. (2018), command-conditional imitation 
learning is proposed based on learning basic controls and advanced-level commands from 
the presentations of an expert. The researchers in Hecker et al. (2018) extended the driving 
data set by utilizing eight cameras to capture videos while driving, furthermore presented a 
new DNN that can map the sensor inputs to future driving maneuvers. A blend of modular 
designs and End-to-End deep learning approaches were suggested in Müller et al. (2018), 
so that driving policy is not revealed to raw input or basic vehicle dynamics. The investiga-
tors in Sauer et al. (2018) proposed a perception method that can map video input to inter-
mediate forms fit for autonomous navigation in complicated urban environments with an 
improvement claim of up to 68 percent compared to the latest reinforcement and conditional 
imitation learning designs.

In the deep reinforcement learning domain, Kendall et al. (2019) applied the DRL tech-
nique to learn a policy for lane following using a single monocular image as input and 
reward as the distance traveled by the vehicle without the driver taking control. In Liang et 
al. (2018), the authors presented a novel model termed Controllable Imitative Reinforce-

Fig. 5  NVIDIA End to End Learning for Self-Driving Cars (Bojarski et al. 2016). NVIDIA DevBox and 
Torch 7 for training and an NVIDIA DRIVE-PX self-driving car computer also running Torch 7 for de-
termining where to drive. The system was trained using three cameras, a single camera in operation, and 
processing 30 frames per second
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ment Learning (CIRL) for challenging vision-aided autonomous driving. The proposed 
method takes into account the controllable imitation learning with Deep Deterministic 
Policy Gradient (DDPG) policy learning to fix the reinforcement learning poor efficiency 
issues. In Amini et al. (2019), authors utilized raw camera data and higher-level road-maps 
in a novel variational network to estimate probability distribution over the possible and 
deterministic control command for navigation. Authors in Bansal et al. (2018) trained a 
policy for driving CAVs through imitation learning where mid-level input and output rep-
resentations that exploit perception and control components are selected to diminish com-
plexity. The mid-level input is fed to an RNN, dubbed ChauffeurNet, whose output drives 
trajectory rendered into steering and acceleration by the controller. In Bewley et al. (2019), 
a system that uses simulation to learn an End-to-End driving policy readily transferable to 
real-world scenarios is presented and validated against several baselines. The researchers in 
Codevilla et al. (2018) focused on the issue of the unrealistic approach of modeling a wide 
variety of complex environmental conditions and proposed behavior cloning to achieve 
state-of-the-art results.

The investigation in Xiao et al. (2020) explored the combination of RGB and depth 
modalities producing better end-to-end AI drivers, whereas an End-to-End conditional imi-
tation learning by linking lateral and longitudinal control on vehicles is explored in Hawke 
et al. (2020). The research in Maanpää et al. (2021) is an effort to extend End-to-End learn-
ing using multi-modal data collected by 28 h of driving on several roads in adverse weather 
conditions. The work in Chi and Mu (2017) focuses on a vision-based model that autono-
mously drives a car solely from its camera’s visual observation by mapping it to steering 
angles. The novelty is claimed based on learning from real human driving videos instead 
of being trained from synthetic data, taking informative historical states of a vehicle into 
account, and using the visual back-propagation scheme for visualizing image regions. In 
Gurghian et al. (2016), the images from laterally mounted down-facing cameras are used 
in a convolutional neural network for lane detection. The research claims to achieve high-
accuracy lane position for keeping vehicle lane alignment to center and real-time naviga-
tion. In Kocić et al. (2019), the investigators proposed a very light neural network that leads 
to lower latency and successful autonomous driving with similar effectiveness compared to 
the state-of-the-art models in autonomous driving.

3.4  LLM-based designs in CAVs

Large Language Models are advanced deep learning models trained on massive amounts 
of text data to understand, generate, and manipulate human language. While traditionally 
used in natural language processing (NLP) tasks such as translation, summarization, and 
conversation, LLMs are now being explored for their potential in designing and operating 
CAVs (Cui et al. 2024). LLMs are capable of sophisticated human–machine interactions, 
allowing vehicles to understand and respond to complex voice commands and predict pas-
senger needs based on conversational cues. LLMs can also be adapted to process CAVs’ 
multi-modal data, providing a unified understanding of the vehicle’s environment (Cui et 
al. 2024; Tong and Solmaz 2024). LLMs can also generate realistic driving scenarios and 
dialogues for training and testing autonomous systems. This trait enables CAVs to handle a 
wide range of situations, including rare and complex events and associated policy-making.
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In Cui et al. (2024), authors presented a survey on multimodal large language models 
(LLMs) for autonomous driving, focusing on heterogeneous modalities and cross-modal 
learning. This investigation introduced the topic well, however, without an in-depth analy-
sis. In the domain of end-to-end autonomous driving systems based on LLMs, Xu et al. 
(2024b) introduced DriveGPT4, as an innovative, interpretable solution. DriveGPT4 could 
process multi-frame video inputs and textual queries, enabling it to interpret vehicle actions, 
provide reasoning, and predict low-level control signals. This pioneering effort employed 
LLMs for autonomous driving, using a custom visual instruction tuning dataset and a mix-
finetuning strategy to achieve driving capabilities. Tong and Solmaz (2024) explored the 
integration of LLM-based DL with CAVs focusing on improving the traffic conditions. The 
authors proposed "ConnectGPT," a pipeline that connects LLMs with CAVs, using GPT-4 to 
monitor traffic, identify hazards, and automatically generate standardized safety messages 
for smooth CAVs operations.

Sha et al. (2023) employed LLMs to address challenges of complex autonomous driving 
scenarios. They created cognitive pathways for comprehensive reasoning with LLMs and 
developed algorithms to translate their decisions into driving commands. By integrating 
LLM decisions with low-level controllers using guided parameter matrix adaptation, their 
approach outperformed baseline methods in both single-vehicle tasks and multi-vehicle 
coordination. Cui et al. (2023b) presented a pioneering approach, Drivellm, that harnesses 
the power of large language models for autonomous driving. The authors demonstrate a 
promising direction, leveraging LLMs’ capabilities in processing complex scenarios. While 
this approach pioneers the application of large language models in autonomous driving, 
its methodology raises concerns. The authors’ reliance on pre-trained LLMs without thor-
ough fine-tuning may lead to biased or inaccurate decision-making in complex driving sce-
narios. Chen et al. (2024b) presents a novel approach leveraging LLMs for autonomous 
driving. A significant strength is the authors’ innovative fusion of object-level vector modal-
ity, enabling explainable decision-making. The paper’s experimental results demonstrate 
improved performance in various driving scenarios, showcasing the potential of LLMs in 
autonomous driving. Yildirim et al. (2024) presented an innovative approach, called High-
wayLLM, combining reinforcement learning and language models for highway driving. A 
notable strength is the authors’ attempt to leverage language models for decision-making, 
showcasing promising results in simulated environments. Additionally, the paper’s discus-
sion on integrating reinforcement learning and language models highlights potential ben-
efits for autonomous driving.

3.5  Critical analysis of modular versus end-to-end learning & LLM-based designs

The conventional method for controlling autonomous vehicles is the modular CAV design. 
This approach breaks down the driving task into smaller sub-problems, where distinct DL 
modules can be trained for environmental perception, path planning, and motion control. 
The modular design is favored for its transparency and interpretability compared to the 
End-to-End (E2E) design. However, it is susceptible to error propagation, where inaccura-
cies in one module can lead to compounded errors in subsequent modules. Conversely, 
the E2E approach integrates all driving tasks into a single model, facilitating easier error 
detection and correction. This design enables the learning of advanced driving strategies 
and generally performs well on simple datasets. Despite these advantages, the E2E approach 
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has significant limitations, notably a lack of interpretability crucial for safety assurance. 
Additionally, its single-step mapping can result in less efficient learning processes. further-
more, E2E models require vast amounts of training data to learn to drive safely in various 
conditions. Collecting, annotating, and curating such data can be resource-intensive. E2E 
models are often considered "black boxes," making it challenging to understand why a par-
ticular decision was made (Chib and Singh 2023). This lack of interpretability is a signifi-
cant concern for safety and regulatory approval. The learned behavior in E2E models might 
not be easily transferable to different geographic locations, weather conditions, or vehicle 
types, while modular approaches can be more adaptable. Modular systems often struggle 
to handle corner cases or rare, unanticipated scenarios because each module may not have 
been explicitly designed for them. E2E systems, on the other hand, exhibit better general-
ization across diverse scenarios due to their learning from extensive and varied datasets. 
Furthermore, modular systems can experience delayed decision-making due to the sequen-
tial processing stages. In contrast, E2E systems potentially reduce latency by processing all 
relevant information in a single step. Another advantage of E2E systems is their continuous 
trainability on new data, allowing adaptation to evolving road conditions, traffic patterns, 
and regulations. Modular systems, in comparison, might require manual updates and adjust-
ments to individual modules (Tampuu et al. 2020).

There has been a growing trend in recent years of testing DL-enabled autonomous driving 
models using open-source simulators. Figure 6 illustrates a generic simulator architecture.

Several simulators are available for testing DL-enabled autonomous driving models, 
including CarSim (Johansson et al. 2004), PreScan (Ortega et al. 2020), Gazebo (Ahamed et 
al. 2018), LGSVL (LG–Autonomous 2023) and CARLA (Dosovitskiy et al. 2017). Notably, 
CARLA (CAR Learning to Act) (Dosovitskiy et al. 2017) supports developing, training, and 
validating autonomous urban driving systems. CARLA’s versatility lies in its capacity to 
allow flexible specification of sensor suites and environmental conditions. This simulation 
platform is particularly effective in evaluating three distinct approaches to autonomous driv-
ing: a traditional modular pipeline, an E2E model trained through imitation learning, and an 
E2E model trained via reinforcement learning. Authors in Niranjan et al. (2021) highlighted 
the usability of the CARLA simulator for testing object detection algorithms and getting 
meaningful results. They utilized CARLA to generate a dataset for training an object detec-
tion model, which was subsequently evaluated on test images to assess its performance 
within the CARLA environment.

Simulation Environment

Actuators

Sensors 
Control 
System

Message 
Communication

Steering 
Acceleration 
Brake

Sensor Data

Fig. 6  Simulator architecture 
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The CARLA leaderboard serves as an evaluative tool for gauging the proficiency of 
autonomous driving systems in uncertain environments. This tool presents vehicles with 
predetermined routes that encompass challenging scenarios, including sudden lane changes 
and unforeseen pedestrian crossings. The evaluation criteria include measuring the dis-
tance successfully navigated by the vehicle within a specified time frame on a designated 
town route and the tally of infractions incurred during the journey. The assessment employs 
multiple metrics, offering a thorough analysis of the driving system’s performance. This 
comprehensive evaluation framework enables a detailed understanding of how autonomous 
vehicles respond to and manage unpredictable driving situations.

Average driving proficiency score or Driving Score (DS) is a metric that reflects the aver-
age route completion percentage with average infraction penalty. Similarly, route comple-
tion depicts the average percentage of Routes Completed (RS) by the model. Based on the 
submission in the CARLA leaderboard till August 2024, we can deduce that E2E models, 
including ResonNet and InterFuser (Shao et al. 2023b, a), are leading the leaderboard with 
DS value of 79.95 and 76.18 respectively. Corresponding RS values for the two leading 
models are 89.89 and 88.23. Modular approaches, such as Rosero et al. (2022) and Rosero 
et al. (2020) with DS of 15.40 and 4.56 as well as RS values of 50.05 and 23.80, respec-
tively, were lagging in comparison with E2E designs. These values show that the modular 
approaches perform significantly less when benchmarked in CARLA leaderboard KPIs.

In the autonomous vehicle industry, companies are adopting different approaches based 
on the requirements of their systems, safety protocols, and operational challenges. Tesla, a 
leader in autonomous driving, is shifting from the modular approach towards end-to-end 
learning Cohen (2023). As this approach relies heavily on DL models that process raw sen-
sory inputs directly into control outputs, it gives the liberty to jointly optimize perception, 
planning, and control, potentially resulting in better overall performance. This approach 
is beneficial in optimizing real-time decision-making, such as lane changes or complex 
maneuvers. However, the data dependence of Tesla’s approach is a significant concern. 
Tesla requires massive amounts of driving data to train its neural networks, and while its 
fleet provides real-world data, the model’s lack of transparency poses a risk when things go 
wrong. The system operates as a “black box,” which makes debugging and understanding 
the decision-making process difficult. This raises safety concerns, especially in corner cases 
where the system’s behavior might not be fully understood or predictable.

Waymo, another leader in autonomous driving, employs a modular learning architecture, 
which divides its learning module into distinct components such as perception, planning, 
and control (Cortese 2025). This approach ensures reliability, safety, and transparency, all 
of which are crucial aspects for self-driving vehicles operating in real-world environments. 
Modular systems allow each module to be specialized and optimized independently, making 
it easier to test and validate the system in varied scenarios. However, this separation often 
leads to challenges in integrating these modules efficiently, resulting in performance losses 
and slower adaptation to dynamic conditions.

In conclusion, there is a growing shift towards end-to-end driving systems, as demon-
strated by companies like Motional and other autonomous vehicle developers, is consistent 
with the findings of deep learning models tested on simulation platforms such as CARLA 
(Shao et al. 2023b). While modular approaches have shown considerable advantages in 
terms of reliability and transparency, which are essential for ensuring the safety of both 
vehicle occupants and other road users, they also face certain specific challenges (Hussain 
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et al. 2025). In particular, the integration of separate modules may result in suboptimal per-
formance and a delayed response to dynamic environmental changes. The ongoing research 
into end-to-end systems aims to address these issues by improving adaptability and perfor-
mance across complex, real-world scenarios, suggesting a potential path forward for the 
future of autonomous driving (Coelho and Oliveira 2022).

The integration of Large Language Models (LLMs) into Connected and Autonomous 
Vehicles represents a promising frontier in the advancement of autonomous driving tech-
nologies. However, despite the innovative potential of LLM-based designs, several critical 
shortcomings must be addressed to ensure their practical applicability and safety in real-
world scenarios.

One of the primary concerns with LLM-based designs, such as those proposed in Driv-
ellm (Cui et al. 2023b), is the lack of rigorous experimental evaluation. These designs often 
fail to rigorously test critical corner cases, omitting essential comparisons with established 
autonomous driving approaches. This oversight can lead to significant gaps in understand-
ing how these models perform under challenging and unpredictable conditions, which are 
common in real-world driving environments. The experimental setups in these studies often 
rely heavily on simulated scenarios, which, while useful, may not fully capture the com-
plexities and uncertainties of real-world driving. Consequently, the applicability of these 
LLM-based systems in actual driving situations remains uncertain, raising concerns about 
their reliability and robustness.

The investigation by Chen et al. (2024b) also has some room for improvement. The 
reliance on pre-trained LLMs may lead to biases and limitations in handling corner cases. 
Additionally, the explainability aspects, while promising, require further development to 
provide more insightful interpretations. The paper’s evaluation could benefit from more 
comprehensive metrics, including safety and robustness assessments. Nevertheless, investi-
gation by Chen et al. (2024b) contributes meaningfully to the emerging field of LLM-based 
autonomous driving, offering a promising direction for future research.

In the similar manner, the investigation by Yildirim et al. (2024) relies heavily on sim-
ulated scenarios, which may not fully capture real-world complexities. Furthermore, the 
evaluation metrics could be more comprehensive, incorporating safety, robustness, and 
computational efficiency assessments. Nevertheless, HighwayLLM (Yildirim et al. 2024) 
contributes to the growing body of research exploring AI-driven autonomous driving solu-
tions, and its ideas warrant further exploration and refinement.

3.6  Corner cases in DL-assisted CAVs

The recent developments in autonomous driving and deep learning techniques rely upon 
the availability of huge amounts of training data for training purposes. The use of deep 
learning systems in CAVs is a black-box approach that furnishes a quick mapping solution. 
However, it also poses a risk. Recently, real-world accidents related to CAVs confirm the 
lack of robustness in these systems (Bolte et al. 2019). One cause of such accidents is the 
deficiency in training data concerning capturing all critical situations (Tian et al. 2018). A 
classic example of a corner case is the crash between a Tesla car and a trailer due to unsuc-
cessful differentiation of “white color against a brightly lit sky” and the “high ride height” 
by Tesla’s DL system (Ouyang et al. 2021). At the conceptual level, the corner-case role in 
DNN is just like conventional software logic bugs. However, these cases lead to potentially 
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fatal collisions. To avoid such situations, testing, evaluation and update are crucial steps 
in developing a safe CAV system. In the testing phase, the CAV is evaluated in safety-
critical situations, which infrequently happen in a common driving environment. How to 
systematically generate these corner cases aiming for training is a challenging task. Several 
investigations aim to develop a corner case. detection system to identify unusual scenarios. 
In Bolte et al. (2019), a formal definition for a corner case for driving a CAV, along with 
a system framework that provides both the online and the offline use case for cameras and 
subsequently outputs a corner case score, is offered. In Sun et al. (2021), a single frame-
work is introduced to generate corner cases for the decision-making systems where the high 
dimensionality issue is addressed using the Markov decision process. In Tian et al. (2018), 
a systematic testing tool dubbed “DeepTest” was designed and evaluated to automatically 
detect erroneous behaviors of DNN-driven vehicles to avoid fatal crashes. “DeepTest” was 
found capable of detecting numerous erroneous behaviors under different practical driv-
ing conditions like rain, lightning, fog, and blurring, leading to lethal accidents in three 
high-performing DNNs of the Udacity self-driving car challenge. In Yu et al. (2021), the 
Multi-Relation Graph Convolution Network (MR-GCN) and attention layers are introduced 
to model the risk of driving manoeuvres. In Zhao et al. (2017a, 2017b), authors proposed 
important sampling techniques to generate test cases regarding lane-changing manoeuvres 
and car-following scenarios. The overvalue problem of most serious cases is addressed in 
Feng et al. (2021, 2020a, 2020b, 2020c) by defining the manoeuvre challenge and exposure 
frequency and by forming cases on several environment settings such as car-following sce-
narios, cut-in scenarios, and highway driving environment. Some investigators offered the 
risky index and the probabilistic model of the environment to assist in creating critical cases, 
such as Akagi et al. (2019) used a self-defined risky index and naturalistic driving data to 
sample critical cut-in scenarios. Adding to this effort, O’Kelly et al. (2018) utilized a deep 
learning framework to calibrate a naturalistic driving model. Investigators in Ding et al. 
(2020) modeled the environment as the union of blocks and used REINFORCE algorithm 
to create corner cases in limited traffic load. The adaptive stress testing method is proposed 
by Koren et al. (2018) that suggested Monte Carlo tree search and deep reinforcement learn-
ing to resolve the pedestrian-crossing problem. However, this study also considered limited 
traffic and pedestrians. The study by Karunakaran et al. (2020) used the Deep Q Network 
(DQN) to generate corner cases. Despite all these efforts, due to difficulties in modeling 
complex scenarios, the generation and identification of corner cases that are a true repre-
sentation of actual situations with high coverage and variability remain an open challenge.

A number of potential solutions are also suggested by researchers concerning the corner 
cases problem. The lack of robustness in deep learning systems due to deficiency in train-
ing data regarding uncommon situations dubbed “corner cases” must be addressed by the 
automotive industry to ensure safety in CAVs (Sun et al. 2021). The first straightforward 
solution concerning the testing and evaluation of CAVs is to purposely and systematically 
generate these corner cases. The corner cases are unpredictable, and engineers can’t figure 
out and cover all the scenarios without road tests in the real world. Consequently, the CAV 
industry is working on virtual simulation to simulate the unusual scenarios that seldom hap-
pen in the real world and subsequently train CAVs. The other dimension in resolving this 
issue is multi-sensor fusion. Because CAV’s sensors perceive the environment differently, 
a corner case for one sensor might be a common scenario for others, such as in dim light or 
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night. A camera might not detect a black car, whereas, for a RADAR, this scenario does not 
fall in a corner case category.

The CAV’s ability to autonomously find the most similar corner case relevant to the cur-
rent situation can further improve the performance of well-coordinated sensor fusion algo-
rithms. The sensor fusion algorithms combine data from several sensors to determine the 
most accurate object information. For example, if LiDAR provided the most accurate data 
in a certain “corner case” previously, the sensor fusion algorithm will assign more weight to 
the LiDAR sensor considering its better performance in a similar situation.

4  Deep learning in UAVs

DL constructs for UAVs differ significantly from those used in CAVs, largely due to varia-
tions in data characteristics. UAV datasets benefit from flexible data collection without geo-
graphic constraints but also face challenges such as varying sensor-object distances, wide 
viewing angles, and substantial illumination changes. These factors contribute to low spatial 
resolution, diverse object sizes, complex backgrounds, and a higher object count per image 
(Wu et al. 2022; Jain et al. 2021).

Aerial detection is further complicated by occlusions caused by buildings and trees. 
Additionally, UAV-specific limitations such as power consumption, payload capacity, flight 
time, and operational range must be considered when designing DL algorithms (Carrio et 
al. 2017). These distinctions necessitate specialized DL approaches tailored to aerial data-
sets rather than directly applying models developed for connected vehicles. The following 
subsections detail various DL architectures explored for object detection using UAV sensor 
data.

4.1  Scene perception using image sensors

Deep learning methods for UAV-based scene perception rely mainly on CNNs for feature 
extraction (Karim Amer et al. 2019). Scene perception tasks include object identification 
and scene classification. In Gangopadhyay et al. (2015), a statistical aggregation approach 
using CNNs was proposed to classify videos of natural dynamic scenes. For object detec-
tion, Lee et al. (2017) applied Faster R-CNNs, proposing a computational split between 
low-level object detection and short-term navigation for online processing. In Wang et al. 
(2018), the performance of SSD, Faster R-CNN, and RetinaNet was evaluated on the Stan-
ford Drone Dataset. Similarly, Ammour et al. (2017) used a pre-trained CNN with a linear 
SVM to detect car regions, while Radovic et al. (2017) demonstrated that parameter tuning 
significantly improved CNN classification accuracy on aerial images.

DL techniques trained on UAV aerial datasets have attracted interest, especially for 
surveillance and rescue. Mittal et al. (2020) provided a comprehensive review of state-of-
the-art DL algorithms implemented on low-altitude UAV datasets. In Kim and Chervonen-
kis (2015), DL-based image segmentation detected accidents and abnormal traffic using 
UAV vision systems. Antonio and Maria-Dolores (2022); Guillen-Perez and Cano (2019) 
proposed an end-to-end Multi-Agent Deep Reinforcement Learning framework for col-
laborative CAV control at intersections, capturing complex traffic dynamics. Despite their 
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effectiveness, UAV constraints such as flight time, energy, and payload necessitate low-
complexity DL algorithms tailored for onboard deployment (Carrio et al. 2017).

Addressing these constraints, an empirical study by Purdue and CCAT (Zong et al. 
2023) focused on intersection monitoring for crash risk assessment under rainy weather 
using UAVs. The study leveraged the VisDrone dataset comprising 400 videos (265,228 
frames) captured via drone-mounted cameras in diverse scenes. They developed a moni-
toring framework evaluated using Multiple Object Tracking Accuracy (MOTA), reporting 
64.89% on the training set and 63.12% on testing. The study also introduced a denoising 
framework evaluated through Peak Signal-to-Noise Ratio (PSNR) and Structural Similar-
ity Index (SSIM). However, a key limitation was the use of synthesized rain images, with 
minimal validation of their real-world fidelity.

In another empirical study, Barmpounakis and Geroliminis (2020) conducted a big data-
based traffic congestion analysis by creating an extensive UAV-based traffic stream data 
repository. The work offered an opportunity to test traffic models developed from diverse 
disciplines. A swarm of 10 drones hovered over the central business district of Athens 
over multiple days. This swarm of drones recorded traffic streams in a congested area of a 
1.3km2 area with more than 100 km lanes of road network, around 100 busy intersections 
(signalized or not), including many bus stops, and close to half a million trajectories. The 
experiment aimed to record traffic streams in a multimodal congested environment. Analy-
sis of the dataset revealed that taxis, stopping randomly for 5 − 15 seconds, and buses, 
stopping at fixed locations for 30 − 40 seconds, frequently created static and moving bottle-
necks. For instance, a taxi stop caused a queue behind it, with a waiting time of more than 
10 seconds for affected vehicles before a lane change was possible. Similarly, a bus stop 
near a traffic light resulted in a queue where no vehicles passed the stop line for a 20-second 
interval, underutilizing the green phase. In contrast, another bus stop of similar duration 
had no capacity loss due to better traffic flow management, emphasizing the variability of 
impacts. These findings underline the significant role of such stops in affecting lane capacity 
and multimodal traffic interactions.

4.1.1  Vision transformers in UAVs

This subsection reviews the application of ViTs in UAV-based computer vision tasks such 
as image classification, object detection, segmentation, and tracking. ViTs have gained sig-
nificant focus in UAV imagery, particularly for object detection, due to their potential to 
enhance autonomy, accuracy, and efficiency. However, challenges like data quality, class 
imbalance, real-time processing, and object scale variation caused by varying altitudes and 
motion blur during low-altitude flights complicate deployment. Various transformer archi-
tectures have been proposed to address these issues.

Several ViT variants, ViT-Base, ViT-Large, ViT-Hybrid, and Swin Transformer, have 
been tailored for UAV tasks using datasets like UAVid, VisDrone, Campus, UAV123, 
UAVDT, MDOT, AU-AIR, and SynDrone (Rizzoli et al. 2023). Zhao et al. (2023) intro-
duced TPH-YOLOv5, an enhanced YOLOv5 with an added tiny-object prediction head and 
transformer-based heads. Its successor, TPH-YOLOv5++, integrates a cross-layer asym-
metric transformer module to reduce computational cost while maintaining performance.

Tahir et al. (2024) proposed PVswin-YOLOv8s for pedestrian and vehicle detection, 
combining Swin Transformer based global feature extraction with channel and spatial atten-
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tion modules. Soft-NMS was employed to improve occlusion handling. A comprehensive 
evaluation of the PVswin-YOLOv8s model benchmarked against various YOLO versions 
(YOLOv3, YOLOv5, YOLOv6, and YOLOv7) and classical object detectors (Faster-
RCNN, Cascade R-CNN, RetinaNet, and CenterNet), revealed a significant improvement 
in average detection accuracy (mAP) of 4.8% over YOLOv8s on the VisDrone2019 dataset, 
thereby validating its efficacy in detecting small objects and enhancing overall detection 
performance.

Tran et al. (2024) developed an unsupervised transformer-based framework for anomaly 
detection in aerial surveillance. By predicting future frames and analyzing reconstruction 
errors, their model outperformed state-of-the-art methods on the UIT-ADrone and Drone-
Anomaly datasets. Chen et al. (2024a) addressed decentralized, scalable UAV naviga-
tion with a transformer-based multi-agent reinforcement learning (T-MARL) algorithm. 
T-MARL integrates the Transformer’s adaptability and attention mechanism with deep RL 
to optimize cooperative UAV trajectories for area coverage. Xu et al. (2022a) tackled dense 
object distribution using Foreground Enhancement Attention Swin Transformer (FEA-
Swin), which enriches Swin Transformer with contextual information and integrates an 
improved BiFPN to retain small object details. The model demonstrated a balanced trade-
off between accuracy and efficiency.

In visual tracking, Xu et al. (2022b) proposed STN-Track, combining STN-YOLOX 
detection and G-Byte tracking to improve accuracy and identity retention on UAVDT and 
VisDrone MOT datasets. Similarly, Ye et al. (2023) introduced RTD-Net for real-time object 
detection. The model integrates a Feature Fusion Module (FFM) for small object detection, 
a Lightweight Extraction Module (LEM) for real-time efficiency, and a Convolutional Mul-
tihead Self-Attention (CMHSA) block to enhance occluded object recognition, achieving 
86.4% mAP on a UAV dataset.

In summary, ViT-based models significantly advance UAV perception by improving 
object detection and tracking, particularly for small or occluded objects. Despite these 
gains, challenges such as data variability and real-time constraints necessitate continued 
innovation in ViT architectures for UAV deployment.

4.2  Scene perception using acoustic sensors, RADAR and LiDAR

DL has demonstrated superior performance over traditional computer vision methods in 
processing UAV aerial data. While CNNs are the most commonly employed architectures 
for aerial image analysis, other DL models have also been applied across various UAV sens-
ing modalities.

In acoustic sensing, a partially shared deep neural network was used in Morito et al. 
(2016) to extract human voices from noise-suppressed signals for detecting help requests in 
disaster scenarios. Similarly, Jeon et al. (2017) explored acoustic classification using Gauss-
ian Mixture Models and CNNs. These studies highlight the growing use of machine learning 
in UAV-based emergency response.

The recent advances in RADAR research point toward the increasing use of machine 
learning techniques in advanced target classification (Mendis et al. 2016; Huizing et al. 
2019; Park et al. 2021; Samaras et al. 2019). Mendis et al. (2016) proposed using deep belief 
networks to classify spectral correlation function signatures of micro UAV systems. Huizing 
et al. (2019) utilized CNN and LSTM-RNN architectures to classify targets based on micro-
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Doppler signatures. Park et al. (2021) introduced a ResNet-SP model, an enhancement over 
ResNet-18, trained on RADAR spectrogram images. Their model achieved higher accuracy 
with reduced computational complexity.

For LiDAR data processing, Maturana and Scherer (2015) presented a 3D-CNN frame-
work coupled with a volumetric occupancy map for identifying safe UAV landing zones. 
UAV-based LiDAR has also been explored in infrastructure monitoring. For example, Liu 
et al. (2019b) applied a random forest model to classify pavement distresses such as cracks, 
potholes, and rutting using low-altitude UAV-generated point clouds. A broader review of 
UAV LiDAR applications in road safety, traffic surveillance, and infrastructure management 
is provided in Outay et al. (2020).

These works collectively underscore the versatility of DL in fusing data from acoustic, 
RADAR, and LiDAR sensors to enhance UAV-based perception across safety, surveillance, 
and control tasks.

4.3  UAV’s path planning, navigation, and control

DL has significantly advanced UAV path planning, navigation, and control, particularly in 
unstructured and dynamic environments. Situational awareness, i-e, UAVs’ understanding 
of their state and environment is crucial for selecting optimal routes. Chang et al. (2019a) 
provided a comprehensive review of DL methods for UAV path planning. For localization, 
Lin et al. (2015) proposed matching ground-level query images with aerial views using 
CNNs. Padhy et al. (2021) presented a deep neural network framework that utilizes RGB 
images from a UAV’s front camera to enable corridor navigation.

In autonomous landing, LI and HU (2021) developed a model integrating: i) a DNN-
based bounding box detector, ii) an extended Kalman filter-based coordinate combiner, and 
iii) PointRefine-Net for improving detection accuracy. For adaptive navigation, Theile et al. 
(2020) proposed a double deep Q-network to handle diverse mission scenarios, while Luo 
et al. (2018) introduced “Deep-Sarsa,” an on-policy reinforcement learning algorithm that 
facilitates path planning and obstacle avoidance via environmental feedback.

The capability of neural networks to handle high-dimensional data has enabled their 
application in complex control problems, where classical control theory falls short under 
model variations or disturbances (e.g., damaged propellers, wind, or rain). Shah et al. (2016) 
introduced “DeepFly,” an autonomous flight system using a monocular camera and dispar-
ity images to select obstacle-free waypoints. Lin et al. (2014) proposed a recurrent wavelet 
neural network (RWNN)-based control system for robust motion tracking under crosswind 
and control disturbances. Punjani and Abbeel (2015) designed a hierarchical ReLU-based 
network for executing complex helicopter maneuvers.

Recent studies focus on deep reinforcement learning (DRL) for tasks like target track-
ing, attitude control, and landing on static and mobile platforms. Li et al. (2017) proposed 
a hierarchical control scheme that combines model-free policy gradient methods with PID 
controllers for safe target tracking. Koch et al. (2019) addressed control issues in unpredict-
able environments by developing intelligent DRL-based flight controllers. Polvara et al. 
(2018) utilized low-resolution, earth-oriented camera images in a DRL-based framework for 
autonomous landing. Qing et al. (2018) employed an adaptive radial basis function neural 
network and backstepping control to manage unknown disturbances during UAV landing.
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In Ma et al. (2024), authors introduced GN-Trans, a hybrid Graph Neural Network 
(GNN) and Transformer architecture for mission planning in UAV-CAV systems. The model 
combines a global Transformer for high-level behavior modeling and a local Transformer 
for region-specific task allocation and path planning. Evaluations on the Stanford Drone 
and CityScapes datasets showed GN-Trans achieved 92% task allocation accuracy and 
88% resource utilization–outperforming Dijkstra’s algorithm (70%) and RL-based mod-
els (82 − −89%). Ablation studies demonstrated complementary benefits of GNNs (87%) 
and Transformers (89%), while GN-Trans yielded 12 − −15% improvements in dynamic 
scenarios. The model scaled to 50 UAVs and 30 CAVs, achieving robust performance 
across varied environments (97.5% UAV accuracy in urban settings). GN-Trans effectively 
bridges relational and contextual AI, setting a new benchmark in autonomous IoT mission 
coordination.

4.4  Large language models in UAVs

The integration of Large Language Models (LLMs) into UAV systems represents a sig-
nificant advancement, enabling enhanced decision-making, natural language interaction, 
and autonomous mission planning. By employing their predictive and generative capabili-
ties, LLMs support real-time adaptability, efficient communication, and greater autonomy, 
particularly valuable in domains such as search and rescue, environmental monitoring, 
remote sensing, and military operations. Furthermore, LLMs extended to the vision domain 
have demonstrated strong multi-modal reasoning, opening new avenues in UAV-based 
applications.

Several notable contributions illustrate the application of LLMs in UAVs. Zhan et al. 
(2024) proposed SkyEyeGPT, a multi-modal LLM (MLLM) designed for remote sensing. 
It employs a two-stage tuning strategy to improve instruction-following and multi-turn dia-
logue across different granularities, achieving superior performance on eight remote sensing 
vision-language datasets. Similarly, Xu et al. (2024a) introduced RS-Agent, an autonomous 
remote sensing agent that combines LLMs with advanced remote sensing image processing 
tools. This RS-Agent excels in tasks such as scene classification, visual question answering, 
and object counting across multiple benchmarks.

Beyond remote sensing, LLM integration into future wireless networks has been 
explored. Javaid et al. (2024b) emphasized LLMs’ potential to reduce latency, optimize data 
flow, enhance signal processing, and manage network traffic through advanced prediction 
and real-time decision-making. Extending this idea, Jiang et al. (2024) demonstrated how 
collaborative, self-improving LLM-enhanced agents can address complex problems in 6 G 
communication. A broader survey by Javaid et al. (2024a) reviewed LLM architectures 
suited for UAV deployment, summarizing current trends, design frameworks, and potential 
integration pathways for future LLM-based UAV systems.

In Wang et al. (2023c), authors explore the integration of Large Language Models (LLMs) 
into autonomous driving systems, applying LLMs to behavior planning and safety enhance-
ment. From a UAV perspective, De Curtò et al. (2023) combined LLMs and Vision-Lan-
guage Models (VLMs) to enable zero-shot scene-to-text descriptions using UAV imagery 
via a state-of-the-art detection pipeline. Lastly, Abu Tami et al. (2024) proposed an MLLM 
framework that utilizes object-level question-answering prompts to enhance safety-critical 
event detection, offering actionable insights through robust logical and visual reasoning.
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4.5  Critical analysis of UAVs-supported detection in CAV networks

This section discusses the use of UAVs for real-time detection and tracking of objects such 
as vehicles, pedestrians, and obstacles within vehicular networks. Despite their unobstructed 
aerial view advantages, UAVs face several challenges in object detection:

	● UAV imagery is typically captured from altitudes far exceeding inter-vehicular distanc-
es. This results in relatively small object representations, distorted views due to oblique 
angles, and motion blur from UAV-object relative movement, increasing false detection 
rates (Zhou et al. 2022; Li et al. 2018).

	● Occlusion is caused by environmental elements or poor illumination, impairs visibility, 
and leads to missed or false detections (Scott et al. 2016). Researchers have proposed 
various methods to address occlusion under diverse conditions.

	● Further issues in deep learning-based detection include scale variation, object similarity, 
and real-time processing demands (Bouguettaya et al. 2022).

To tackle these challenges, numerous DL-based vehicle detectors have been developed. 
Single-stage detectors, especially the YOLO series, have evolved to enhance real-time per-
formance and improve detection of small-scale targets in complex scenes.

YOLOv3 (Bochkovskiy et al. 2020) significantly improved computational efficiency and 
resource utilization. Innovations like YOLO-GCC and Traffic-DQN presented in Li et al. 
(2021a; 2021b) further refined small-object detection in UAV imagery. Enhanced bounding 
box accuracy was achieved through Soft-NMS and K-means++ algorithms, aiding occlu-
sion management and complex background scenarios. YOLOv4 introduced additional data 
augmentation techniques and clustering improvements (Iftikhar et al. 2023). Its Drone-spe-
cific model incorporated receptive field block (RFB) and ultra-lightweight subspace atten-
tion mechanism (ULSAM) modules for better precision (Koay et al. 2021).

YOLOv6 (Norkobil  Saydirasulovich et al. 2023) and YOLOv7 (Wang et al. 2023a) 
achieved gains in detection speed and accuracy. YOLOv8 introduced an anchor-free archi-
tecture, simplifying detection and achieving higher precision than YOLOv5 on MS-COCO 
(Sirisha et al. 2023). Aerial image detection enhancements in Li et al. (2023) utilized 
YOLOv8-s for real-time detection, integrating bidirectional path aggregation network-fea-
ture pyramid networks (Bi-PAN-FPN) into the network neck to strengthen multiscale fea-
ture fusion. This approach addresses common aerial image issues such as small object size, 
variable lighting, and diverse backgrounds, while maintaining edge-device compatibility 
and reducing parameter costs.

In the domain of two-stage detectors, the low detection accuracy issue of vehicular 
objects from aerial images is addressed in Wang et al. (2020c) utilizing a modified ver-
sion of Faster R-CNN. Working on similar lines, authors in Benjdira et al. (2019) showed 
the competitive performance between YOLOv3 and Faster R-CNN. Their results indicated 
YOLOv3 and Faster R-CNN are comparable regarding precision, while YOLOv3 outper-
formed Faster R-CNN in terms of sensitivity and processing time. Authors in Avola et al. 
(2021) proposed a model dubbed “Multi-Stream Faster R-CNN” which employed different 
kernel sizes for each captured stream to simulate a multi-scale image analysis, thus effi-
ciently detecting objects at different heights. Author in Khezaz et al. (2022b) highlighted 
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the limited role of RADAR and LiDAR sensors, i.e., aiding the vision sensors to enhance 
perception accuracy, for object detection in vehicular networks.

5  Deep learning related cybersecurity threats in CAVs and UAVs

This section covers a comprehensive study of ML techniques that can be utilised to attack 
CAVs and UAVs. Deep learning has been successfully applied to several applications in 
recent years, and among them, many applications are critical as human safety depends upon 
their error-free operations. The deep learning-aided CAVs is one such application (Sarker et 
al. 2020). The crucial association of human safety with AI is a big concern in the cyberse-
curity domain. The immense power of deep learning-aided designs necessitates a high level 
of responsibility (Yuan et al. 2019). Conventional cyberattacks typically involve exploit-
ing vulnerabilities in the CAV’s software or its communication capabilities. In contrast, 
adversarial attacks target loopholes in perception systems, i.e., cameras, lidar, RADAR, 
and their software counterpart that identify vehicular entities. The pioneer investigation by 
authors in Papernot et al. (2016b) explored the weakness of DL constructs that make them 
vulnerable against carefully altered input samples, termed “adversarial examples.” These 
precisely crafted samples can easily deceive a nicely working deep learning systems with 
little changes dubbed “perturbations,” which are generally undetectable by humans.

Current investigations also reveal that adversarial examples can be applied to deceive 
autonomous systems by altering input segments in an object detection system (Xie et al. 
2017). As a cyber-physical system (Rong-xiao et al. 2020), UAVs are part of the distributed 
flying ad-hoc network (FANET) deployed in smart cities to assist CAVs on the ground and 
are also vulnerable to various deep learning-supported malicious attacks by hostile nodes. 
An adversarial example can be formally defined as “inputs to machine learning models that 
have been intentionally modified in a subtle way to cause the model to make a mistake.” The 
adversarial example can be expressed as

	
x̄ = x + arg min

η
{∥ η ∥ f(x + η = t)}� (1)

where x̄ is an adversarial sample, x is the correctly classified sample, η is perturbation, f() 
is the ML classifier, and t is the targeted class. The adversarial attacks target the input of a 
deep learning module by adding adversarial perturbations, so they can be discussed in an 
integrated fashion without differentiating whether UAVs or CAVs captured these images.

5.1  Adversarial attacks

As discussed earlier in this section, adversarial attacks can be conducted using an input 
crafted by a distinct method to obtain incorrect results from the model. In the literature, 
adversarial attacks that impact the training process of machine learning are designated as 
poisoning attacks, whereas the adversarial attacks that affect the inference stage of machine 
learning are called evasion attacks (Jiang et al. 2020). The evasion attacks occur if test 
samples or live inputs of a model are manipulated in order to generate an inaccurate out-
come. Adversarial attacks can also be divided into three main categories, namely white-

1 3

Page 35 of 72     19 



M. U. Zia et al.

box, grey-box, and black-box attacks, depending on the availability of information needed 
for execution. In order to execute white-box attacks, a deep understanding of the target is 
needed, including its training data, neural network structure, parameters, hyperparameters, 
access to gradients, and prediction results. Gray-box attacks assume a partial knowledge 
about the targeted model, whereas black-box attacks only necessitate the ability to query the 
model using arbitrary input and obtain the corresponding prediction. In the case of black-
box attacks, attackers can construct a substitute model based on interactions with the tar-
get model, utilizing input–output pairs. Subsequently, they can transform this substitute 
model into their own white-box model, enabling them to generate adversarial examples. 
These adversarial examples can then be employed to launch attacks on the original black-
box target model, a phenomenon referred to as the transferability of adversarial examples. 
Numerous other classifications of adversarial attacks depending upon their perturbations 
generation method and attack recurrence exist in literature (Qayyum et al. 2020); however, 
in order to present a holistic overview of threats and defences to the reader, we will con-
centrate on adversarial attack generation and their combat methods. Figure  7 represents 
different categories of adversarial cybersecurity threats and defense mechanisms within the 
context of CAVs and UAVs. These categories visually demonstrate the diversity of these 
threats and highlight the proposed defense strategies, offering a clear representation of ways 
through which the DL models can be compromised and the countermeasures in that domain. 
Before discussing the attack types, we explain the terminology useful for understanding 
adversarial attacks.

Fig. 7  Deep Learning related cybersecurity threats and defence in CAVs and UAVs
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A dataset comprising N samples is expressed as {xiyi}N
i=1, where xi refers to the input 

data and yi represents the corresponding labels. The neural network is modelled by the 
function f(.), which makes predictions f(x) based on the input x. The adversarial loss func-
tion is written as J(θ, x, y), with θ denoting the parameters of the model. For classification 
problems, the cross-entropy loss, represented by J(f(x), y), is commonly used. Additionally, 
the adversarial version of the input x is represented by x̄ and formulated as

	 x̄ : D(x, x̄) < η, f(x̄) ̸= y.� (2)

Here, D(x) represents the distance metric, and η is the permissible perturbation, typically 
chosen to be minimal in order to ensure that x and x̄ remain similar.

Adversarial attacks are a topic of extensive discussion (Sadeghi et al. 2020; Hafeez et 
al. 2019; Sharma et al. 2019; Assion et al. 2019; Qayyum et al. 2020; Ren et al. 2020) and 
these can be generated and launched employing several methods. Here we will take a brief 
but holistic survey of the attacks and perturbations that can severely impact the output of a 
deep learning model.

5.1.1  L-BFGS algorithm

The vulnerability of deep neural networks regarding adversarial examples was first dis-
cussed in Papernot et al. (2016b). In this investigation, Papernot et al. crafted adversarial 
examples using the Limited Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) method. The 
L-BFGS method finds the adversarial perturbations with the minimum Lp norm, which is 
expressed as

	
min

x
=∥ x − x̄ ∥p subject to f(x̄) ̸= ȳ.� (3)

where ȳ is the adversarial target label, (ȳ ̸= y). The L-BFGS method introduced pertur-
bations that were almost imperceptible, resulting in misclassified DNN output. The work 
in Papernot et al. (2016b) also explored that these adversarial examples can be general-
ized across various models and datasets. noticed that the generated adversarial examples 
could be generalized to different models and datasets. Another investigation by Papernot et 
al. (2016c) demonstrated the potential of binary search to get the optimal perturbation for 
executing an L-BFGS attack.

5.1.2  Fast gradient sign method

The issue of extended search time for obtaining the optimal value to launch L-BFGS attack 
was investigated in Goodfellow et al. (2015). Goodfellow et al. (2015) suggested “Fast Gra-
dient Sign Method” (FGSM) to generate perturbations. FGSM was speedy, as it follows the 
steepest direction toward the optimal value and could execute the one-step update towards 
the direction of the gradient of the adversarial loss J(θ, x, y). The FGSM-generated adver-
sarial sample can be mathematically written as

	 x̄ = x + ϵ. sgn[∇xJ(θ, x, y)],� (4)
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where ϵ denotes the size of the perturbation, FGSM can be adapted to perform an attack by 
moving along the gradient’s direction with respect to the loss function J(θ, x, ȳ), where ȳ is 
the target label. The corresponding update rule is given by

	 x̄ = x + ϵ. sgn[∇xJ(θ, x, ȳ)].� (5)

Another variant, suggested by Rozsa et al. (2018), dubbed “Fast Gradient Value Method 
(FGVM)” changed the gradient sign with the raw gradient, i.e., η = ∇xJ(θ, x, y). The 
FGVM can generate images with much higher local differences and without pixel restrictions.

5.1.3  Basic iterative method (BIM)

The BIM method explored in Kurakin et al. (2017), refined FGSM by applying it repeatedly 
with a small step size. In each iteration, pixel values are clipped to limit significant modifi-
cations, ensuring minimal changes per pixel. This iterative addition of perturbations gener-
ated adversarial examples that closely resemble the original input, leading to higher chances 
of misleading the network. The update rule for the t-th iteration is given by

	 x̄t+1 = Clip [x̄t + α.sgn {∇xJ(θ, x̄t, y)}] .� (6)

This method utilized three hyper-parameters, namely, the step size α, the maximum allow-
able perturbation, and the number of iterations. Another variant of BIM dubbed “Projected 
Gradient Descent (PGD)” offers a version free of the constraint αT = ϵ. PGD applies 
smaller adversarial perturbations using the update rule given below

	 x̄t+1 = proj{x̄t + α.sign [∇xJ(θ, x̄t, y)]}� (7)

where proj denotes the projection operation.

5.1.4  Momentum iterative attack

Authors in Dong et al. (2018) proposed a momentum iterative FGSM attack based on the 
findings that one-step attacks are easily transferable as well as relatively simple to defend. 
Momentum iterative FGSM boosts FGSM with momentum to produce adversarial exam-
ples with additional iterations. Mathematically, momentum iterative FGSM updates the 
adversarial sample iteratively as given below

	 x̄t+1 = Clip
[
x̄t + α.sgn

{
gt+1

}]
� (8)

where gradient g is updated according to

	
gt+1 = ξgt + ∇xJ(θ, x̄t, y)

∥ ∇xJ(θ, x̄t, y) ∥
.� (9)
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Additionally, Dong et al. (2018) suggested incorporating gradients from multiple models 
with respect to input and identifying a gradient direction that transfers more effectively to 
other models.

5.1.5  Distributionally adversarial attack

Authors in Zheng et al. (2020) explored the incorporation of probability space to form a 
novel attack type dubbed “Distributionally Adversarial Attack (DAA)”. In contrast to the 
Projected Gradient Descent’s loss function-dependent generation of adversarial samples, 
DAA focuses on optimizing over possible adversarial distributions. The basic idea was to 
incorporate the Kraft–McMillan (KL) divergence between the adversarial and benign data 
distributions to evaluate the loss function. The optimization function can be stated as

	

max
µ

ˆ

µ

J(θ, x̄, y)dµ + KL(µx̄ ∥ π(x))� (10)

where µ and π(x) represents adversarial and non-adversarial data distributions, respec-
tively. DAA discovers new adversarial patterns and is recognized as one of the most effec-
tive attacks against multiple defence models.

5.1.6  Carlini and Wagner (C&W) attack

Carlini and Wagner (2017) introduced a new set of attack algorithms and demonstrated that 
defensive distillation offers limited improvement in neural network’s robustness. C&W pro-
posed a series of optimization-based adversarial attacks, capable of generating adversarial 
examples measured by different norms, known as CW0, CW2, and CW∞. The objective 
function for these attacks is given below

	
min

δ
D(x, x + δ) + c. f(x + δ), where x + δ ∈ [0, 1]� (11)

where δ represents the perturbation, D is the distance metric, and f(x + δ) is the adversarial 
loss, which holds true under the condition f(x + δ) ≤ 0, indicating that the attack success-
fully causes the DNN to misclassify the target. Subsequent work by authors of Sharma et 
al. (2020); Alsheikh and Mahmoud (2020) showed that C&W’s attack is effective against 
several adversarial defences.

Concerning image classification attacks of UAVs, optimization base attacks are consid-
ered relatively more time-consuming, however, can achieve the objective of targeted wrong 
classification (Wu et al. 2019).

5.1.7  Jacobian-based saliency map approach

The investigations in Papernot et al. (2016a), resulted in an effective target attack dubbed 
“Jacobian-based saliency map approach” (JSMA) that can fool neural networks with minor 
perturbations. Initially, this technique evaluates the Jacobian matrix of the logit outputs. The 
Jacobian matrix of the sample x is given by
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∇l(x) = ∂l(x)

∂x
=

[
∂lj(x)
∂xγ

]

γ∈1...,Min,j∈1...,Mout

� (12)

where Min and Mout represent the number of neurons in the input and output layers, respec-
tively, and γ and j are the indices of the input x and output  components. The Jacobian 
matrix addresses the question of how elements in the input x influence the logit outputs 
that are ready for classification. Specifically, the adversarial saliency map, derived from 
the Jacobian matrix, identifies the pixels that can be perturbed to achieve a desired change 
in the logit outputs. By altering a small subset of input elements, the network can be eas-
ily fooled into misclassifying the data. Recently, authors in Tian et al. (2022a) exposed the 
vulnerability of WiFi-supported UAVs against such attacks. The proposed approach dubbed 
“Forward Derivative-Based Attack” is claimed as an efficient non-targeted attack regarding 
image classification tasks.

5.1.8  DeepFool

In Moosavi-Dezfooli et al. (2016), the Deep Fool algorithm was proposed in order to find 
the smallest distance from an original input to the decision boundary of an adversarial exam-
ple. This method involves the affine binary classifier and a general binary differentiable 
classifier. Initially, the authors showed that in the case of an affine classifier, the minimal 
perturbation is the same as the distance to the separating affine hyperplane

	 F =
{
x : wT x + b = 0

}
.� (13)

The perturbation for an affine classifier f can be denoted as − f(x)
∥w∥2 w. For a general differ-

entiable classifier, DeepFool assumes F  as linear around x̄t and iteratively computes the 
perturbation δt as

	
argmin

δt

∥ δ ∥2 subject to f(x̄t) + ∇f(x̄t)T δt = 0.� (14)

This result can be extended to multi-class classifiers by hunting the nearest hyperplanes and 
identifying more general lp norms. Studies on the DeepFool algorithm have shown that the 
perturbations generated by DeepFool are relatively small compared to those produced by 
FGSM and JSMA on several datasets.

5.1.9  GAN-based attacks

The investigation in Xiao et al. (2018) first discussed the generation of adversarial samples 
with the GAN. GAN will be elaborated here for clarity before describing the loss model 
and other details. On the basis of a huge dataset, GAN can form a totally new dataset that 
closely resembles the original dataset. The two essential parts of typical generative adver-
sarial networks are 1) a Generator and 2) a Discriminator. The functionality of the genera-
tor is to make new instances of an object, while the Discriminator’s task is to determine 
whether these instances are part of the original dataset. The Generator gets feedback from 
the Discriminator and employs it to compose more “real” images. Let the neural networks 
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formed by GAN be represented by a Generator network G and a Discriminator network as 
D. Furthermore, let the real data distribution be Pdata, the noise vector input to the generator 
be z that is formed utilizing the distribution Pz , whereas the generated samples are referred 
to as G(z). The Discriminator acts as a binary classifier, taking real and generated samples 
as input and estimating the probability of a sample being real. Training a GAN involves 
solving the optimization problem formulated in Goodfellow et al. (2020).

	

min
G

max
D

V (D, G) = E
x∼Pdata

[log(D(x))] +
E
z∼Pz

[log(1 − D(G(z)))] � (15)

where, V(D, G) represents objective function, D(x) is the probability that D discriminates 
x as real data, G(z) denotes sample generated by the generator, and D(G(z)) represents the 
probability that D identifies as the sample formed by generator G(z). A number of GAN 
variants emerged after the pioneering work, such as the Conditional Generative Adversarial 
Net (Mirza and Osindero 2014), Auxiliary Classifier GAN (Odena et al. 2017), while with 
further enhancement in training performance introduced by Arjovsky et al. (2017) and (Gul-
rajani et al. 2017).

5.1.10  Hot/Cold

In Rozsa et al. (2016), authors investigated Hot/Cold method to discover several adversarial 
examples for every single image. Their idea was to permit small translations and rotations 
if they are imperceptible. The judge the identifiable similarity to humans, a new metric, 
“Psychometric Perceptual Adversarial Similarity Score” was defined. The proposed Hot/
Cold method was designed to ignore the unnoticeable difference based on pixels and to use 
PASS instead of commonly used lp distance. A two-step procedure adopted by PASS was 
to a) align the modified image with the original image; 2) measure the similarity between 
the aligned image and the original one. Let ϕ(x̄, x) be a homography transform from the 
adversarial example x̄ to the original example x. H is the tomography matrix, with size 
3 × 3, H is solved by maximizing the enhanced correlation coefficient between x̄ and x. The 
optimization function can be written as

	
argH min

∥∥∥∥
x̄

∥x̄∥
− ϕ(x̄, x)

∥ϕ(x̄, x)∥

∥∥∥∥� (16)

where [.] represents image normalization.

5.1.11  Universal adversarial attack

The adversarial attacks are usually designed to target specific benign samples. Due to this 
case, adversarial perturbations generally do not transfer across benign samples. Investi-
gators in this domain are enthusiastic about discovering a universal perturbation that can 
deceive the network across a wide range of benign samples. The study in Moosavi-Dezfooli 
et al. (2017) represents an effort to identify the minimum additional perturbation required 
to compromise samples. In a further step, the minimum additional perturbation is then aug-
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mented to the current perturbation. Over time, this iterative process identifies a perturbation 
that can fool the network on the majority of benign samples.

Several universal adversarial perturbation (UAP) techniques have been proposed, includ-
ing the Vanilla Universal Attack (Moosavi-Dezfooli et al. 2017), SV-UAP (Khrulkov and 
Oseledets 2018), F-UAP (Zhang et al. 2020), and the Network for Adversary Generation 
(NAG) (Mopuri et al. 2018). These approaches highlight the potential of universal attacks 
to broadly compromise network robustness.

5.1.12  Adversarial patch

Adversarial patches are perturbations in a specific region of the benign samples. Precisely 
crafted adversarial patches can easily deceive a deep-learning model. In this domain, Sharif 
et al. (2016) revealed that cutting-edge face recognition systems can be deceived by forming 
some accessories, e.g., eyeglass frames. Work in Parkhi et al. (2015) extended the investiga-
tion in this context by demonstrating the venerability of commonly employed adversarial 
loss, e.g., cross-entropy in the case where a locally generated perturbation is employed to 
trick the VGG-Face convolutional neural network. In Brown et al. (2017), it was revealed 
that a DNN could be fooled by totally replacing a portion of an image with their carefully 
crafted patch. In Liu et al. (2021), investigators offered a black-box adversarial patch dubbed 
“D-PATCH” capable of simultaneously targeting both the object classification and bound-
ing box regression of models. Authors in Athalye et al. (2018b), showed a general-purpose 
algorithm “expectation over transformation (EOT)”, can create robust adversarial examples, 
and effectively fabricate three-dimensional adversarial objects. In Liu et al. (2018b), authors 
proposed using trojan patches attached to benign samples to generate adversarial examples. 
Regarding UAVs remote sensing of images, an adversarial patch attack for multi-scale 
objects along with a novel optimization technique was proposed by Zhang et al. (2021).

5.1.13  Ad2 Attack

This work in Fu et al. (2022) proposed an attack against UAV object tracking dubbed “Ad2 
Attack”. The attack theme utilizes the image resampling technique instead of crafting adver-
sarial using perturbations. The proposed scheme adaptively attains a complex adversarial 
mapping from low-resolution image to higher resolution image by first directly downs-
ampled in order to lose pixel features and, subsequently, resampling of a lower-resolution 
image utilizing super-resolution upsampling network to generate adversarial examples and 
mislead UAV tracking capability. According to Fu et al. (2022), the proposed method can 
successfully deceive advanced siamese trackers, and the approach can assist in exposing the 
drawbacks of UAV trackers.

5.1.14  Miscellaneous attacks

This subsection briefly overviews several commonly referenced attacks to save space. 
Researchers have investigated several variations of the attack-generating methods such as 
Obfuscated-gradient circumvention attacks (Athalye et al. 2018a), Elastic-net attack (Chen 
et al. 2018), CPPN EA Fool (Nguyen et al. 2015), and Model-based Ensembling Attack 
(Liu et al. 2016b). Additionally, various concerns have been raised regarding the practical 
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applications of these attacks, such as the potential for adversarial perturbations to be neutral-
ized by environmental noise and natural transformations, as well as challenges in applying 
perturbations to the background of images.

5.2  Countermeasures against adversarial attacks in UAV assisted CAVs

The research concerning practical applications of adversarial attacks on CAVs and their 
countermeasures is huge. Various machine learning approaches such as long short-term 
memory solutions, bi-LSTM, convolution neural networks, recurrent neural networks, and 
deep reinforcement learning techniques are also proposed in the literature to protect UAVs 
(Challita et al. 2019). Other futuristic technologies like Blockchain are investigated in Alo-
qaily et al. (2022). Data sharing between UAVs are subject to adversarial attacks, in which 
case an attacker can mingle with the swarm and personify a UAV, thus modifying shared 
data. Federated learning schemes (Wang et al. 2021; Nie et al. 2021; Do et al. 2021; Song et 
al. 2021; Pham et al. 2021; Ng et al. 2021; Brik et al. 2020; Shiri et al. 2020; Ng et al. 2020; 
Zhang and Hanzo 2020; Lim et al. 2021b, c) are proposed as countermeasures.

Recent investigations also explored attacks against the federated learning model. For 
example, Almutairi and Barnawi (2024) benchmarked Byzantine-robust aggregation meth-
ods against model poisoning attacks in federated learning-enabled CAVs. The investiga-
tors evaluated performance under various data distributions and adversarial scenarios. Their 
results challenge existing assumptions about data security and highlight the effectiveness 
of client-selection strategies. Federated learning is also vulnerable to Advanced Persistent 
Threats (APTs), which are stealthy, prolonged cyberattacks designed to infiltrate systems 
and exfiltrate sensitive data. To counter such threats, GK et al. (2025) investigated a Feder-
ated Deep Neural Network (FDNN) with a privacy-preserving technique to detect APTs 
in IoT-enabled vehicular networks. The framework is evaluated on three benchmark data-
sets, achieving high detection accuracy while maintaining data privacy. Furthermore, the 
interpretability of the model is improved using Shapley Additive Explanations (SHAP), 
which quantifies the contribution of each input feature to the prediction of the model, thus 
identifying the most influential indicators of APT activity. In the investigation conducted 
by Cui et al. (2023a), two novel optimization-based data poisoning attacks are explored, 
namely, “black-box” and “clean-label” targeting federated learning in CAVs. Their inves-
tigated attacks use hybrid methods combining particle swarm optimization with simulated 
annealing and genetic algorithms. Experiments conducted by them on traffic sign recog-
nition demonstrate significant model degradation from minimal poisoned data, revealing 
critical FL vulnerabilities.

The existing defence strategies against adversarial cyber-threats are primarily founded 
on two key methods (Moosavi-Dezfooli et al. 2018; Wang et al. 2020b). These are the 
proactive approach, where the cyber-physical system is prepped for potential threats and 
attacks before they occur, and the reactive approach, where defensive measures are imple-
mented after an attack has taken place. The majority of defence techniques rely on the pro-
active approach to minimize potential damage. A detailed description of these techniques 
and their associated research efforts is given below.

	● Proactive defences rely on the enhanced robustness of the model during the training 
phase, making the model inherently more resistant to adversarial perturbations. These 
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techniques can be integrated into the model development process utilizing the follow-
ing methods (Bai et al. 2017; Tramèr et al. 2017; Xie et al. 2019; Carlini et al. 2018; 
Goodfellow et al. 2015; Kurakin et al. 2016; Kannan et al. 2018; Zheng et al. 2016; 
Engstrom et al. 2018). 

1.	 Adversarial training is one of the most widely used proactive defence strategies. 
This method involves incorporating adversarial examples directly into the training 
dataset, enabling the model to learn from these challenging inputs. By doing so, the 
model becomes more adept at identifying and mitigating adversarial attacks during 
inference. Various techniques within adversarial training include: 

(a)	 PGD Adversarial Training
(b)	 Ensemble Adversarial Training
(c)	 Adversarial Logic Pairing
(d)	 Generative Adversarial Training

 These methods collectively contribute to the model’s ability to generalize better and with-
stand adversarial manipulations.

2.	 Network distillation method is primarily known for DNN size reduction by trans-
ferring knowledge from a large, complex model (teacher network) to a smaller, sim-
pler model (student network). Apart from this role, this technique can be tailored 
to defend against adversarial attacks. Smoother decision boundaries of the distilled 
model make it less susceptible to adversarial perturbations. This approach employs 
the knowledge transfer process to enhance the model’s ability to resist adversarial 
examples (Papernot et al. 2016d; Hinton et al. 2015; Soll et al. 2019; Papernot and 
McDaniel 2017).

3.	 Classifier and model modification defence strategies involve modifying the classi-
fier or model architecture to make it more robust against adversarial attacks. The 
methods under this category investigated by researchers in Bradshaw et al. (2017); 
Abbasi and Gagné (2017); Alabdulmohsin et al. (2014); Biggio et al. (2010, 2015); 
Papernot and McDaniel (2018); Srisakaokul et al. (2018); Lecuyer et al. (2019); 
Raghunathan et al. (2018); Wong and Kolter (2018), and are listed below 

(a)	 Creating classifiers specifically designed to be resilient to adversarial inputs.
(b)	 At inference time, randomly selecting a classifier from a pool of classifiers to 

prevent adversaries from predicting the model’s behaviour.
(c)	 Aggregating outputs from multiple classifiers to improve robustness.
(d)	 Integrating k-Nearest Neighbors with DNNs to leverage the strengths of both 

methods.
(e)	 Constructing a family of classifiers from the target classifier, with random 

selection at test time to increase unpredictability.
(f)	 Altering the architecture to create provably robust models against certain types 

of adversarial attacks.
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4.	 Model ensemble techniques combine multiple models’ predictions to arrive at a 
final decision. This approach is particularly effective in enhancing robustness. Even 
if one model is vulnerable to an adversarial attack, the other models in the ensemble 
can provide a corrective influence, reducing the overall risk of a successful attack. 
By aggregating the strengths of multiple models, the ensemble approach offers a 
more resilient defense against adversarial manipulations. Kurakin et al. (2018); Liu 
et al. (2018a); Pang et al. (2019).

5.	 Network regularization techniques aim to improve model robustness by introduc-
ing regularization terms into the training objective function. These regularizers are 
designed to penalize large perturbations in the input space, thereby discouraging the 
model from making drastic changes in its predictions due to small input variations. 
Perturbation-based regularization has been shown to significantly enhance the 
robustness of models against adversarial attacks (Yan et al. 2018; Gu and Rigazio 
2014; Cisse et al. 2017).

	● Reactive defences, in contrast to proactive defences, are deployed during the model’s 
inference phase. These techniques focus on detecting and mitigating adversarial attacks 
after they have been attempted. 

1.	 Adversarial detection involves using specialized detectors to identify adversarial 
examples before they can impact the model’s decision-making process. Zheng 
and Hong (2018); Gu et al. (2019) Specialized detectors analyze input features, 
check for inconsistencies, and verify feature representations within the model. This 
approach also helps trace and identify compromised images. The effectiveness of 
adversarial detection lies in accurately distinguishing between benign and adver-
sarial inputs, making it a critical part of a robust defense strategy (Zheng and Hong 
2018; Gu et al. 2019; Gao et al. 2019; Chen et al. 2021; Wang et al. 2019).

2.	 Adversarial transformation techniques are designed to reverse the effects of adver-
sarial perturbations by converting the adversarial examples back into their origi-
nal clean versions (Guo et al. 2017). These methods usually involve preprocessing 
steps that filter or modify the input before it is fed into the model. By removing the 
adversarial noise, these transformations help to restore the input to a state that the 
model can correctly interpret, reducing the risk of incorrect predictions caused by 
adversarial attacks (Guo et al. 2017; Samangouei et al. 2018; Jin et al. 2019; Liao et 
al. 2018).

5.2.1  ViT and diffusion model-based adversarial purification

In line with our previous discussion, adversarial perturbations can compromise image clas-
sification and object detection systems, jeopardizing the safety and reliability of vehicular 
networks. Although Vision Transformers have shown considerable promise in image rec-
ognition tasks due to their attention mechanisms and ability to model spatial relationships, 
they remain susceptible to adversarial examples (Sun et al. 2024). Furthermore, current 
adversarial defence solutions are designed primarily for traditional CNN-based constructs 
and display limited effectiveness when applied to ViT-based models (Wu et al. 2024). Cur-
rent investigations in this domain include the research effort by Sun et al. (2024) in which a 
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novel detection method dubbed “ViTGuard” was introduced. This method utilized Masked 
Auto-encoders and Vision Transformer features to defend against adversarial attacks, 
including patch-based threats, without requiring adversarial training. The approach outper-
forms seven existing methods across multiple datasets and demonstrates robustness against 
adaptive attacks. The investigation by Song et al. (2024) enhanced the under-display Cam-
era’s image restoration by introducing a defence framework that combines diffusion-based 
adversarial purification with fine-tuning to neutralize adversarial attacks while maintain-
ing image quality. Wu et al. (2024) introduced “CeTaD”, a novel Rapid Plug-in Defender 
that fine-tunes normalization layers of pre-trained transformer models to efficiently counter 
adversarial perturbations without altering the target model or clean data. CeTaD demon-
strates adaptability to various attacks and scenarios, showcasing effectiveness, transferabil-
ity, and potential for continuous learning.

The diffusion models are known for their robust generative capabilities. There are lim-
ited research efforts in this domain; however, investigations have demonstrated effective-
ness in mitigating noise and perturbations in image restoration tasks (Nie et al. 2022). This 
capability aligns well with the requirements for adversarial purification, where the goal is 
to neutralize adversarial perturbations while preserving image quality. In Nie et al. (2022), 
proposed “DiffPure”, a novel adversarial purification method utilizing diffusion models 
to remove adversarial perturbations and recover clean images through a reverse genera-
tive process. Their approach achieves state-of-the-art performance, outperforming existing 
adversarial training and purification methods across multiple datasets and architectures.

As diffusion models operate by iteratively refining an image through a denoising process, 
their iterative nature can provide the following advantages.

	● Adversarial perturbations can be considered as high-frequency noise embedded in the 
image. Diffusion models, by their design, iteratively reverse noise processes, offering a 
natural mechanism for purifying adversarial perturbations.

	● Unlike conventional denoising methods, diffusion models preserve the semantic integ-
rity of images while removing adversarial noise, making them ideal for applications 
requiring high-accuracy image recognition.

	● The iterative nature of diffusion models enables them to adapt to a wide range of adver-
sarial attacks, including both global and localized (patch-based) perturbations.

While diffusion models have been explored in image restoration, their integration with ViTs 
for adversarial purification is uncharted territory. Building on insights from previous work 
on vision transformers (ViTs) and diffusion models, a hybrid ViT diffusion-based purifica-
tion method can be effectively integrated into UAV-supported vehicular networks for robust 
image defence. The novel framework proposed here is composed of a dual-stage process:

	● Stage 1: Diffusion-based purification to neutralize adversarial perturbations at the pixel 
level.

	● Stage 2: Attention-aware refinement using ViT attention maps to ensure no semantic 
distortions remain after purification.

The method can be specifically tailored for UAV-supported vehicular networks, where 
adversarial perturbations can significantly impact navigation and situational awareness. 
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The lightweight and modular nature of diffusion models makes them suitable for real-time 
deployment in resource-constrained UAV systems. Furthermore, Diffusion models, com-
bined with adversarial training or fine-tuning, can be iteratively updated to counter adaptive 
attacks. This dynamic capability aligns with the evolving threat landscape in adversarial 
machine learning. By employing diffusion models for adversarial purification, the proposed 
method not only enhances the robustness of UAV-supported vehicular networks but also 
establishes a novel integration of generative modelling with ViTs for adversarial defence.

5.3  Critical analysis of adversarial attacks

The rise of adversarial attacks on CAVs is becoming a big issue in the cybersecurity domain. 
It is crucial to thoroughly examine these attacks in order to safeguard CAVs and to properly 
train deep learning modules to recognize and counteract such threats. This analysis is vital 
for preventing potential damage to CAV systems. Qayyum et al. (2020). The continuous 
evolution of CAVs leads to the emergence of new vulnerabilities, making it challenging 
to ensure foolproof security (Girdhar et al. 2023). Researchers are continuously striving to 
develop comprehensive frameworks to counter potential attacks. Here, we critically analyze 
adversarial threats and state-of-the-art defense mechanisms.

Firstly, we consider the attacks based on the perturbation generation method that directly 
generates adversarial examples by adding the sign of the loss gradient with respect to each 
pixel in original images, such as FGSM (Goodfellow et al. 2015), BIM (Kurakin et al. 
2017), MI-FGSM (Dong et al. 2018). The success of these attacks depends upon the adver-
sarial knowledge (white or gray box) and the loopholes present in adversarial defense strate-
gies. The work in Deng et al. (2020) concluded that these attacks are moderately potent and 
thus require a compound defense.

Concerning the second class of attacks, the adversarial example can be formulated as an 
optimization problem such as DAA (Zheng et al. 2020), C &W (Carlini and Wagner 2017). 
As discussed earlier, C &W attack attacks have not only evaded the DNN classifiers but 
also evaded the defensive distillation successfully. The C &W (Carlini and Wagner 2017) 
and DeepFool (Moosavi-Dezfooli et al. 2016) attacks rely on the attributes of classification 
models and hence are more deadly in crafting a targeted attack against a particular model. 
Lastly, the methods harnessing the power of generative models such as Generative Adver-
sarial Network (Xiao et al. 2018) to create adversarial examples also pose a serious threat. 
These generative adversarial network variants are formidable due to their capacity to gener-
ate subtle, realistic perturbations that can deceive machine learning models in CAVs. These 
methods often require more computational resources and time to execute but can yield more 
convincing and resilient adversarial examples.

It’s important to consider the level of sophistication of adversarial attacks. Studies have 
shown that even minor changes to input data, such as adding imperceptible alterations 
to images or modifying road signs, can trick the perception systems of CAVs. Defend-
ing against these attacks is challenging and often involves developing robust perception 
algorithms to detect and minimize the impact of such deceptive examples. Techniques like 
adversarial training, anomaly detection, and sensor fusion are crucial for enhancing the 
resilience of these systems. Although adversarial attacks on autonomous vehicles have been 
demonstrated in research environments, there have been no significant real-world incidents 
reported to date. However, the research community is aware of the importance of actively 
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addressing this vulnerability and is exploring all possible measures to counter adversarial 
alterations (Tian et al. 2022b; Qayyum et al. 2020; Girdhar et al. 2023; Sharma et al. 2019). 
In this study, we have identified key methodologies of crafting adversarial perturbations, 
recognizing their equally potent nature concerning UAV-assisted CAV networks. Here, we 
summarize the lesson learned from this comprehensive state-of-the-art review. 

1.	 No single “one-size-fits-all” defense technique can completely eliminate adversarial 
attacks in connected vehicles. Adversarial attacks are a complex and evolving threat, 
and effective defense often requires a combination of defense techniques.

2.	 White-box attacks are significantly more impactful than black-box attacks; this fact 
highlights the significance of safeguarding model particulars (such as model architec-
ture and hyperparameters) through model obfuscation.

3.	 If computational resources allow, opting for driving models possessing intricate archi-
tectures is preferable, as they exhibit greater resilience against adversarial attacks com-
pared to simpler models.

4.	 In contrast to the method of random testing, employing worst-case analysis has emerged 
as a potent technique to differentiate between a system that might fail once in a billion 
trials and a system that boasts flawless reliability. When an adversary aiming to induce 
deliberate malfunctions within a system cannot succeed, it bolsters the assurance that 
the system will uphold its proper functioning even in the face of unanticipated variables.

5.	 To foster the progress of robust machine learning techniques, comprehending the rea-
sons behind the failures of ML algorithms within specific contexts holds paramount 
importance.

6.	 The assessment of adversarial robustness should encompass both targeted and untar-
geted attacks. In any scenario, it is crucial to clearly indicate the types of attacks taken 
into account during the evaluation process. While theoretically, an untargeted attack 
is deemed inherently less challenging than a targeted attack, in practice, executing an 
untargeted attack could yield more favorable outcomes than attempting to target mul-
tiple classes.

7.	 Conducting ablation analysis involves systematically eliminating a set of defense com-
ponents and confirming whether the attack prevails against a comparable yet unpro-
tected model. This practice proves highly valuable, as it aids in a straightforward 
understanding of the goals and gauging the efficacy of combining multiple defense 
strategies.

8.	 The assessment should be carried out across a spectrum of scenarios, encompassing 
testing against random noise, validating against more comprehensive threat models, 
and carefully evaluating the attack hyperparameters to determine the optimal settings 
yielding maximum robustness.

9.	 To ensure the effectiveness of a defense strategy, it is crucial to evaluate the proposed 
method in broader contexts. Important vectors regarding this are given below.

	● Evaluating the defense across multiple databases.
	● Create adversarial examples by ensembling over the randomness.
	● Check the transferability of the defense to other models
	● Establish robustness bounds by testing the model against all types of attacks.
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	● Implementing the input processing mechanisms offered by researchers to filter out 
adversarial perturbations.

	● Regularly updating the defense model to counter new attacks.

It is vital for researchers, industry experts, and regulatory bodies to collaborate in order 
to establish best practices, standards, and regulations that can effectively reduce the risks 
associated with adversarial attacks.

6  Challenges and trends

Various deep-learning designs applied to CAV sensors are already discussed in previous 
sections. The massive amount of literature indicates significant interest in the research of 
such systems. However, these systems are still far from ready for widespread commercial 
deployment due to certain challenges. This section will discuss how the research commu-
nity works to solve these issues.

6.1  Challenges in DL-assisted CAVs and UAVs

1.	 CAV’s modular design dependency:
	 The modular AI-aided CAV system consists of a series of AI black boxes that aid in 

a certain problem, and the solution of one problem is the input to another one, thus 
forming a multilevel decision-making system (Furda and Vlacic 2011). Researchers 
have noted significantly good performance in certain parts. However, the dependency 
of individual parts on the overall performance of a CAV system calls for joint optimiza-
tion, which is very challenging.

2.	 Adaptability in CAVs:
	 In Muhammad et al. (2021); Gupta et al. (2018), researchers suggest that the adapt-

ability of a designed AI system is a big challenge. The mainstream AI techniques for 
CAV trained on data collected in a certain environment (weather conditions, surround-
ing objects, and vehicles in urban and rural environments) are found unreliable in 
cross-environments.

3.	 Gigantic data in CAVs:
	 The massive variations in vehicle type, road structure, and objects worldwide demand 

a considerable amount of data that should be collected worldwide for high accuracy in 
vehicle, and object detection (Mahmood et al. 2018; Kumari et al. 2017). Currently, 
no such data is available, which poses a key hurdle in generic AI-aided system design. 
Adding to this complexity, the data taken from different environments gets multiplied 
by the number of available sensors. Researchers have shown that it is infeasible for an 
AI system to process all captured data as it has immense redundancies, and thus data 
prioritization mechanisms are needed (Muhammad et al. 2019; Hussain et al. 2020).

4.	 Adversarial resilience ML:
	 Although, the high caliber of DL techniques in scene perception and object identifica-

tion is an edge, however, these algorithms are also vulnerable to well-crafted adversar-
ial attacks as discussed in Section V. These carefully crafted adversarial perturbations 
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can cause havoc in UAV-assisted CAV systems by attacking either CAV or UAV sen-
sors. The imminent threat of adversarial perturbations demands novel deep-learning 
approaches that are robust against these attacks. Till now, the defense strategies con-
cerning ML attacks are focused on implementing novel attacks and better training of 
ML models against those attacks, whereas comparatively limited attention was devoted 
to defensive frameworks as well as more robust ML models. In a study by Gürel et al. 
(2021), the investigators explored a comprehensive defence strategy to reduce the sus-
ceptibility of ML/DL models to adversarial attacks. Additionally, the distributed storage 
of CAV sensor data pose security vulnerabilities that need to be addressed. Authors of 
Gürel et al. (2021) emphasised that robust security mechanisms for training and testing 
data should be ensured, as connected vehicles’ control and decision-making processes 
rely on accurate and error-free datasets. The standardisation of defence techniques for 
safeguarding UAV-assisted CAV systems is imperative to guarantee the safety of pas-
sengers and pedestrians.

5.	 Safety concerns in DL-assisted CAVs:
	 The automotive safety standards have not fully evolved to address the challenges of 

deep learning safety, such as verification and performance limitations. The issue with 
deep learning methods is their optimization for average cost function, and they do not 
guarantee safety for all cases. There is a need to develop strategies to keep the vehicle 
on the road safely at the time of partial or full-scale vehicle malfunction. Moreover, 
safety margins are needed to be clearly defined, i.e., the difference between the model’s 
performance on the training set and operational performance in the real world (Mohseni 
et al. 2019). The performance of a deep learning module should be investigated in rare 
and unseen situations dubbed “corner cases” in literature.

6.	 CAV’s conceptual model for Accountability:
	 One of the challenges in dealing with DL-aided systems is that while using such neural 

networks, it is tough for humans to understand the rules learned by simply examining 
their weights. Researchers are working day and night to investigate different ways to 
visualize and understand the logic and decision provided by AI models in scenarios 
where such decisions ultimately impact humans’ safety (Arrieta et al. 2020). Authors in 
Adadi and Berrada (2018) proposed the eXplainable AI (XAI) technique, which reveals 
the internals and knowledge learned by DL models and assists in tracking and post-mor-
tem analysis of wrong decisions, thus providing accountability and a means for model 
refinement. More efforts in this domain can be found in Samek et al. (2017); Montavon 
et al. (2018).

7.	 CAV’s human–machine control divide:
	 Currently, there are no guidelines or hard and fast rules regarding
	 a) How will the human driver respond to various system alerts, and how much should he/

she trust DL-assisted system warnings compared to his visual analysis and experience?
	 b) In what scenarios a human driver should prefer having control in his hand instead of 

a DL-assisted system?
	 c) What type of alerts can indicate the driver to assume control of the vehicle, and how 

much control can be shared in specific scenarios?
	 All these questions are challenging and are currently being investigated by the research 

community.
8.	 Crash rescue system for CAVs:
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	 Considering the possibility of AI-assisted CAV being involved in traffic accidents due 
to unanticipated vehicle malfunction, a cash rescue system is necessary, especially in 
sparsely populated areas or in the case of a sole driver in a CAV who is unable to call 
for help. Researchers are investigating deep learning-aided systems that can detect such 
scenarios and send a distress message to the proper authorities promptly (Chang et al. 
2019b; Rahim and Hassan 2021; Wang et al. 2020a).

9.	 UAV’s model uncertainty:
	 Several challenges arise concerning the employment of DL techniques in UAVs, start-

ing with their intellectual understanding. The troubleshooting and update of a system 
according to needs and changing environment constitutes a significant part of system 
design and analysis (Khan and Al-Mulla 2019). Regarding this essential demand, the 
lack of knowledge about the relation between the neural network optimized weights, 
and system dynamics and unawareness of the reasons behind specific architectures out-
performing others pose big challenges (Osco et al. 2021).

10.	 UAV’s data dimensions and labels:
	 Nowadays, collecting unlabeled data is feasible and technologically easy compared 

to labeled data. Success in acquiring such databases leads to the massive use of unsu-
pervised learning algorithms. Unsupervised Learning mimics human behavior to learn 
the systems by simply observing them. In addition, the practical scenarios commonly 
involve high-dimensional state spaces (possible actions) that severely diminish the trac-
tability with modern techniques (Zeggada et al. 2017).

	 The acquisition of UAV data using comprehensive measurements in diverse areas, such 
as rural, urban, and areas having high mobility or loaded with sky-skippers, to test 
the accuracy of the DL algorithms is minuscule. These DL algorithms’ performance is 
highly volatile in scenarios with actively changing environments, which complicates 
the realization of the UAV-assisted CAV system.

11.	 UAV’s DL resources:
	 The feature extraction constitutes the core application of a DL-aided UAV system due 

to its gifted capability to learn and interpret raw sensor data. In contrast to feature 
extraction, the DL-aided UAV supervision/planning system that translates the learned 
features to implement different functions is far more complex. Despite having an edge 
of being straightforward, the feature extraction systems still require high computational 
resources (Carrio et al. 2017). The UAV’s limited resources make it challenging to 
integrate all resources needed for an autonomous online UAV that acts according to 
changing situations and environments.

	 Even with advances in energy-efficient hardware, the high-end communication and 
computational resources requirements pose the significant challenge of developing 
energy-efficient low computation demanding deep learning architectures to researchers 
(Carrio et al. 2017).

12.	 CAV-UAV testing platforms:
	 Like CARLA for testing the performance of CAV’s DL designs, a comprehensive soft-

ware testing platform is essential to validate and ensure the reliability of deep learning-
supported connected vehicles that work in conjunction with UAVs. Currently, there 
are no such platforms that can perform a rigorous assessment of enhanced perception 
capabilities after integrating DL-enabled CAVs and UAVs’ sensor data. Additionally, 
by providing a controlled environment to test and fine-tune DL algorithms, the platform 
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helps optimize the performance and safety of integrated CAV-UAV systems before 
deployment in real-world scenarios.

13.	 DL-aided UAVs in cross environments:
	 The DL-aided UAV’s performance trained on sensor data in static weather is still oblivi-

ous in diverse weather conditions. The design of a deep learning UAV system that 
works with robustness and reliability in all cross-weather environments and counter 
uncertainty and data deficiency pose a serious challenge to machine learning experts 
(Azar et al. 2021).

6.2  Emerging trends and future directions

This subsection will discuss directions that academia and industry should follow for the 
deployment of up-and-running UAV-assisted CAV system. 

1.	 Online learning:
	 Researchers are trying to tackle the problem of varying environments with online learn-

ing (also known as incremental or out-of-core learning) strategy that updates the model 
with new data. Investigators have recently applied online learning strategies in many 
domains, such as surveillance, where the deep model iteratively fine-tunes itself. Sto-
chastic Online Learning (Cui et al. 2019) and Deep Online Learning via meta-learning 
(Nagabandi et al. 2018) are new trends in this domain.

2.	 Edge computing:
	 The traditional deep learning training process is performed on devices with high com-

putational capabilities, and then the trained models are applied on the edge devices. This 
scheme is not efficient concerning its future deployment using the Deep Online Learn-
ing construct, where there is a need for updating the knowledge captured by the model. 
Edge Computing can contribute to this scenario as proposed by Liu et al. (2019a).

3.	 Federated learning:
	 Federated learning framework has been recently proposed as an effective tool to reduce 

the transmission overhead while achieving privacy by transmitting only model updates 
of the learnable parameters rather than the complete dataset. Several researchers, such 
as Zeng et al. (2022); Pokhrel and Choi (2020); Savazzi et al. (2021); Du et al. (2020b) 
are investigating significant challenges in its implementation from the machine learning 
and communication perspective.

4.	 Energy efficiency:
	 Several investigations showed that CNN have obtained unprecedented success in vari-

ous object detection tasks associated with CAVs, however, their immense memory and 
computational requirements diminish their usefulness (Muhammad et al. 2021). Thus, 
energy-friendly and efficient CNN models are under investigation to improve the driv-
ing safety of CAVs.

5.	 Industrial standardization:
	 The lack of large-scale industrialization standards is a critical hurdle in developing a 

universally accepted CAV system. Several companies like Google and NVIDIA are 
investing massive resources in building powerful AI-based self-driving cars, neglecting 
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the integration and generalization of the CAV system. Many researchers are pointing 
towards this gap that could be a big issue when integration is needed in the future.

6.	 Benchmark dataset:
	 Many researchers are focusing on the need for a universal benchmark dataset. Although 

the availability of several publicly accessible datasets such as MS-COCO, KITTI, VOC 
07, and VOC 12 aid in evaluating different aspects of CAV systems. However, for stan-
dardization and evaluation of the overall performance of CAV systems, the need for a 
universal benchmark dataset is eminent.

7.	 Fully autonomous UAVs:
	 UAV’s autonomous working with least or best possible no human guidance is currently 

an essential research domain that will likely remain hot in the near future (Lee et al. 
2021). The fully autonomous UAV research encompasses environmental perception, 
decision-making, navigation, control, data transfer, and UAV’s emergency response 
(Bithas et al. 2019; Azar et al. 2021; Lee et al. 2021). Indeed, we will observe the prog-
ress concerning energy-efficient deep learning designs for these tasks in the forthcom-
ing years.

8.	 Quantum neural networks:
	 In general the complexity of bit-based conventional neural networks increases with 

the increase of hidden layers and neurons, quantum neural networks (QNN) can 
be employed due to their higher performance and low complexity for 6  G cell-free 
MIMO networks to optimize their performance (Narottama and Duong 2022). QNN 
has recently been proposed for optimal resource allocation in future wireless systems 
(Narottama and Shin 2022). Designing quantum gates, the required number of Qubits 
and integration of the quantum processing unit in the UAV-CAV network could be a 
challenging problem. Qubits are used to speed up the process in the network. It is also 
reliable and more accurate. The addition of a quantum module in the vehicular net-
work needs the training to make QNN self-capable when handling large datasets with 
enhanced prediction accuracy in less time.

9.	 Emerging technologies:
	 Some of the emerging technologies from which UAV-CAV network can benefit are 

6 G-V2X, quantum computing-assisted V2X, satellite-assisted V2X, hybrid radio fre-
quency-visible light communication, and intelligent reflecting surfaces-assisted V2X. 
To attain enhanced cybersecurity and data privacy, blockchain-assisted V2X and quan-
tum federated learning (QFL) (Chehimi and Saad 2022; Huang et al. 2022) are cur-
rently under investigation by academia on a massive scale (Noor-A-Rahim et al. 2022).

7  Conclusion

In this paper, we have thoroughly investigated the emergence of next-generation CAVs 
assisted by UAVs in the context of artificial intelligence. We have pinpointed the challenges 
faced by CAVs that UAVs can address, leveraging the aerial perspective for traffic analysis 
and pattern recognition. We delved into deep learning constructs in connected vehicles, 
offering a detailed overview of modular and end-to-end DL approaches, followed by a criti-
cal assessment of their advantages and disadvantages. Notably, end-to-end models have 
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demonstrated promising outcomes in driving simulators like CARLA, with the potential 
for real-world application being a subject of keen interest. We also explored Vision Trans-
formers and LLM-based designs. LLM-based approaches have demonstrated their utility in 
interpreting complex instructions, enabling more nuanced human-vehicle interactions and, 
enhancing system autonomy.

In addition to exploring the DL designs adopted by UAVs utilizing sensors such as cam-
eras, RADAR, and LiDAR, we scrutinized DL architectures employed by UAVs for object 
detection in vehicular networks. In the realm of UAV-supported detection of autonomous 
vehicles, the choice between single-stage and two-stage designs remains pivotal. Single-
stage approaches, such as YOLO and SSD, emphasize real-time processing crucial for 
dynamic road scenarios, while two-stage methods like Faster R-CNN prioritize accuracy 
for precise localization and vehicle recognition. The trade-off between speed, accuracy, 
and computational efficiency must be tailored to autonomy requirements. Furthermore, in 
examining DL-associated cybersecurity threats in CAVs and UAVs, we analyzed adver-
sarial attack strategies and their corresponding countermeasures, underscoring the severity 
of these threats and the necessity of a holistic and resilient defense strategy.

The paper concludes with a discussion of open challenges and future research directions. 
Traditional DL models are insufficient for the evolving demands of CAV-UAV ecosystems. 
Therefore, we recommend adopting online or incremental learning methods that enable 
real-time adaptation to changing environments. Meta-learning strategies should be pursued 
for continual model refinement across diverse conditions. Federated learning emerges as a 
critical avenue to reduce data transmission overhead and enhance privacy by exchanging 
model parameters instead of raw data. Moreover, promoting the development of unified 
industry-wide standards is essential to ensure the interoperability and scalability of CAV 
systems. For UAVs, there is a pressing need to research and develop systems capable of full 
autonomy with minimal human oversight especially in navigation, perception, and emer-
gency handling. There is a pressing need for a universal benchmark dataset that helps in 
standardized evaluation of the overall performance of CAV systems.

Finally, we emphasize that no singular or universal defense mechanism can fully mitigate 
adversarial attacks within connected vehicle environments. Given the dynamic and multi-
faceted nature of these threats, robust security demands an adaptive, multi-layered strategy. 
This comprehensive survey thus provides valuable insights into cutting-edge AI practices 
and technological trajectories in UAV-assisted CAV networks, offering a foundation for both 
future academic research and industrial innovation.
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