

What's the worst that could happen? The risk of illness, injury, and death related to international travel—the Australian experience

Siobhan C. Carroll ^{a,*} , Maria Eugenia Castellanos ^a, Andreas Neumayr ^{a,b,c}, Lars Henning ^a

^a College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia

^b Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland

^c University of Basel, Basel, Switzerland

ARTICLE INFO

Keywords:

Travel medicine
Risk factors
Tourism
Incidence
Pre-travel counselling
Australia

ABSTRACT

Introduction: Medical advisors to travellers whose journeys begin and end in Australia will benefit from a review of the associated risks, to guide pre- and post-travel advice and care.

Methods: A literature search was conducted for original research on medical events in Australian residents related to international travel. Important findings were summarised, incidence and risk factor data extracted, and grouped thematically for narrative review.

Results: 31 studies published between 1995 and 2024 were identified. Reports of medical events during travel ranged between 28 % and 82 % of travellers, most commonly respiratory and gastrointestinal in nature (34 %–63 % of cases combined). Trauma accounted for 25 %–49 %. 23 studies (74 %) provided data only on events identified or treated after the traveller had returned. Respiratory, gastrointestinal and febrile illnesses were the most frequent reasons for these presentations. Respiratory infection was more common in older returned travellers. Younger adult travellers, more commonly experienced gastrointestinal infection and traumatic injury, including animal bites. Travellers Visiting Friends and Relatives (VFR) were at a higher risk of introducing notifiable diseases to Australia, and contracting tropical diseases.

Conclusions: Many travellers seek care after returning from international travel, with the majority due to diseases which commonly occur in Australia. Tropical diseases, however, which can be life-threatening, and require high levels of care, must be excluded. The changing demographic of the migrant population presents a public health risk when VFR travellers are exposed to diseases with limited presence in Australia. Travel advice should include a discussion about possible rabies exposure.

1. Introduction

UN Tourism reported that international tourism surpassed pre-pandemic levels in 2024 [1]. This aligns with the Australian experience. The monthly number of residents returning from short-term trips reached pre-COVID-19 volumes in January 2024 [2]. The Australian Bureau of Statistics (ABS) defines short-term travellers as Australian residents leaving the country and returning within one year [3]. The most popular reason for travel in this cohort is 'holiday' (57 %), followed by 'visiting friends/relatives' (VFR) (29 %) [3].

Unplanned medical events during travel can lead to significant disruption of travel plans and reduced well-being, care in foreign environments, expensive medical bills, and long-term consequences for the returned traveller's health. To minimise the impact of illness and injury

in their clients, travel medical advisors need to counsel them on the risk associated with their planned itinerary, utilising evidence of factors associated with morbidity and mortality.

It is well-established that the chance of medical events occurring while travelling overseas depend on various characteristics of the planned journey, and the traveller undertaking it [4]. The travel destination has been shown to influence the risk of medical events; higher in lower income countries, due to the associated risk of infectious disease, inferior transportation safety standards, and the local standard of medical care [5,6]. The duration of travel positively relates to the risk of medical events, as does age [5–14]. Other risk factors identified for medical events during or after travel, include the presence of comorbidities or chronic disease, travel style (e.g. backpacking), journey purpose (e.g. aid work), activities (e.g. riding motorised vehicles) and

* Corresponding author.

E-mail address: siobhan.carroll@my.jcu.edu.au (S.C. Carroll).

precautionary behaviours (e.g. vaccination) [4,6,15,16]. In addition, health risks from international travel vary according to the traveller's normal place of residence [4,17]. Therefore, how these factors affect the likely illness or injuries associated with international travel for Australian residents, is best reflected by studying Australian travellers.

While pre-COVID-19 data suggested that only 30 % of Australians sought pre-travel advice, it is anticipated that the improved medical literacy e.g. risk and benefits of vaccinations, health promotion, risk perception and risk avoidance behaviour, introduced by the pandemic, will increase pre-travel consultations [18,19]. This review set out to explore the documented evidence of medical events in short-term Australian international travellers, to assist in the provision of realistic pre-travel risk assessment and health promotion strategies.

2. Materials and methods

A comprehensive search was undertaken on the 22nd of February 2024, of two electronic databases; Ovid Medline, and SCOPUS and one search engine, Google Scholar, to identify original research which provided data on medical events occurring in Australian international travellers both during their journey, or after their return to Australia. Pilot searches showed that recent data was scarce, so no restriction was made on publication date. The published language was restricted to English. Peer-reviewed articles were included, as were government reports with relevant data. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (<http://www.prisma-statement.org/>) were utilised to ensure a robust search process, although it was performed by a single reviewer, and was not a systematic review (Fig. 1).

For quality purposes, a specialist librarian was consulted to identify the search terms used; *Australia, international travel, returned travel*,

medical, health, travel medicine, injury, illness, travel-related illness, and death. MeSH terms were considered when applicable and consideration given to spelling options, particularly '*traveller*' and '*traveler*'. The first 200 Google Scholar results were included, as they are sorted by relevance, and this ensured a manageable return of appropriate articles.

Articles were collected in an EndNote 21 library. The original list was screened for duplicates; initially done using the comparison functionality of EndNote and followed by manual review by authors' names and document title. The reference lists of articles were reviewed for additional studies which might meet the search criteria, and they were added to the EndNote library. Only original research was included in the final review, review papers which were identified in the search were checked at this stage for appropriate studies, that may have been missed, but no further papers were identified.

In the title and abstract screening process, the main reasons for exclusion were document type (not original research), and unrelated topics. Because the intention was to capture studies of short-term international travellers from Australia, studies were excluded if the defined traveller cohort was specifically immigrant, refugee, expatriate populations or foreign visitors to Australia. Where there was a mixed cohort of those traveller types, papers were excluded if there was no explicit data on Australian resident travellers. Papers were excluded if all travel was domestic rather than international. Because the purpose was to review the Australian experience, the cohort must be clearly identified as Australian residents. Where Australian travellers were grouped only with New Zealand travellers, the papers were included, but larger groupings such as Oceania or Australasia were not.

An extraction spreadsheet was created for Excel (Version 16.63.1) to allow documentation of decisions during the full-text review. Studies were included if the paper included insight into the possible incidence of any medical event related to international travel. Papers which

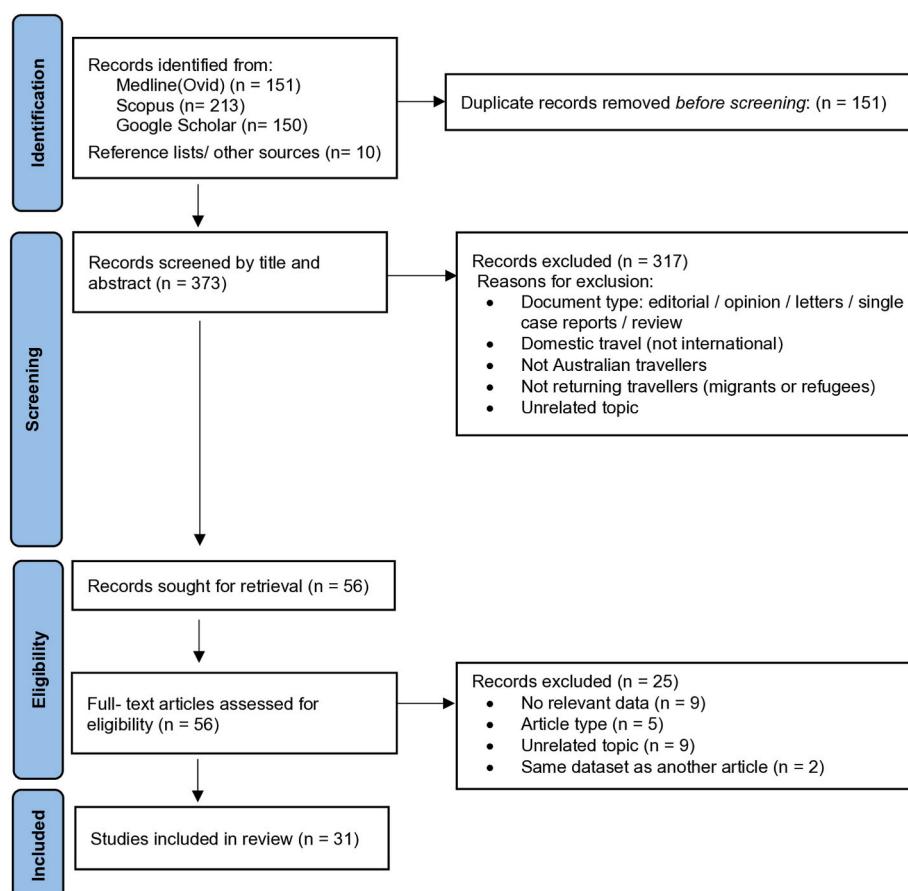


Fig. 1. Flow diagram of process for review of medical events in Australian international travellers.

identified risk factors for Australian international travellers were also included.

Once the final papers were identified, the important findings and themes of each paper were summarised in an Excel spreadsheet, to allow for grouping and comparison, in preparation for narrative review. Only data available in the published work was reviewed. The search was repeated on the 15th of April 2025, limited to the period from 1st January 2024 to 15th April 2025, to identify new publications.

3. Results

A total of 31 studies were identified which provided information on the occurrence of and risk factors for illness, injury, or death in international travellers from Australia (Table 1). 27 studies were identified in the initial search, and a further four in the later search. Publication dates were between 1995 and 2024. 30 of the studies were carried out in Australia and one in Thailand. Two papers recorded medical events during travel and immediately afterwards (72 h, and one week), five considered medical events during travel, one considered deaths during travel, and 23 provided data on events that became evident, or required treatment, only after the traveller had returned to Australia.

In the eight papers that measured events during travel, five detailed all-cause morbidity (62.5 %), two investigated infectious disease (25 %), and one all-cause mortality (12.5 %). Of the 25 that measured events after travel, 21 involved infectious diseases (84 %), two all-cause morbidity (8 %), and two the traumatic injury of animal bites/scratches and rabies exposure (8 %).

The key findings of the review were considered according to the measurement period with respect to travel and are outlined in Table 1. Reports of medical events during travel ranged between 28 % and 82 % of travellers. Respiratory and gastrointestinal diseases were the most common experienced by Australians during overseas travel (combined, they accounted for 34 %–63 % of medical cases). Traumatic injuries were most commonly classified as musculoskeletal events following accidents or falls. Between 25 % and 49 % of medical cases during travel were due to trauma.

Most commonly, medical events related to international travel, but diagnosed in Australia were respiratory, gastrointestinal infectious diseases, or systemic febrile illness. The most common non-infectious reason was traumatic injury.

The five papers with statistically significant risk factors identified for medical events related to international travel ($p < 0.05$) are summarised in Table 2.

4. Discussion

Based on international data, it is generally assumed that between 22 % and 64 % of travellers will experience a medical event during their journey [52,53]. Reports of medical events during travel ranged between 28 % and 82 % of Australian travellers in this review. The wide range reflects the non-uniform cohorts of the included studies, with various combinations of traveller age, travel duration, destination, and definition of medical event, among other contributing factors. Incidence values specific to events occurring after the Australian travellers had returned home were not identified. The consolidated research provides a number of overarching principles and notable findings relevant to Australian medical and public health practitioners.

4.1. Infectious diseases: Australian endemic infections

Currently, the most popular destinations for Australian travellers are Indonesia, New Zealand, the USA, the UK and Japan [3]. While Australians may consider these to be 'safe' destinations, the frequency of gastrointestinal, respiratory and febrile illnesses in Australian travellers returning from high-income countries has previously been highlighted by Drewett and Leder [54]. The results of this review reiterate that all

international travellers should be made aware of the risk of gastrointestinal and respiratory illnesses during travel, and take appropriate precautionary measures, to minimise the disruption or discomfort in their journey [16,55].

Where a confirmed diagnosis was available, the review reinforced the adage that 'common things occur commonly.' The cause of illness in most Australian returned travellers was an infection endemic in Australia. Confirming the results in prior studies from global cohorts [4, 6,56,57], respiratory and gastrointestinal infections were among the leading cause of complaints in Australian travellers [20,24,29]. This pattern shows consistency across 25 years of research, despite changing traveller demographics in that period [3,58].

4.2. Infectious diseases: tropical diseases (Australian non-endemic infections)

While routine infections are frequent, it was repeatedly reported that returned travellers with tropical diseases required higher levels of care such as hospitalization [28,36]. This should further encourage the provision of pre-travel advice regarding prevention of such diseases through vaccines, prophylaxis, and personal hygiene instruction [59,60]. However, even with full adherence to recommended precautions, illness is still possible, so travellers should be aware of the warning signs of such diseases when travelling [56]. The increasing numbers of Australian travellers to Asian destinations, and Indonesia in particular, was seen to be reflected in increasing numbers of tropical diseases, like dengue [38]. This review further highlights the importance of clinical suspicion and history taking in post-travel medical care, to correctly diagnose life-threatening tropical diseases like malaria. The post-travel consultation should always consider the actual preventative behaviours undertaken, rather than what was planned, because there are risks associated with non-compliance [46]. The studies in this review showed that Australians overwhelmingly presented for medical care for tropical disease within six months of their return, reinforcing the message that details of travel in that period provide an important component of the medical history [61,62].

4.3. Traumatic injury

International evidence suggests that the risk of accidents and injuries in travellers requires more attention within the discipline of travel medicine [9,63]. A recent systematic review showed that travellers have a higher risk of injury than domestic populations but had no specific data from Australians travellers [64]. The predisposition for risk-taking behaviour while overseas, and resultant trauma highlighted in this review is consistent with other research outlining the increased risk taking in holidaymakers, particularly younger travellers [21,65]. Data from all cause morbidity and mortality in this review suggested that trauma is an important cause of medical events in Australian travellers, accounting for up to 49 % of medical cases during travel, and 27 % of deaths [23,24,27]. Significantly, 10 % of Sohail's cohort had experienced a traumatic injury during travel but sought care in the Australian medical system, representing a burden on Australian medical services, despite their occurrence overseas [29].

4.4. Traumatic injury: animal bites and rabies exposure

In terms of Australian tourist travellers, this review showed discussion of rabies exposure should always be included in pre-travel counselling. The absence of rabies in terrestrial Australian animals, leaves most residents unaware of the danger, despite its existence in some of the more frequent tourist destinations, including the most popular, Bali, Indonesia [2,66]. The reporting of presentations for rabies Post Exposure Prophylaxis provides an indication of the frequency of animal bites during travel, suggesting that potential rabies exposure is common and questions regarding animal exposure should actively be asked by the

Table 1

Summary of original research included in this review of medical events in Australians related to international travel.

Category	Year of Publication	Reference	Cohort and medical events measured	Findings
<i>Events measured during travel</i>				
All cause morbidity	2019	Oo et al. [20]	Medical events in travel clinic attendees	Of 24 Australian and New Zealand travellers presenting to a Bangkok hospital, the most common diagnostic groups were gastrointestinal disorders in nine (38 %) and respiratory disorders in six (25 %).
	2017	Furuya-Kanamori, Mills, Sheridan and Lau [21]	Medical and psychological events in gap-year travellers	28 of the 34 (82 %) gap-year travellers reported medical problems. Sunburn was most common (19 cases, 56 %). 15 experienced respiratory infections (44 %), 14 reported weight change (41 %), and 13 diarrhoea or food poisoning (38 %). Psychological stressors were common, including 26 who felt homesick (76 %) and 18 (53 %) reporting culture shock. 19 (56 %) participants sought medical attention at least once during their placement. Three were admitted to hospital (9 %). At least 22 (65 %) engaged in risky behaviours, including excessive drinking or illicit drugs.
	2015	Bialy et al. [22]	Medical events in immunosuppressed travellers	34 of the 105 (32 %) immunosuppressed (HIV-positive or renal transplant or rheumatology patients) participants reported being unwell while travelling, but only 18 (17 %) sought medical advice during the journey. 41 were VFR travellers (39 %) and 57 (54 %) were visiting a high-risk destination.
	2005	Leggat, Griffiths and Leggat [23]	Emergency medical events in travel insurance customers	Out of approximately 20,000 travel insurance policyholders, emergency medical assistance was accessed by 136. 46 were admitted to hospital, and 10 required medical evacuation. In total, there were 275 travel insurance claims for medical or dental treatment, and a further 59 for trip cancellation or curtailment for medical reasons. Claims causation was available in 308 of those 334 claims (92 %). The top disease categories were musculoskeletal 87 (28 %), gastrointestinal 45 (15 %), dental 42 (14 %), respiratory 36 (12 %), and ear, nose, and throat 26 (8 %).
	2002	Leggat and Leggat [24]	Medical/dental travel insurance claims	In 539 of 569 (95 %) insurance claims for medical and dental events, the nature of illness was available. The most common categories were respiratory 110 (20 %), musculoskeletal 90 (17 %), and gastrointestinal conditions 75 (14 %), ear, nose and throat 67 (12 %) and dental 39 (7 %). There were 2 deaths. Causation was only available in one, listed as acute myocardial infarction. Heart attack and stroke accounted for 6 (5 %) of the 122 claims for which causation was available. The most common causes were traumatic accidents and falls 60 (49 %) and infectious disease 29 (24 %).
Infectious disease	2020	Alqahtani et al. [25]	Respiratory, constitutional, and gastrointestinal symptoms in Hajj pilgrims	288 of the 391 (74 %) participants reported one or more illness symptoms. Most common symptoms were cough 176 (45 %), sore throat 171 (44 %), runny nose 103 (26 %), diarrhoea 64 (16 %) and fever 59 (15 %).
	2013	Ratnam et al. [26]	Respiratory disease in travel clinic attendees	ARIs occurred in 109 of the 387 travellers (28 %) to Asia. 12 travellers experienced multiple episodes of illness (2 or more) during the travel period. By day 30, the cumulative risk of an episode of ARI was estimated to be 30 % and 44 % by day 100. The incidence was measured as 106.4 ARIs per 10,000 traveller days (95 % CI 88.6–126.7). The study identified four cases of influenza A during travel, providing an incidence density of 3.4 infections per 10,000 days of travel (95 % CI 1.4–8.6).
Mortality	1995	Prociv [27]	Overseas deaths of Australians as reported to the Department of Foreign Affairs and Trade.	Of 313 deaths of short-term Australian overseas travellers, 227 (73 %) were from illness, and 86 (27 %) due to trauma. Cardiovascular events were the single largest cause of death, with 117 (37 %) cases, while motor vehicle or road accident 28 (9 %) was the most common cause of traumatic deaths. The crude estimated mortality rate for Australian travellers was calculated as 10/100,000 per month. Death rates increased with age. Fatal trauma predominated in younger people.
<i>Events measured after travel</i>				
All cause morbidity	2024	Mazzocato et al. [28]	Paediatric medical events in Emergency Department attendees and infectious disease referrals	Reason for travel was VFR in 193/282 (68 %) returning child travellers, and tourism in 83 (29 %). 91 VFR travellers were admitted to hospital (47 %) compared with 20 returned tourist travellers (24 %). VFR travellers contributed 44/51 (86 %) cases of 'uncommon' (non-endemic in Australia) infections and 149/244 (61 %) 'common' (endemic in Australia) diseases. 8/10 (80 %) children reporting return from a Pacific cruise had an RTI.
	2019	Sohail et al. [29]	Medical events in Emergency Department attendees	In the cohort of 464, the most common reasons for presentation were gastroenteritis 119 (26 %), systemic febrile illness 88 (19 %) and respiratory tract infection 51 (11 %). The most common non-infectious reasons were traumatic injury 47 (10 %) and post animal bite rabies Post Exposure Prophylaxis 29 (6 %).
Tropical and infectious disease	2024	Lee et al. [30]	Enteric fever in paediatric hospital presentations and NNDSS	101 (89 %) of 114 paediatric cases of enteric fever were Australian resident travellers. Nine of the 11 cases where travel purpose was documented, (82 %) were VFR travellers.

(continued on next page)

Table 1 (continued)

Category	Year of Publication	Reference	Cohort and medical events measured	Findings
	2023	Jackson et al. [31]	COVID-19 cases from pathology laboratory data	9 cases (9 %) of COVID-19 were detected from 99 symptomatic adult international travellers returning to Australia, before travel restrictions were enacted.
	2023	Peck et al. [32]	Influenza cases in hotel quarantine participants	42 cases of influenza (0.3 %) among 15,026 returned travellers on COVID-19 repatriation flights. 41 cases (98 %) were from India and 1 case (2 %) was from Pakistan. Virus sequencing showed that there were independent infections prior to travel but also identified possible in-flight transmission.
	2023	Marsland et al. [33]	Measles from NNDSS	All 6 reported cases of measles resided in Australia and acquired the infection overseas.
	2021	Furuya-Kanamori, Mills, Trembizki et al. [34]	Antimicrobial-resistant <i>E. coli</i> colonisation after return from Asian countries	Of 59 participants, 34 (58 %) became colonised with antibiotic-resistant <i>E. coli</i> during travel. All were asymptomatic. A higher proportion of travellers to South Asia (India, Nepal, Sri Lanka) than other destinations.
	2021	Forster and Leder [35]	Typhoid fever from NNDSS	96 % of Typhoid notifications (887/923) were acquired overseas.
	2020	Alqahtani et al. [25]	Respiratory, constitutional, and gastrointestinal symptoms in Hajj pilgrims	157 (52 %) of 300 pilgrims reported symptoms, 7–10 days after their return to Australia; 111 (37 %) reported a cough, 47 (16 %) a runny nose, 45 (15 %) a sore throat, and 32 (11 %) fever. In some of these cases, the same symptoms had been experienced during the travel period, ranging from 16 % of those with fever (5 out of 32 cases) to 43 % of those with a sore throat (33 out of 76 cases).
	2019	Chong et al. [36]	Paediatric infectious diseases in Emergency Department attendees	All seven children who acquired tropical infections were Australian residents returning from South Asia and the Pacific Islands, with prolonged exposure periods of over 30 days. Six of the seven required hospitalization.
	2018	Quinn et al. [37]	Dengue fever from NNDSS	There were 49 unique patients with a positive result for dengue infection. All had a history of international travel.
	2018	Rowe et al. [38]		Of 2187 notifications of dengue, three were acquired in Australia. 985 cases were acquired in Indonesia (45 %), 305 in Thailand (14 %) and 108 in Malaysia (5 %).
	2017	Tai et al. [39]	Dengue fever in hospitalised cases	Described 208 cases of dengue in returned travellers from four health care networks. Most frequent travel destinations were Indonesia 94 (45 %), Thailand 40 (19 %) and East Timor 23 (11 %). 138 (66 %) were travelling for tourism, 36 (17 %) VFR and 30 (14 %) for business.
	2016	Heywood et al. [40]	Infectious disease from NNDSS	Recent international travel was reported by 180/222 (81 %) of enhanced surveillance cases. 100 % of malaria, chikungunya and paratyphoid cases were associated with recent overseas travel. Of the 180 cases with a history of recent travel, 117 (65 %) were travelling for the purpose of VFR.
	2014	May et al. [41]	<i>Corynebacterium diphtheriae</i> infection data from pathology laboratory	In a review of <i>C. diphtheriae</i> isolates for whom a travel history was available, 44 out of 63 patients (70 %) had a recent history of overseas travel to a tropical destination. All were healthy individuals with a skin and soft tissue injury during travel, leading to a nonhealing wound.
	2013	Ratnam et al. [26]	Respiratory disease in travel clinic attendees	29 of the 387 travellers (7.5 %) developed an ARI in the 72 h after their return to Australia from Asian destinations.
	2012	Freeman et al. [42]	Hepatitis A in NNDSS	46 % of cases (411/886) of hepatitis A had travelled to a country where hepatitis A is endemic. Another 23 % (205/886) were household contacts of a case that travelled to an endemic country. 157/388 cases of malaria notifications were Australian travellers (40 %).
	2012	Gray et al. [43]	Malaria in NNDSS	Review of 135 returned travellers with acute dengue infection. Most frequent destinations were Asia 104 (77 %), Papua New Guinea 18 (13 %) and the Pacific Islands 11 (8 %).
	2012	Warrilow et al. [44]	Dengue fever in symptomatic patients	Colonisation with antibiotic-resistant <i>E. coli</i> increased significantly from 8 (8 %) to 50 (49 %) in rectal swabs provided by 102 hospital employees before and after international travel. Colonisation was associated with travel to Asia. 19 (19 %) of travellers remained colonised at six months post-travel.
	2010	Kennedy and Collignon [45]	Antimicrobial-resistant <i>E. coli</i> colonisation in hospital staff	Six out of 38 (16 %) travellers were diagnosed with malaria on return from Papua New Guinea. Of the six cases, two had not used chemoprophylaxis, and four had terminated prophylaxis prematurely.
	2007	Massey et al. [46]	Malaria in PNG Kokoda Trek travel group	Of 29 diagnosed cases of strongyloidiasis where medical records were available, 11 (38 %) were returned travellers. Seven (24 %) had travelled to South-East Asia.
	2006	Einsiedel and Spelman [47]	Hospital presentations of strongyloidiasis	From approximately 2500 soldiers returning from East Timor, nine cases of dengue were identified.
	2002	Kitchener et al. [48]	Dengue fever in Australian Defence Force members	Of the 780 presentations following possible rabies exposure overseas, 611 (78 %) were associated with travel to Southeast Asia. There were 277 cases (36 %) specific to the island of Bali. Most exposures were due to monkeys 385 (49 %) and dogs 279 (36 %). While the information was not provided in all cases, at least 152/385 (39 %) of
Traumatic injury	2013	Kardamanidis et al. [49]	Post Exposure Treatment cases following animal bites	(continued on next page)

Table 1 (continued)

Category	Year of Publication	Reference	Cohort and medical events measured	Findings
	2011	Mills et al. [50]		monkey exposures, and 68/279 (24 %) of dog exposures, resulted from contact initiated by the human. Of 65 presentations of returned travellers following an animal bite or scratch, at travel medicine clinics, 30 of the incidents occurred in Bali (46 %) and 21 in Thailand (32 %). Monkeys were responsible in 29 cases (45 %) and dogs in 27 (42 %). It was noted that the incidents occurred most among travellers aged between 20 and 29 years.

VFR, visiting friends/relatives; ARI, acute respiratory infection; CI, confidence interval; NNDSS, The Australian Government National Notifiable Diseases Surveillance System, Database of over 70 diseases that present a risk to public health in Australia. Also referred to as 'Notifiable disease data' [51]; RTI, respiratory tract infection; PNG, Papua New Guinea.

Table 2

Statistically significant risk factors and travel-related medical events identified in Australian international travellers.

Publication	Risk Factor	Description
<i>During travel</i>		
Ratnam et al.	Missionary/aid worker vs other travel purpose hazard ratio 2.3; 95 % CI 1.1–4.7, p = 0.027	Travellers who acquired an ARI were more likely to be travelling for the purpose of missionary/aid work than other travel purposes.
Oo et al.	Aust/NZ travellers vs Asians aOR 8.23; 95 % CI 1.64–41.25, p = 0.012	Travellers from Australian and New Zealand were more likely to present with diarrhoea and less likely to present with dengue in Thai clinics than Asian travellers.
<i>During and after travel</i>		
Alqahtani et al.	Influenza vaccination vs unvaccinated aOR 0.2; 95 % CI 0.1–0.9, p = 0.02	Travellers who experienced cough during or after travel were more likely to be unvaccinated or did not use alcoholic hand rubs during travel.
	Used alcoholic hand rubs vs not aOR 0.4; 95 % CI 0.2–0.9, p = 0.02	
	Used face mask during travel vs not aOR 2.1; 95 % CI 1.2–3.6, p < 0.01	Those with runny nose during or after travel were more likely to have used face masks.
	Used disposable handkerchiefs vs not aOR 3.3 95 % CI 1–10.6, p < 0.05	Travellers who experienced vomiting during or after travel were more likely to have used disposable handkerchiefs during travel.
<i>After travel</i>		
Jackson et al.	Positive results (average age 58.8 years) vs negative results (average age 49.9 years) (p = 0.049).	Returned travellers with symptoms who tested positive to COVID-19 were more likely to be older or have known comorbidities than those who tested negative.
	Positive cases had higher CCI (p = 0.021)	
Sohail et al.	Patients aged 50 and over vs under 50 OR 2.86; 95 % CI, 1.43–5.59, p < 0.01	Returned travellers over the age of 50 were more likely to present to the emergency department with respiratory infection, and less likely to present with gastrointestinal infection compared to other age groups.
	Patients aged 50 and over vs under 50 OR 0.4; 95 % CI, 0.20–0.83, p < 0.01	

aOR, adjusted odds ratio; CI, confidence interval; ARI, acute respiratory infection; Aust/NZ, Australia and New Zealand; CCI, Charlson Comorbidity Index (numerical predictor of ten-year mortality for a patient with comorbid conditions).

health provider in all returned travellers [49]. While the risk of contracting rabies may be low, the catastrophic outcome of doing so means that pre-travel counselling regarding animals is vital for Australian travellers.

4.5. All-cause morbidity and mortality: pre-existing medical condition

Existing health status and possible drug-drug interaction remains an important topic for discussion in the pre-travel consultation, especially with the increasing age of the average Australian traveller, and increasing rate of Australians living with a chronic disease [58,67]. The significance of this dialogue was emphasised by the study of overseas deaths of Australians, where 50 % were associated with underlying chronic diseases [27]. In particular, the prominence of cardiovascular disease as a cause of emergency events and death underscore the importance of the exacerbation of existing disease as a cause of medical events during travel [23,27].

Aside from chronic disease aggravation, an important relationship between travellers with pre-existing morbidities, which can include hypertension, diabetes, and asthma, or advanced age, and the occurrence of new-onset disease was identified in this review [22,31]. In some cases, the potential consequences of illness may outweigh the perceived benefits of the journey.

4.6. Implications for public health in Australia

Internationally acquired infectious diseases can pose a life-threatening risk to the individual, and potential transmission to the Australian population, well-illustrated to travellers in recent years by the COVID-19 pandemic. This review illustrated that several of the 'notifiable diseases' monitored by Australian health authorities, including typhoid, and dengue, currently appear in Australia largely due to returned travellers [35,37,38,40]. It specifically highlighted the role of VFR travel in imported infectious disease.

Over the last two decades, the destination for Australian VFR travellers has significantly changed, from Western Europe to Asia and Africa, due to the increase in immigration from those regions [68]. The studies of paediatric populations included in this review noted that age-appropriate preparation, including travel vaccines specific to the destination, were underutilized prior to travel [28,30,36]. VFR travellers accounted for the majority of presentations with tropical diseases like malaria, and the introduction of transmissible diseases like measles [33,40]. Pre-travel communication and personalised advice needs to be promoted in VFR travellers, particularly when returning to their country of origin with Australian-born children who are immunologically naïve to the conditions endemic in parent's region of origin.

4.7. Limitations

This review was completed by a single reviewer, who was guided by the PRISMA procedures, to produce a summary of available published research, but there were limitations. The definition of 'traveller' can vary greatly. The Australian Bureau of Statistics has clear distinctions between 'short-term travellers (under 1 year)', 'returned long-term travellers', 'international visitors' and 'international students', however this was not followed in the reviewed studies [3]. Therefore, while included data was intended to only include returning Australian

residents, there is a possibility that other groups were included in the data, like foreign visitors to Australia, due to inconsistencies in data categorisation. Similarly, the Australian Government makes data on the consular assistance provided to Australian citizens abroad publicly available, including assaults, deaths and hospitalisations [69]. While it does not distinguish between short-term travellers and long-term expatriates and was therefore not used in this review, it could provide additional guidance for prospective travellers, similar to that recently published using Irish data [70].

There have been no published studies of all-cause morbidity in Australian travellers. While several studies have used general travel statistics trying to estimate incidence of specific diseases, none had true denominator data available. Without calculation of incidence, it is not possible to compare how risk factors affect that incidence. Most of the available data is retrospective, and prospective studies outside special groups like deployed military personal are largely lacking. The changes in travel destination, duration of journey, and age and medical status of travellers since the studies were undertaken in Australia are important considerations, as they will affect the number and type of medical events. In the years since data was collected for many of these studies, Australian international travel preferences have changed considerably, particularly with respect to duration of travel (shorter), and destination (favouring Asia) [71]. Additionally, the impact of global health considerations, such as the Covid-19 pandemic and growing antimicrobial resistance, together with political and economic challenges, continue to influence travel choices [3,72]. This represents a considerable limitation of this review—the age of some data limits its current applicability.

The lack of data identified regarding a number of travel medicine topics highlights possible priority research areas for the Australian travel medicine community. While there is some evidence that overseas-acquired STI cases are increasing, the number in short-term travellers, as distinct from new migrants, is unknown [73]. Considering the increasing popularity of sex tourism, this requires further investigation, as does medical tourism. Better evidence is also required regarding in-flight incidents, and deep vein thrombosis, resulting from long-haul flights to and from Australia, in order to appropriately counsel prospective and returned travellers.

4.8. Conclusion

Overall, limited incidence and prevalence data exists about the likelihood that Australian overseas travellers will experience travel-related illness or require medical care during or after their journey. The possibility of contact with notifiable diseases in VFR travellers, and the seriousness of rabies exposure through interaction with animals should be considered in both pre- and post-travel consultations with international travellers from Australia.

CRediT authorship contribution statement

Siobhan C. Carroll: Writing – review & editing, Writing – original draft, Visualization, Validation, Software, Project administration, Methodology, Investigation, Data curation, Conceptualization. **Maria Eugenia Castellanos:** Writing – review & editing. **Andreas Neumayr:** Writing – review & editing. **Lars Henning:** Writing – review & editing, Supervision, Methodology, Conceptualization.

Data availability statement

No original data was generated for this article. Detailed search strategy and outcomes are available from the author.

Funding

There was no funding source for this study. Siobhan Carroll is the recipient of a James Cook University Research Training Program Stipend

Scholarship.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Siobhan Carroll reports a relationship with Allianz Partners that includes: employment. Lars Henning reports a relationship with James Cook University that includes: employment. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- [1] International tourism recovers pre-pandemic levels in 2024. Madrid, Spain: UN Tourism; 2025. Available from: <https://www.unwto.org/news/international-tourism-recovers-pre-pandemic-levels-in-2024>. [Accessed 21 January 2025].
- [2] Number of Aussies travelling overseas reaches pre-COVID levels. Canberra, Australia: Australian Bureau of Statistics; 2024. Available from: <https://www.abs.gov.au/media-centre/media-releases/number-aussies-travelling-overseas-reaches-pre-covid-levels>. [Accessed 25 August 2024].
- [3] Overseas arrivals and departures. Australia Canberra: Australian Bureau of Statistics; 2024. Available from: <https://www.abs.gov.au/statistics/industry/tourism-and-transport/overseas-arrivals-and-departures-australia/dec-2023>. [Accessed 15 February 2024].
- [4] Angelo K, Kozarsky P, Ryan E, Chen L, Sotir M. What proportion of international travellers acquire a travel-related illness? A review of the literature. *J Trav Med* 2017;24(5):1.
- [5] Hill DR. Health problems in a large cohort of Americans traveling to developing countries. *J Trav Med* 2000;7(5):259–66.
- [6] Vilkman K, Pakkanen SH, Laaveri T, Siikamaki H, Kantele A. Travelers' health problems and behavior: prospective study with post-travel follow-up. *BMC Infect Dis* 2016;16:328.
- [7] Winer L, Alkan M. Incidence and precipitating factors of morbidity among Israeli travelers abroad. *J Trav Med* 2002;9(5):227–32.
- [8] Siikamaki H, Kivelä P, Fotopoulos M, Kantele A. A closer look at travellers' infections abroad: finnish nationwide data with incidences, 2010 to 2012. *Trav Med Infect Dis* 2017;15:29–36.
- [9] Farnham A, Furrer R, Blanke U, Stone E, Hatz C, Puhan MA. The quantified self during travel: mapping health in a prospective cohort of travellers. *J Trav Med* 2017;24(5):tax050.
- [10] Gautret P, Gaudart J, Leder K, Schwartz E, Castelli F, Lim PL, et al. Travel-associated illness in older adults (>60 y). *J Trav Med* 2012;19(3):169–77.
- [11] Darrat M, Flaherty GT. Retrospective analysis of older travellers attending a specialist travel health clinic. *Trop Dis Travel Med Vaccines* 2019;5(1).
- [12] Lakanavisid P, Poovorawan K, Soonthornworasiri N, Mansanguan C, Kamolratanaakul S, Matsee W, et al. Comparison of health problems among older versus younger adult Thai international travelers. *Southeast Asian J Trop Med Publ Health* 2020;51(4):427–45.
- [13] Lopez-Gigoso RM, Segura M, Mariscal-Lopez E, Gutierrez-Bedmar M, Mariscal A. Prevalence of chronic diseases among international travelers seeking pretravel medical advice in 2018 at Malaga, Spain. *Am J Trop Med Hyg* 2020;102(3):684–8.
- [14] Aubry C, Gaudart J, Gaillard C, Delmont J, Parola P, Brouqui P, et al. Demographics, health and travel characteristics of international travellers at a pre-travel clinic in Marseille, France. *Trav Med Infect Dis* 2012;10(5–6):247–56.
- [15] Wieten RW, Leenstra T, Goorhuis A, van Vugt M, Grobusch MP. Health risks of travelers with medical conditions—a retrospective analysis. *J Trav Med* 2012;19(2):104–10.
- [16] Carroll SC, Castellanos ME, Stevenson RA, Henning L. Incidence and risk factors for travellers' diarrhoea among short-term international adult travellers from high-income countries: a systematic review with meta-analysis of cohort studies. *J Trav Med* 2024;15:15.
- [17] Olanwijitwong J, Piyaphanee W, Poovorawan K, Lawpoolsri S, Chanthavanich P, Wichainprasast P, et al. Health problems among Thai tourists returning from India. *J Trav Med* 2017;24(4):1.
- [18] Thomson CA, Gibbs RA, Giele C, Firth MJ, Effler PV. Health seeking behaviours and knowledge of infectious disease risks in Western Australian travellers to Southeast Asian destinations: an airport survey. *Trop Med Infect Dis* 2016;1(1):18.
- [19] Sohail A, Akratidis J, McGuinness S, Leder K. Perceptions of travel-related health risks and pre-travel health-seeking behaviour among students: a qualitative analysis. *Trav Med Infect Dis* 2023;52:102532.
- [20] Oo N, Hanboonkunupakarn B, Piyaphanee W, Phumratanaaprin W, Luvira V, Wichainprasat P, et al. Review of health problems among foreign travelers presenting to the hospital for tropical diseases, Bangkok, Thailand between 2009 and 2014. *J Med Assoc Thail* 2019;102(8):918–26.
- [21] Furuya-Kanamori L, Mills D, Sheridan S, Lau C. Medical and psychological problems faced by young Australian gap year travellers. *J Trav Med* 2017;24(5):1.
- [22] Bialy C, Horne K, Dendle C, Kanellis J, Littlejohn G, Ratnam I, et al. International travel in the immunocompromised patient: a cross-sectional survey of travel advice in 254 consecutive patients. *Intern Med J* 2015;45(6):618–23.

- [23] Leggat PA, Griffiths R, Leggat FW. Emergency assistance provided abroad to insured travellers from Australia. *Trav Med Infect Dis* 2005;3(1):9–17.
- [24] Leggat PA, Leggat FW. Travel insurance claims made by travelers from Australia. *J Trav Med* 2002;9(2):59–65.
- [25] Alqahtani AS, Tashani M, Heywood AE, Almohammed ABS, Booy R, Wiley KE, et al. Tracking Australian hajj pilgrims' health behavior before, during and after hajj, and the effective use of preventive measures in reducing hajj-related illness: a cohort study. *Pharmacy* 2020;8(2):4.
- [26] Ratnam I, Black J, Leder K, Biggs BA, Gordon I, Matchett E, et al. Incidence and risk factors for acute respiratory illnesses and influenza virus infections in Australian travellers to Asia. *J Clin Virol* 2013;57(1):54–8.
- [27] Prociv P. Deaths of Australian travellers overseas. *Med J Aust* 1995;163(1):27–30.
- [28] Mazzocato P, Leder K, Deng L, Britton PN. Travel-associated illness in children in pre-pandemic Western Sydney, 2018–2020. *Public Health Res Practice* 2024;34(3):23.
- [29] Sohail A, McGuinness SL, Lightowler R, Leder K, Jomon B, Bain CA, et al. Spectrum of illness among returned Australian travellers from Bali, Indonesia: a 5-year retrospective observational study. *Intern Med J* 2019;49(1):34–40.
- [30] Lee SY, Howard-Jones AR, Lin Lau V, Norton S, Sintchenko V, Britton PN, et al. The increasing healthcare burden of enteric fever in a low-incidence setting. *Infect Dis Now* 2024;54(4):104919.
- [31] Jackson J, Chan C, McBurnie J, La Hera-Fuentes G, Burston J, Bridges L, et al. SARS-CoV-2 seroprevalence in a cohort of international travellers returning to rural Australia: enablers and barriers to containment of COVID-19. *Aust N Z J Publ Health* 2023;47(1):100003.
- [32] Peck H, Anbumurali N, McMahon K, Freeman K, Aziz A, Gillespie L, et al. Detection of influenza in managed quarantine in Australia and the estimated risk of importation. *Clin Infect Dis* 2023;76(3):e1328–34.
- [33] Marsland MJ, Strachan J, Gang RF, O'Hara M, Hughes NM, Glynn-Robinson A. Lessons from the re-emergence of imported measles cases following the COVID-19 pandemic in Victoria, Australia. *Commun Dis Intell* 2023;47:21.
- [34] Furuya-Kanamori L, Mills DJ, Trembizki E, Robson JM, Jennison AV, Whiley DM, et al. High rate of asymptomatic colonization with antimicrobial-resistant *Escherichia coli* in Australian returned travellers. *J Trav Med* 2021;29(1).
- [35] Forster DP, Leder K. Typhoid fever in travellers: estimating the risk of acquisition by country. *J Trav Med* 2021;28(8):29.
- [36] Chong CH, McCaskill ME, Britton PN. Pediatric travelers presenting to an Australian emergency department (2014–2015): a retrospective, cross-sectional analysis. *Trav Med Infect Dis* 2019;31:101345.
- [37] Quinn EJ, Cheong AH, Calvert JK, Higgins G, Hahesy T, Gordon DL, et al. Clinical features and laboratory findings of travelers returning to South Australia with dengue virus infection. *Trop Med Infect Dis* 2018;3(1):7.
- [38] Rowe SL, Thevarajan I, Richards J, Gibney K, Simmons CP. The rise of imported dengue infections in Victoria, Australia, 2010–2016. *Trop Med Infect Dis* 2018;3(1):9.
- [39] Tai AY, McGuinness SL, Robosa R, Turner D, Huang GKL, Leder K, et al. Management of dengue in Australian travellers: a retrospective multicentre analysis. *Med J Aust* 2017;206(7):295–300.
- [40] Heywood AE, Zwar N, Forssman BL, Seale H, Stephens N, Musto J, et al. The contribution of travellers visiting friends and relatives to notified infectious diseases in Australia: state-based enhanced surveillance. *Epidemiol Infect* 2016;144(16):3554–63.
- [41] May ML, McDougall RJ, Robson JM. *Corynebacterium diphtheriae* and the returned tropical traveler. *J Trav Med* 2014;21(1):39–44.
- [42] Freeman E, Torvaldsen S, Tobin S, Lawrence G, MacIntyre CR. Trends and risk factors for hepatitis A in NSW, 2000–2009: the trouble with travel. *NSW Public Health Bull* 2012;23(7–8):153–7.
- [43] Gray TJ, Trauer JM, Fairley M, Krause VL, Markey PG. Imported malaria in the Northern Territory, Australia—428 consecutive cases. *Commun Dis Intell Q Rep* 2012;36(1):107–13.
- [44] Warrilow D, Northill JA, Pyke AT. Sources of dengue viruses imported into Queensland, Australia, 2002–2010. *Emerg Infect Dis* 2012;18(11):1850–7.
- [45] Kennedy K, Collignon P. Colonisation with *Escherichia coli* resistant to "critically important" antibiotics: a high risk for international travellers. *Eur J Clin Microbiol Infect Dis* 2010;29(12):1501–6.
- [46] Massey P, Durrheim DN, Speare R. Inadequate chemoprophylaxis and the risk of malaria. *Aust Fam Physician* 2007;36(12):1058–60.
- [47] Einsiedel L, Spelman D. *Strongyloides stercoralis*: risks posed to immigrant patients in an Australian tertiary referral centre. *Intern Med J* 2006;36(10):632–7.
- [48] Kitchener S, Leggat PA, Brennan L, McCall B. Importation of dengue by soldiers returning from East Timor to north Queensland, Australia. *J Trav Med* 2002;9(4):180–3.
- [49] Kardamanidis K, Cashman P, Durrheim DN. Travel and non-travel associated rabies post exposure treatment in New South Wales residents, Australia, 2007–2011: a cross-sectional analysis. *Trav Med Infect Dis* 2013;11(6):421–6.
- [50] Mills DJ, Lau CL, Weinstein P. Animal bites and rabies exposure in Australian travellers. *Med J Aust* 2011;195(11–12):673–5.
- [51] National Notifiable Diseases Surveillance System (NNDSS) Canberra, Australia. Australian government department of health, disability and ageing; 2025. Available from: <https://www.health.gov.au/our-work/nndss>. [Accessed 11 April 2025].
- [52] Ryan ET, Wilson ME, Kain KC. Illness after international travel. *N Engl J Med* 2002;347(7):505–16.
- [53] Freedman DO, Weld LH, Kozarsky PE, Fisk T, Robins R, von Sonnenburg F, et al. Spectrum of disease and relation to place of exposure among ill returned travelers. *N Engl J Med* 2006;354(2):119–30.
- [54] Drewett G, Leder K. Infectious disease following travel to developed regions: a snapshot of presentations to an Australian travel medicine clinic. *J Trav Med* 2016;23(6).
- [55] Lovey T, Hasler R, Gautret P, Schlagenhauf P. Travel-related respiratory symptoms and infections in travellers (2000–22): a systematic review and meta-analysis. *J Trav Med* 2023;30(5).
- [56] Piyaphanee W, Stoney RJ, Asgeirsson H, Appiah GD, Diaz-Menendez M, Barnett ED, et al. Healthcare seeking during travel: an analysis by the GeoSentinel surveillance network of travel medicine providers. *J Trav Med* 2023;30(3):18.
- [57] Leder K, Torresi J, Libman MD, Cramer JP, Castelli F, Schlagenhauf P, et al. GeoSentinel surveillance of illness in returned travelers, 2007–2011. *Ann Intern Med* 2013;158(6):456–68.
- [58] Feature article: international movements - 2012. Canberra, Australia: Australian Bureau of Statistics; 2013. Available from: <https://www.abs.gov.au/ausstats/abs@.nsf/Previousproducts/3401.0Feature%20Article1Dec%202012?openDocument&tabname=Summary&prodno=3401.0&issue=Dec%202012&num=&view=>. [Accessed 1 August 2013].
- [59] Patel RR, Liang SY, Koolwal P, Matthew Kuhlmann F. Travel advice for the immunocompromised traveler: prophylaxis, vaccination, and other preventive measures. *Therapeut Clin Risk Manag* 2015;11:217–28.
- [60] Advice for travelers. Washington DC, USA: Centers for Disease Control and Prevention; 2023. Available from: <https://wwwnc.cdc.gov/travel/page/traveler-information-center>. [Accessed 12 May 2023].
- [61] O'Brien D, Tobin S, Brown GV, Torresi J. Fever in returned travelers: review of hospital admissions for a 3-year period. *Clin Infect Dis* 2001;33(5):603–9.
- [62] O'Brien DP, Leder K, Matchett E, Brown GV, Torresi J. Illness in returned travelers and immigrants/refugees: the 6-year experience of two Australian infectious diseases units. *J Trav Med* 2006;13(3):145–52.
- [63] Sanford CA, Flaherty GT. The significance of non-communicable threats to travellers: time for a sea-change? *J Trav Med* 2019;26(1).
- [64] Wyler BA, Young HM, Hargarten SW, Cahill JD. Risk of deaths due to injuries in travellers: a systematic review. *J Trav Med* 2022;29(5).
- [65] Ball DJ, Machin N. Foreign travel and the risk of harm. *Int J Inj Control Saf Promot* 2006;13(2):107–15.
- [66] Tenaya WM, Suardha N, Suarsana N, Damriyasa M, Apsasi IAP, Sari TK, et al. Epidemiological and viral studies of rabies in Bali, Indonesia. *Vet World* 2023;16(12):2446–50.
- [67] Prevalence of chronic conditions. Canberra, Australia: Australian Bureau of Statistics; 2025. Available from: <https://www.abs.gov.au/statistics/measuring-what-matters/measuring-what-matters-themes-and-indicators/healthy/prevalence-chronic-conditions>.
- [68] Phillips J, Simon-Davies J. Migration to Australia: a quick guide to the statistics Canberra: Parliament of Australia. Available from: https://www.aph.gov.au/About_Parliament/Parliamentary_Departments/Parliamentary_Library/pubs/rp/rp1617/Quick_Guides/MigrationStatistics. [Accessed 18 January 2017].
- [69] Consular state of play data. Canberra: Australian Government; 2025. Available from: <https://www.smartraveller.gov.au/consular-services/consular-state-of-play/data>.
- [70] Alby A, Power A, Flaherty GT. Analysis of consular assistance provided to Irish citizens abroad, 2014–2023. *Trav Med Infect Dis* 2025;64:102803.
- [71] International travel - short-term resident returns to Australia. Canberra: Australian Bureau of Statistics; 2020. Available from: <https://www.abs.gov.au/articles/international-travel-short-term-resident-returns-australia>. [Accessed 16 January 2020].
- [72] Koster A. China up, US down: why Australian travellers are moving away from old favourites. Sydney, Australia: SBS News; 2025. Available from: <https://www.sbs.com.au/news/article/china-up-usa-out-where-are-australians-travelling-in-2025/xqa6cd2i0>. [Accessed 15 August 2025].
- [73] Shiferaw W, Dean JA, Mills D, Lau CL, Furuya-Kanamori L. Overseas- and locally acquired sexually transmissible infections in Australia, 2017–23. *J Trav Med* 2025;32(3):30.