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 A B S T R A C T

Precise robotic weed control plays an essential role in precision agriculture. It can help significantly reduce 
the environmental impact of herbicides while reducing weed management costs for farmers. In this paper, we 
demonstrate that a custom-designed robotic spot spraying tool based on computer vision and deep learning 
can significantly reduce herbicide usage on sugarcane farms. We present results from field trials that compare 
robotic spot spraying against industry-standard broadcast spraying, by measuring the weed control efficacy, 
the reduction in herbicide usage, and the water quality improvements in irrigation runoff. The average results 
across 25 hectares of field trials show that spot spraying on sugarcane farms is 97% as effective as broadcast 
spraying and reduces herbicide usage by 35%, proportionally to the weed density. For specific trial strips 
with lower weed pressure, spot spraying reduced herbicide usage by up to 65%. Water quality measurements 
of irrigation-induced runoff, three to six days after spraying, showed reductions in the mean concentration 
and mean load of herbicides of 39% and 54%, respectively, compared to broadcast spraying. These promising 
results reveal the capability of spot spraying technology to reduce herbicide usage on sugarcane farms without 
impacting weed control and potentially providing sustained water quality benefits.
1. Introduction

Herbicides are a serious threat to non-target plants and animals 
because they are readily carried by water run-off from farmland into 
rivers, creeks, coastal and inshore areas. Consequently, herbicide usage 
has attracted significant public attention and pressure from regulators. 
A promising approach to reduce herbicide runoff is to use precision 
agriculture and digital technologies (Allmendinger et al., 2022). Ex-
amples of such technologies include the use of Unoccupied Aerial 
Vehicles (UAV) for precise weed mapping, non-chemical robotic weed 
management, and the use of UAVs (Rai et al., 2022) and ground 
vehicles (Calvert et al., 2021) for spot-spraying of weeds. Spot spraying 
allows for a much more efficient use of chemicals since herbicides 
can be sprayed only where required, and not onto the bare ground or 
non-target plants.

In many scenarios, herbicides must be applied during the growth of 
the crop. This requires the spot sprayer to discriminate between weed 
and crop plants, a situation which is called green-on-green detection. 
This differs from so-called green-on-brown detection, which targets all 
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plants indiscriminately. For instance, a common green-on-brown detec-
tion technology is Near-Infrared (NIR) optical sensing, which has been 
implemented in systems such as WeedSeeker (Trimble and Weedseeker, 
2022) and Weed-IT (Weed-IT, 2022). These systems react to the NIR 
light emitted by plants during photosynthesis. As a result, these systems 
do not discriminate between plant types and therefore cannot separate 
crop from weed. Hence, they can only be applied in a green-on-brown 
scenario, such as in fallow paddocks.

Other sensor technologies for weed detection include multi-spectral, 
hyper-spectral, 3D, and depth cameras, as well as stereo and ultrasonic 
sensors. The most commonplace sensor that can be used to detect 
weeds in a green-on-green scenario is a standard Red-Green-Blue (RGB) 
camera, which works in the visible light spectrum. Precise detection 
of weeds among surrounding green plants, which can have similar 
features, is a complex problem in Computer Vision (CV). Fortunately, 
with the advent of Deep Learning (DL) technology and Convolutional 
Neural Networks (CNN) in the past decade, weed detection with image 
processing has progressed significantly (Chen et al., 2022).
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Fig. 1. (a) An illustration of the AutoWeed system where the AutoWeed unit detects the weed (1) and activates the sprayer (2). (b) A photo of the AutoWeed system mounted 
to a broadcast spraying boom.
In this paper, we describe the development of a ground-based spot-
spraying tool for sugarcane, which we call AutoWeed. Our system is 
illustrated in Fig.  1. We developed the computer vision algorithms for 
weed detection and designed the spraying system to be retrofitted to 
existing farm machinery. We carried out field trials in the Burdekin 
region of Queensland, Australia, which is one of Australia’s largest 
sugarcane growing regions.

We conducted a comprehensive set of experiments to measure the 
real-world impact of spot spraying in terms of the reduction of herbi-
cide used, the resulting weed knockdown efficacy, and the measured 
concentration of herbicide active ingredients in water runoff induced 
by irrigation. We hypothesised that:

1. Spot spraying is more efficient in terms of herbicide usage 
compared to blanket spraying.

2. Spot spraying provides comparable weed knockdown efficacy 
compared to blanket spraying.

3. Spot spraying results in lower concentrations of herbicide active 
ingredients in water runoff compared to blanket spraying.

4. Spot spraying positively impacts crop yield compared to tradi-
tional blanket spraying methods.

By addressing these hypotheses, we aim to provide a comprehensive 
evaluation of the efficacy and efficiency of the AutoWeed system.

The rest of this paper is organised as follows. Section 2 presents the 
background and related work. Section 3 explains the methods used in 
this study including the DL detection algorithms, our collected datasets, 
our DL training and validation approaches, as well as the utilised water 
quality measurement protocols. In Section 4, we provide on-ground 
trial results of our project including the weed killing efficacy, herbicide 
usage reduction, cost saving, and water quality improvements afforded 
by the technology, compared to current industry practice of broadcast 
(a.k.a. blanket) spraying. In Section 5, we provide discussions around 
the use of the technology and how its benefits can be expanded to 
other crops and farms. We also shed light on the future features and 
capabilities that can improve the uptake of robotic spot spraying to 
deliver a step change in water quality and environmental benefits. We 
conclude the paper in Section 6.

2. Background and related work

2.1. Deep learning and its application to precision agriculture

Deep learning has grown to be a prevalent technology that has 
brought astonishing performance to computer vision. Deep learning-
enabled CV algorithms are currently being applied in various precision 
agriculture domains.

Similarly, in the past few years, computer vision for precision 
agriculture and weed detection has significantly grown. For instance, 
Lu et al. have conducted a survey of public datasets for computer vision 
tasks in precision agriculture using machine and deep learning (Lu 
2 
and Young, 2020). They have surveyed 10 studies for fruit detection, 
disease, damage and flower detection and counting, as well as yield 
prediction, using deep learning.

Among the precision agriculture applications that Lu et al. have 
surveyed, weed control has emerged as a major priority. They reported 
that there have been 15 publicly available ground and aerial image 
datasets collected in field using various sensors, such as RGB cameras, 
multi-spectral and multi-modal sensors, in the past 8 years. Several 
of these datasets such as Lameski et al. (2017) have been used in 
deep learning-based weed control tasks (Chen et al., 2022). Here, 
weed control can be any use of computer vision and deep learning to 
segment, or simply classify weeds for mapping or spraying.

Other studies have demonstrated the potential of deep learning for 
weed detection and control in precision agriculture. For instance, Jin 
et al. (2022) developed a deep learning-based method for detecting 
herbicide weed control spectrum in turfgrass, which can be used in 
a machine vision-based autonomous spot-spraying system of smart 
sprayers. Similarly, Harders et al. (2022) proposed a deep learning 
approach for UAV-based weed detection in horticulture using edge 
processing and presented experimental results. In addition to detecting 
weeds, researchers have also explored the use of deep learning to 
generate synthetic weed images. Chen et al. (2023) applied diffusion 
probabilistic models to generate high-quality synthetic weed images 
based on transfer learning, while Divyanth et al. (2022) aimed to 
reduce the effort needed to prepare large image datasets by creating 
artificial images of maize and common weeds through conditional 
Generative Adversarial Networks. Other researchers have focused on 
developing autonomous systems for weed detection and control. Patel 
et al. (2022) described the design of an autonomous agricultural robot 
for real-time weed detection using CNN, while Gao et al. (2022) devel-
oped a deep convolutional network that enables the prediction of both 
field and aerial images from UAVs for weed segmentation and mapping 
with only field images provided in the training phase. Narayana and 
Ramana (2023) also developed an efficient real-time weed detection 
technique using deep learning. To facilitate the development of deep 
learning-based weed detection methods, Wang et al. (2022) presented 
Weed25, a deep learning dataset for weed identification containing 
14,035 images of 25 different weed species. Finally, Murad et al. (2023) 
conducted a systematic literature review on current state-of-the-art DL 
techniques for weed detection.

In this paper, we use weed classification for spot-spraying. Classifi-
cation, as opposed to segmentation, is an easier computer vision task 
that can be carried out very accurately using deep learning (Chen et al., 
2022; Calvert et al., 2021). The goal here is to identify if an image 
includes one or more weed(s) of interest.

2.2. DL for weed spot-spraying

Although many works have investigated and reported the potential 
of using CNNs for weed classification in different scenarios within on-
ground (Knoll et al., 2019) or UAV images, research works on in-field 
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Fig. 2. The AutoWeed weed detection and spraying boom mount design for a 1-metre boom section, including (a) the AutoWeed detection unit including a machine vision camera, 
an NVIDIA Jetson GPU, and a custom solenoid sprayer board that can individually control up to four solenoids per camera; (b) a protective sun shade, (c) a 1‘‘ wet boom, (d) a 
40 × 40 mm steel hollow section frame, and (e) TeeJet solenoids and nozzle body adaptors.
weed detection in conjunction with spot-spraying has not seen wide 
exploration. This is mainly due to the significant efforts required to 
perform efficient in-field trials outside a lab environment. However, 
recent advancements in deep learning have shown promising results 
in the detection and classification of weeds, which is crucial for the 
development of targeted spraying systems.

In one of the earliest studies (Partel et al., 2019), Partel et al. 
developed a prototype spot-spraying system and simulated it using two 
scenarios. In the first scenario, a vegetable field was simulated using 
artificial weeds (targets) and artificial plants (non-targets), while in the 
second scenario, they applied their prototype to real plants. They also 
investigated the weed detection performance and system operations 
using two different Graphics Processing Units (GPUs) reporting the 
achieved accuracies. Finally, they utilised a GPS device integrated into 
their detection system to produce weed maps. Although this showcased 
the use of deep learning technology to perform spot-spraying of weeds, 
it was in a controlled and simulated environment.

In Liu et al. (2021), a variable rate chemical spraying system was 
partially trialled in the field at a low application speed of 3 km/h using 
a prototype system controlling chemical usage in a strawberry crop. 
However, this was only a prototype design that did not report herbicide 
reduction achieved or the potential water quality benefits that could be 
obtained.

In Du et al. (2022), a CNN-based multi-class under-canopy weed 
control robotic unit named SAMBot was developed and trialled in a 
limited setting in flax fields with medium weed density. SAMBot was 
able to achieve an average weed classification accuracy of 90%. It also 
showed reduced herbicide usage compared to a commercial sprayer. 
This study trialled the robot in only 15 m of fields and further results 
should be shown before the efficacy of the system could be fully 
demonstrated.

While significant advancements have been made in the application 
of deep learning for weed detection, the integration of these technolo-
gies into in-field weed spot-spraying systems remains under-explored. 
Future research should focus on conducting more extensive field trials 
and reporting on the practical benefits such as herbicide reduction and 
water quality improvements, which are the objectives of our paper.

2.3. Current status of research on target spraying robots

Target spraying robots have become a pivotal technology in preci-
sion agriculture, significantly improving the accuracy and efficiency of 
herbicide application. In a recent study, Allmendinger et al. reviewed 
different commercial technologies and prototypes for precision patch 
spraying and spot spraying (Allmendinger et al., 2022). They demon-
strated that weed spot-spraying using DL has seen a lot of attention 
from the industry and several systems are currently being trialled and 
made commercially available. For a detailed review of these systems, 
3 
please see Allmendinger et al. (2022). Key developments in target 
spraying robots include:
Autonomous Navigation and Detection Systems: Modern target 
spraying robots are equipped with advanced navigation systems and 
real-time weed detection capabilities. For instance, autonomous robots 
like the one developed by Abanay et al. (2022) use GPS and LiDAR to 
navigate fields and identify weed locations accurately.
Integration of Deep Learning Models: The use of deep learning 
models, such as CNNs, for weed detection has been a game-changer. 
Systems like those reviewed by Rai et al. (2023) utilise DL models 
to distinguish between crop and weed species with high precision, 
enabling targeted herbicide application.
Field Trials and Practical Implementations: Extensive field trials 
have been conducted to test the efficacy of target spraying robots under 
real-world conditions. Studies by Sapkota et al. (2023) demonstrated 
significant herbicide savings and improved weed control efficacy in 
large-scale agricultural settings.
Commercialisation and Industry Adoption: Several commercial prod-
ucts have emerged from this research, including Bilberry (Bilberry, 
2024), Blue River’s See and Spray (Blue River Technology, 2024), 
and EcoPatch (Eco Patch Technology, 2024). These systems are be-
ing adopted by farmers globally, driven by their potential to reduce 
chemical usage and enhance crop yields.

3. Methods

3.1. The AutoWeed system

The prototype AutoWeed units are shown in Fig.  2.
These units were purpose-built for retrofitting to existing agricul-

tural vehicles. Each unit comprises a machine vision camera, an NVIDIA 
Jetson embedded GPU processor, and a custom solenoid sprayer board 
that can individually control up to four solenoids per camera. The 
design is enclosed in a robust PVC housing attached to a mounting 
plate to protect the internals from the harsh environment. The units 
can be mounted to any 40 mm or 50 mm steel hollow section frame 
and are compatible with the commercially-available TeeJet boom and 
spray nozzle components.

In this project, the AutoWeed detection and spraying prototypes 
were retrofitted for broadcast spraying and Irvin leg spraying on two 
spraying vehicles. The first was a large 13-row high-rise John Deere 
R4720 self-propelled sprayer (see Fig.  3, a and b). The second was a 
smaller 4-row three-point linkage boom sprayer towed behind a Landini 
tractor (as shown in Fig.  3, c and d). For both systems, the AutoWeed 
detection units were mounted in front of the sprayers and positioned 
between the sugarcane row centres.
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Fig. 3. Illustration of the AutoWeed system retrofitted on different sprayers: (a) a 13-row high-rise John Deere R4720 self-propelled sprayer for Irvin leg spraying, with (b) 
detection units mounted in front of the Irvin legs between cane row centres; (c) a 4-row sprayer fitted for broadcast spraying, with (d) detection units mounted to the spray boom 
frame.
3.2. Weed image acquisition, analysis, and application technology

The AutoWeed units utilise a machine vision camera pointing di-
rectly down to capture images of the field (see Fig.  2). The height of 
the camera in the detection unit, as shown in Fig.  1(b), is set based on 
the required field of view of the target crop row width. For sugarcane 
paddocks in the Burdekin region, the row width usually varies between 
1.5 to 1.6 metres. To achieve a field of view that captured the full 
sugarcane row width, the camera lens was positioned at least 1 m above 
the ground to ensure a horizontal field of view of at least 1.6 metres. 
We also utilised separately adjustable mounting for the camera and the 
spray nozzles so that the height of the spray nozzle to the target weeds 
could be adjusted without affecting the height of the camera.

Deep learning image classification models are trained using large 
labelled image datasets collected from the fields and weeds of interest. 
These models are then used in-field to analyse the images collected in 
real-time during spot-spraying and detect those containing weeds of 
interest to spot-spray them using our custom solenoid sprayer board 
that can individually control up to four solenoids per detection unit 
(see Fig.  2e). This process is explained in detail below.
4 
3.2.1. The weed dataset
One of the crucial first steps when developing a deep learning algo-

rithm is collecting suitable datasets. The quantity, quality, and diversity 
of the data used to train the model directly impact its performance. 
For weed detection and spot-spraying, the collected dataset should 
contain diverse images of both crops and weeds in different growth 
stages, lighting conditions, and environments. The larger and more 
diverse the dataset, the better the model will be able to generalise and 
accurately identify weeds in new, unseen situations. It is also important 
to carefully label the data to ensure that the model is properly trained 
on the correct classifications (Chen et al., 2022). In spot-spraying ap-
plications using deep learning, the image dataset is typically collected 
from a specific site and focuses on the weed(s) of interest, for which a 
dedicated model is trained. This method, known as site-specific weed 
control, is effective because it considers the unique conditions of each 
site, including the growth stage and the variety in shape and features 
of the same weeds, which can differ significantly between locations.

For the project presented in this paper, we collected a total of 
1,447,456 site-specific images before each of the respective six spray 
trials as described in Table  1. This data allowed training site-specific 
deep learning algorithms to detect target weeds for the different sugar-
cane paddocks. Data collection was performed in the Burdekin region 
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Fig. 4. The classification approach for sugarcane where the camera is centred on the interrow and (a) images are split into four tiles for annotation and (b) the field of view is 
cropped to have two tiles of equal size in the centre of the frame for inference. For each tile, if a weed is detected the corresponding spray nozzle is activated.
Table 1
Summary of images collected and annotated for each of the six spray trials. Grass weeds included summer grass and crowsfoot; 
broadleaf weeds included vines, giant pigweed, and sesbania pea.
 Trial Weed (s) Crop Images collected Images annotated 
 1 & 2 Nutgrass Ratoon sugarcane 244,346 81,800  
 3 Nutgrass Ratoon sugarcane 369,744 8,638  
 4 & 5 Grass and broadleaf weeds Mung bean 303,362 55,030  
 6 Nutgrass Plant sugarcane 530,004 90,858  
 Total 1,447,456 236,326  
of Queensland, Australia using an All-Terrain Vehicle (ATV) retrofitted 
with AutoWeed detection units that include a machine vision camera 
pointing downward, similar to that shown in Calvert et al. (2021). For 
adaptation to sugarcane, the AutoWeed detection units were retrofitted 
onto spray booms centred on the interrow (i.e. in between crop rows). 
This allowed clear vision of weeds in the row underneath the sugarcane 
leaf canopy and in the interrow soil area, as shown in Fig.  4. Each 
dataset collection took approximately one hour, during which a few 
hundred thousand images (see Table  1) were collected from several 
sugarcane rows.

In the six trials presented in our paper, we focused on annual 
grasses, broadleaf weeds and nutgrass. The weeds present in our tri-
als were selected based on direct consultation with the participating 
sugarcane grower, and were common weeds of sugarcane paddocks in 
the Burdekin region of QLD, Australia. As shown in Table  1, nutgrass 
(Cyperus rotundus) has been one of the main weeds targeted in our 
project. This sedge can be controlled in a sugarcane crop by applying 
a selective and costly herbicide treatment (halosulfuron-methyl) and 
shares similar colour and shape features with early stage sugarcane, 
which makes it an interesting target for spot-spraying applications 
using deep learning among sugarcane crops. Other weeds of interest 
included two grass species: summer grass (Digitaria ciliaris) and crows-
foot (Eleusine indica); and broadleaf weeds: Red convolvulus (Ipomoea 
hederifolia), giant pigweed (Trianthema portulacastrum) and sesbania 
pea (Sesbania cannabina), which we treated in a mung bean rotation 
crop. It is worth noting that while each paddock may have different 
weeds, targeting these specific weeds was prioritised due to their higher 
impact and herbicide costs. Additionally, in our trial, we grouped all 
grass and broadleaf weeds in two respective categories, as there was 
no need to spot-spray specific species of broadleaf or grass weeds.

3.2.2. Dataset annotation for DL training
Following data collection, a group of annotators manually anno-

tated the presence of target weeds in each weed training dataset in a 
binary fashion, i.e. labelled images with weed present as weed, and 
the others as non-target. A tiled classification approach was chosen 
whereby collected images were split into 2 × 2 tiles for annotation (Fig. 
5 
4a) and 1 × 2 tiles for inference during the use of the system for spot-
spraying (Fig.  4b). This allowed rapid collection and annotation of high 
tile counts during dataset collection, and high-speed performance with 
a batch size of two during inference. It is worth noting that, the exact 
spatial position of the weeds was not recorded in annotations or used 
in our spray application. Instead, if an image tile contained a weed, its 
corresponding spray nozzle was activated, as shown in Fig.  4b. Because 
the design of the system is made for crops with rows that travel in a 
straight line direction, this system will accurately identify and spray 
weeds by only needing to tune the spray on time and spray duration 
based on the vehicle’s speed of travel.

Annotation was performed using the Computer Vision Annotation 
Tool (CVAT). This allowed for rapid annotation of approximately 2,000 
tile images per hour, and an overall annotation time between 4.5 h for 
trial 3 and 45 h for trial 6. Annotators labelled the presence of target 
weeds in each tile using a binary approach for spray trials 1, 2, 3 and 6. 
However, the training dataset for spray trials 4 and 5 required a multi-
label classification approach due to the presence of two target weeds 
(grass and broadleaf) in the dataset. Fig.  5 provides sample images from 
the site-specific training datasets that were collected and annotated for 
each of the trials.

3.2.3. DL training and validation for weed classification
Following the labelling process, the training datasets for each trial 

were randomly split into 80% and 20% subsets of training and valida-
tion, where 80% of the labels were set aside for training and 20% of 
the labels were set aside for model validation. The class distribution 
between training and validation subsets was stratified such that the 
ratio of the weed class(es) to the negative class was (i.e. without weeds) 
consistent across both subsets.

To allow for benchmarking of accuracy metrics for researchers, 
machine learning datasets are usually split three ways with training and 
validation subsets, and a test subset that is heldout to test the model. 
We have foregone this data splitting approach here, to train models 
on the most data possible. Furthermore, the test set for this work is the 
real-time in situ data when evaluating spot-spraying performance in the 
field.
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Fig. 5. Sample annotated images from the training datasets for (a) trials 1 & 2, (b) trial 3, (c) trials 4 & 5, and (d) trial 6. Red borders indicate a tile contains a target weed and 
green borders do not. The blue border for (c) indicates a second target weed.
 

The TensorFlow machine learning backend was used together with 
the Python-based high-level API Keras, to train a MobileNetV2 ar-
chitecture following the training methodology of Chen et al. (2022) 
and Calvert et al. (2021). MobileNetV2 is a deep learning model 
designed for efficient image classification tasks, particularly on mobile 
and embedded devices. It employs an architecture that balances high 
accuracy with low computational cost, using depthwise separable con-
volutions and inverted residuals. The loss function commonly used for 
training MobileNetV2 is categorical cross-entropy, which measures the 
difference between the predicted probability distribution and the true 
distribution of the class labels. On average, the training process took 
4−5 h on an NVIDIA GTX 1080Ti Graphical Processing Unit (GPU). 
Early stopping was used to halt training when the validation loss failed 
to decrease after 16 successive epochs.

Fig.  6 presents the confusion matrices for each collected dataset, 
which captures how well each trained model classifies its target weed(s).
This data shows lab inference using the MobileNetV2 model from the 
epoch with the lowest validation loss, which is also used for field 
implementation. We utilised 20% of the annotated data to test model 
performance shown in Fig.  6. The data volume used for the various 
trials can be calculated from the information provided in Table  1. This 
volume ranges from 1727 images (20% of 8638) to test the model 
developed for detecting nutgrass in trial 3, to 18172 images for testing 
the nutgrass detection model developed for trial 6.

3.2.4. In-field spot-spraying trials
For each trial shown in Table  1, the MobileNetV2 model from the 

training process with the epoch with the lowest validation loss was 
selected for field implementation.

The light-weight MobileNetV2 architecture was chosen, similar to 
other works Chen et al. (2022), Calvert et al. (2021), because it offers 
the high-speed inference required to achieve real-time spot spraying 
while travelling at up to 8 km per hour. When running on an NVIDIA 
Jetson Nano embedded device, the MobileNetV2 architecture performs 
inference at 21.9 ms per image or 45.7 frames per second.

Our in-field spot-spraying trials demonstrated that a model with 
high real-world inference accuracy is suitable for spot-spraying target 
6 
weeds in the field for two main reasons. First, most field variations, 
such as ambient light, mechanical vibration, and background com-
plexity, are captured in the large training dataset collected for each 
trial (see Table  1). Second, since the deep learning model has multiple 
opportunities to see the same weed due to the high frame processing 
rate and capturing images from the same view multiple times, the weed 
hit rate in the field is even higher than the per-image model accuracy. 
This is evidenced by the data presented in the next Section, which 
shows a high weed knockdown hit rate for spot-spraying, consistent 
with the accuracy of the deep learning models trained on the dataset.

There are also several sources of time delay from the moment that 
an image is captured to the time that the chemical hits the target weed. 
These include image acquisition time (i.e. the time it takes for the image 
to be captured and made available for processing), pre-processing time 
(i.e. the time it takes to prepare the image format for inference on 
the embedded GPU device), inference time (i.e. the time to perform 
inference using the embedded GPU target device and return a result 
indicating the presence of a weed or not) and solenoid response time 
(i.e. the time to send a command to engage a solenoid and have the 
solenoid electrically engaged).

For this work, we have measured the average time for each of these 
delays as shown in Table  2. The total average response time from image 
capture to weed spray is 58.16 ms, using the MobileNetV2 architecture. 
While travelling at 8 km/h, the spray vehicle would have only moved 
approximately 129.2 mm over this response time. To ensure adequate 
coverage of the target weed, we activate the sprayer as quickly as 
possible to ensure that the sprayer is fully on before the centre of the 
sprayer passes over the identified weed target. We also instituted a 
spray duration, that is based on the vehicle speed, so that the sprayer 
remains on until the sprayer has passed over the target weed to give it 
full coverage of herbicide. Typically, a spray duration of 0.45 s was 
used for a travel speed of 8 km/h. This ensured spray sections of 
approximately 1 metre for identified targets.
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Fig. 6. The confusion matrices evaluating the performance of the MobileNetV2 weed detection models in lab inference on 20% of the labelled validation data. Negative (in a–b, 
and d) and Background (in c) refer to instances where there is no weed present in the image. The model may incorrectly identify an image with no weed as containing weed 
(false positive), or miss a weed (false negative). Here, (a) shows results from spray trials 1 and 2, (b) from spray trial 3, (c) from spray trials 4 and 5, and (d) from spray trial 6.
Table 2
Average time measurements for the spot spraying workflow from image acquisition 
to solenoid activation showing the average and standard deviation measurements in 
milliseconds.
 Time measurement Average (ms) Std. Dev. (ms) 
 Image acquisition time 5.85 0.75  
 Image pre-processing time 8.88 0.05  
 Inference time 21.90 5.53  
 Solenoid response time 21.53 1.70  
 Total execution time 58.16 5.83  

3.3. Weed knockdown efficacy and herbicide usage analyses

Participating growers for the trial work were recruited by Sugar 
Research Australia, whose active presence in the Burdekin region gar-
nered great interest in the project from local growers. Trial paddocks 
were restricted to early-stage ratoon sugarcane, plant sugarcane, or 
rotational crops with the presence of common and priority weeds in 
the Burdekin region. The aforementioned six experimental trials were 
conducted with details provided in Table  3.

For each trial, a 12–13 row replicated strip trial design was im-
plemented as illustrated in Fig.  7. For each 12–13 row strip, chemical 
treatments were alternated between spot spraying and blanket spraying 
while using the same herbicide mixtures. Trials 1 and 2 were conducted 
using a 13-row self-propelled sprayer, while the other trials utilised 
a 4-row tractor boom sprayer. Trials 4 and 5 were conducted in the 
morning and afternoon, respectively, on the same crop on the same 
day. In this situation, two different chemicals were required to control 
different types of weeds.

Herbicide usage was measured for each treatment using the flow 
rate controller and tank measurements on the retrofitted spray booms. 
Custom-made electronics on-board the vehicle also recorded the GPS 
location and duration of each nozzle activation which allowed visuali-
sation of spray application maps after each trial.

To quantify the efficacy of each treatment on weeds, UAVs were 
deployed to capture high-resolution imagery from random locations 
7 
along the trial paddock across all treatments before and after spraying. 
‘‘Before maps’’ were collected on the day of the trial before applying the 
treatments. ‘‘After maps’’ were collected between 6–14 days after the 
treatment depending on the time it took visual symptoms to manifest 
on the targeted weeds after herbicide application. Fig.  8 presents 
the collected drone maps from each target trial site as part of the 
weed knockdown efficacy analysis. OpenDroneMap (OpenDroneMap 
Authors, 2020) was used to generate orthomosaics from the raw drone 
imagery and QGIS (Open Source Geospatial Foundation Project, 2022) 
was used to georeference the before and after orthomosaics and extract 
comparative 1.5 × 1.5 metre − 1.6 × 1.6 metre images from the maps. A 
team of annotators were then able to manually annotate each image 
counting the number of target weeds sprayed and target weeds missed. 
The weed knockdown hit rate for each treatment was calculated as 

hit rate =
weedssprayed

weedssprayed + weedsmissed
. (1)

The weed knockdown efficacy of spot spraying compared to blanket 
spraying was calculated as 

eff icacy =
hit ratespot spray
hit rateblanket spray

. (2)

3.4. Water quality measurements

The impact of the spot spraying on water quality was measured by 
sampling the run-off water from the first irrigation event that followed 
the spraying. Unfortunately, irrigation water sampling could not be 
performed for trials 1–2 due to unexpected rain that generated runoff 
that could not be captured. Therefore, water quality data are only 
available for trials 3–6.

The trial farms use a furrow irrigation method, whereby water is 
released at the top of each row and allowed to run along the ground, 
gradually flowing downhill under the influence of gravity. Each farm-
ers’ normal infrastructure was used for the irrigation. Irrigation was 
timed to occur as soon as possible after the spraying while complying 
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Table 3
Summary of the experimental trials that were completed in this work.
 Trial Date Weed Crop Herbicide Nozzle type Spray boom width Blanket spraying runs Spot spraying runs 
 1 11/11/2021 Nutgrass Ratoon sugarcane Sempra Irvin leg 13-row 2 × 1.25 ha 2 × 1.25 ha  
 2 11/11/2021 Nutgrass Ratoon sugarcane Sempra Irvin leg 4-row 2 × 1.25 ha 2 × 1.25 ha  
 3 11/12/2021 Nutgrass Ratoon sugarcane Krismat Irvin leg 4-row 2 × 1.10 ha 2 × 1.10 ha  
 4 21/3/2022 Grass weeds Mung bean Verdict Flat boom 4-row 2 × 0.9 ha 2 × 0.9 ha  
 5 21/3/2022 Broadleaf weeds Mung bean Blazer Flat boom 4-row 2 × 0.9 ha 2 × 0.9 ha  
 6 2/8/2022 Nutgrass Plant sugarcane Sempra Flat boom 4-row 2 × 0.75 ha 2 × 0.75 ha  
Fig. 7. An illustration of the replicated-strip trial design which was implemented for all spray trials with four 12–13 row alternating treatments of spot spraying and blanket 
spraying.
Fig. 8. The before and after UAV maps for (a) spray trial 2, (b) spray trial 3, (c) spray trials 4 and 5 and (d) spray trial 6. The different colours indicate different treatment 
areas. Maps for trial 1 were not obtained due to a technical issue with the UAV.
Fig. 9. (a) RBC flumes installed by SRA staff between sugarcane rows to allow sampling of water quality for each treatment. (b) In-field water quality sampling taking place after 
the first irrigation event following spray trial 6.
with each herbicide’s label restrictions. This was done to maximise 
the concentration of herbicide in the sampled water to increase the 
likelihood of the concentration being sufficiently above the limit of 
detection to enable an accurate measurement. Therefore, the runoff 
measurements represent the worst case scenario for water quality. 
However, all irrigation timing complied with the label restrictions and 
therefore may be used in practice by farmers.
8 
To measure the flow rate and collect water samples, RBC (Replogle, 
Bos, and Clemmens) flumes were installed on selected rows per plot as 
shown in Fig.  9. The selected rows were typically close to the centre 
of each trial strip, to ensure minimal cross-contamination from rows 
belonging to another treatment.

The start time of the irrigation and the flow rate were decided in 
consultation with each grower so that the water would reach each 
flume when the staff were ready to collect the samples. Once water 
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Fig. 10. Spray application maps for each of the six spray trials which were spread across the Burdekin region in Queensland Australia. Gaps in the spray application indicate 
regions without weeds, and hence opportunities to reduce herbicide use.
reached the flume, the water height within it was monitored every five 
minutes to calculate the flow rate. The first water sample was taken 
1 min after the runoff began, and further collections occurred on a 
flow basis (i.e. after a specified volume of water had passed the flume, 
to capture a total of 1 to 3 L composite sample throughout the runoff 
event). For each sample, 100 mL of runoff water was collected in a 
glass container. Each 100 mL sample was mixed into a 1 L glass bottle 
to create a composite sample, with fresh 1 L bottles used if needed, until 
the end of the runoff event. The total event duration was approximately 
5 h for trial 3 and 2–3 h for trials 4 to 6. The water bottles were kept 
cold using an ice block in a portable insulated cooler box and wrapped 
with aluminium foil to keep the liquid away from sunlight.

Water samples were refrigerated at 4–6 ◦C, and a representative 
subsample was dispatched by overnight road freight (while being kept 
cold) to the Sugar Research Australia laboratories for chemical anal-
ysis to determine the concentration of each herbicide’s active ingre-
dients. After 0.45 μm filtration, concentration was measured using 
High-Performance Liquid Chromatography (HLPC) on a Shimadzu Nex-
era X2 and LCMS-2020 system with a Kinetex 1.7 μm C18, 100 x 
2.1 mm LC column. The analyte was eluted using an ultra-high pressure 
gradient method with a clean-up step over a period of 30 min using 
mobile phases consisting of 0.2% formic acid in water (A), and 0.2% 
formic acid in (5:95 v/v) water and acetonitrile mixture (B) from 8 to 
95% (B) at a flow rate of 0.200 mL/min at 40 ◦C.

Analyte detection was performed by a single quadrupole mass spec-
trometer with a Dual Ion Source (DUIS) probe in both positive and 
negative Selective Ion Monitoring (SIM) modes using the LabSolution 
software. Quantitation was achieved by internal standardisation using 
stable-labelled isotope with a calibration range between 0.0005 to 
0.200 mg/L.
9 
4. Results

Herbicide application during the six field trails is visually sum-
marised in Fig.  10. The maps show the application of herbicide across 
each of the sites, and the alternating strips of blanket and spot spraying 
are visible in the images.

Table  4 gives the weed knockdown hit rate for each spraying 
method (based on Eq. (1)) and spot spraying knockdown efficacy (based 
on Eq. (2)) from the trial work. It also shows a significant reduction 
in herbicide usage using spot spraying compared to blanket spraying. 
Table  5 summarises the water quality improvement results from these 
trials.

4.1. Weed knockdown hit rate and efficacy of spot compared to blanket 
spraying

Weed knockdown hit rate and efficacy were respectively measured 
using Eqs.  (1) and (2) for trials 2–6 using the aforementioned UAV-
based approach. Fig.  11 displays examples before and after UAV im-
agery collected from the trials. Weed knockdown could not be mea-
sured with this approach for spray trial 1 due to technical issues during 
the drone flight following the trial. Weed knockdown was visually 
determined by looking for visible effects of the herbicide on the target 
weed. The UAV imagery was collected with approximately 2 mm per 
pixel resolution. Different herbicides generated different visual symp-
toms on the target weeds at the time of the follow-up UAV mapping. 
For example, Sempra in trials 2 and 6 is a slow-acting herbicide, and at 
the time of assessment, symptoms were observed as a slight yellowing 
of nutgrass. On the other hand, Krismat is a faster acting herbicide, 
which generated strong yellowing and wilting of nutgrass at the time 
of assessment. For trials 4 and 5, Verdict led to the destruction of 
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Table 4
Summary of the spot spraying knockdown efficacy (Eq. (2)) and herbicide usage reduction compared to blanket spraying results for the trials.
 Trial Weed /

Crop
Herbicide Blanket 

spraying
knockdown
hit rate (%)

Spot spraying
knockdown
hit rate (%)

Blanket 
spraying
herbicide
usage (L/ha)

Spot spraying
herbicide
usage (L/ha)

Spot spraying 
knockdown
efficacy
(%)

Spot spraying 
herbicide
reduction
(%)

 

 1a Nutgrass /
Ratoon
sugarcane

Sempra – – 200 177 – 11  

 2 Nutgrass /
Ratoon
sugarcane

Sempra 97 95 198 81 98 59  

 3 Nutgrass /
Ratoon
sugarcane

Krismat 97 89 199 183 92 8  

 4 Grass
weeds /
Mung bean

Verdict 99 96 211 100 97 53  

 5 Broadleaf
weeds /
Mung bean

Blazer 100 100 211 178 100 16  

 6 Nutgrass /
Plant
sugarcane

Sempra 100 96 207 73 96 65  

 Average Various Various 99 95 204 132 97 35  
a Note that no knockdown comparison was possible for all spray trial 1 plots due to technical error during the follow up UAV flights.
Table 5
Summary of the water quality results for the trials.
 Trial Weed /

Crop
Herbicide 
commercial 
name/
active 
ingredient

Mean 
concentration 
in runoff for 
blanket
spraying
(μg/L)

Loads in 
runoff for 
blanket
spraying
(g/ha)

Mean 
concentration 
in runoff for 
spot
spraying
(μg/L)

Loads in 
runoff for 
spot
spraying
(g/ha)

Reduction of 
mean
concentration
in runoff (%)

Reduction
of loads in
runoff (%)

 

 1a Nutgrass /
Ratoon
sugarcane

Sempra /
Halosulfuron

– – – – – –  

 2a Nutgrass /
Ratoon
sugarcane

Sempra /
Halosulfuron

– – – – – –  

 3b Nutgrass /
Ratoon
sugarcane

Krismat /
Ametryn

111.5 15 54.25 5.94 51% 60%  

 3b Nutgrass /
Ratoon
sugarcane

Krismat /
Trifloxysulfuron

3.56 0.48 2.13 0.23 40% 51%  

 4 Grass
weeds /
Mung bean

Verdict /
Haloxyfop

0.5 0.03 0.27 0.01 46% 67%  

 5 Broadleaf
weeds /
Mung bean

Blazer /
Acifluorfen

28.95 2.04 21.68 0.91 25% 55%  

 6 Nutgrass /
Plant
sugarcane

Sempra /
Halosulfuron

0.74 0.74 0.49 0.49 34% 34%  

 Average Various Various 29.05 3.66 15.76 1.52 39% 54%  
a Water quality analyses could not be completed for spray trials 1 and 2 due to more than 90 mm of unforecasted rain in the days after spraying and before the planned date 
for water quality sampling.
b Spray trial 3 used Kristmat which has two active chemical agents present for the water quality analysis.
grass weed growth points, and Blazer generated necrotic symptoms on 
broadleaf weeds.

Fig.  12 summarises the weed knockdown hit rate data from Table 
4. This shows that across all trials, robotic spot spraying on sugarcane 
farms achieved 95% average weed knockdown compared to 99% when 
using the industry standard of blanket spraying. The lowest weed 
knockdown result for spot spraying was from trial 3, which only 
achieved an 89% hit rate compared to 97% with blanket spraying. Trial 
5 achieved the best knockdown with an average of 100% knockdown 
10 
across treatments for both spot and blanket spraying. The results for 
trials 2, 4 and 6 were all comparable to the average result. Another 
way of comparing spraying efficacy is to use Eq. (2) that calculates 
spot spraying hit rate in proportion to that of blanket spraying. The 
results reported in the second last column of Table  4 show that on 
average across the six trials spot spraying is 97% as effective as blanket 
spraying.

These trials show that spot spraying is not 100% as effective as the 
industry practice of blanket spraying. The 4% drop in weed knockdown 
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Fig. 11. Example UAV images from before (top) and after (bottom) spot spraying for (a) spray trial 2, (b) spray trial 3, (c) spray trials 4 and 5 and (d) spray trial 6 showing the 
knockdown of target weeds. Note that there was no drone data for trial 1 due to technical issues and trials 4 and 5 use the same drone imagery.
Fig. 12. A comparison of the weed knockdown hit rate results (based on Eq. (1)) for blanket spraying and spot spraying and the average hit rate across the six trials.
hit rate or the 3% drop in efficacy are largely attributable to instances 
where the AI detection model failed to classify a target weed. A small 
percentage of failed classifications are unavoidable when deploying an 
AI model in a real-world environment with difficult variations. Such 
unavoidable variations include occlusion of target weeds by the crop 
plant, or incorrect exposure when the auto-exposure algorithm lags 
behind a transition of scene brightness. Trial 3 offered the lowest 
classification results of all trials. A review of the collected images from 
trial 3 found that a non-trivial number of images were incorrectly 
under-exposed when shadows from the spraying vehicle were cast on 
the camera’s field of view. This is a potential limitation contributing to 
the drop in weed knockdown that could be improved in the future.

Despite the small drop in average performance in these trials, if spot 
spraying can achieve 95% weed knockdown hit rate with a large drop 
in herbicide usage then it is a palatable new tool for sugarcane growers.

4.2. Herbicide usage reduction

Herbicide usage was measured for all trials, as shown in Table 
4 and is presented in Fig.  13 averaged across treatments of blanket 
spraying and spot spraying. Fig.  13 also superimposes the approximate 
weed density from each treatment, measured as the number of weed 
11 
detections divided by the total number of images in each treatment. 
On average, spot spraying reduced herbicide usage by 35% across the 
trials while being 97% as effective as blanket spraying. And for all 
trials, the herbicide usage for spot spraying is strongly correlated to 
the approximate weed density measured in the paddock.

For spray trials 1, 3 and 5, spot spraying used a similar amount of 
herbicide to blanket spraying, only reducing herbicide usage by 11%, 
8%, and 16%, respectively. These trials also recorded strong efficacy 
results being 98%, 97% and 100% as effective as blanket spraying for 
trials 1, 3, and 5. The best herbicide reductions were seen for trials 2, 4 
and 6, where spot spraying reduced herbicide usage by 59%, 53% and 
65%, respectively. Meanwhile, trials 4 and 6 were both 96% as effective 
as blanket spraying, but spray trial 2 was only 92% as effective.

4.3. Statistical analysis of spray trial data

This section presents the statistical analysis of the spray trial data, 
comparing spot and blanket herbicide application methods. The anal-
ysis encompasses herbicide usage rates and the correlation between 
weed density and spot spray application rate.
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Fig. 13. A comparison of herbicide usage (left axis) for blanket spraying and spot spraying across the trials. Weed density (%) is measured as the number of images with a weed 
detected in them divided by the total number of images in each trial area.
Table 6
Statistical analysis of spray trial data.
 Metric Spot spray Blanket spray Test statistic p-value 
 Mean SD Mean SD  
 Herbicide Usage (L/Ha) 132 50 204 9 𝑡 = −4.5754a 0.0007  
 Weed Knockdown (%) 94.67 4.44 98.33 1.37 – –  
 Correlation: Weed Density vs. Herbicide Used 𝑟 = 0.9824b –  
a Paired t-test to compare Herbicide Usage rate between Spot and Blanket methods.
b Pearson correlation coefficient.
4.3.1. Herbicide usage analysis
We calculated the mean and standard deviation of herbicide used in 

L/Ha for both spot and blanket spray methods. This analysis provides 
insights into the overall herbicide usage and its variability across differ-
ent plots. As shown in Table  6, the spot-spraying method shows much 
higher variability (higher Standard Deviation), which is attributed to 
the highly variable weed density (see Fig.  13) in the various plots in 
the 6 trials.

To determine if there is a significant difference in herbicide usage 
data between spot and blanket spray methods, we conducted Welch’s 
t-test, which is appropriate for samples with unequal variances. The 𝑝-
value shows a statistically significant difference between the herbicide 
usage using two spraying methods.

4.3.2. Correlation analysis
Fig.  13 illustrates a clear positive correlation between weed density 

and herbicide application rate. To quantify this relationship, we calcu-
lated the Pearson correlation coefficient, yielding a value of 𝑟 = 0.9824, 
as shown in Table  6, indicating a very strong correlation between 
the two variables. This also explains the high standard deviation of 
herbicide usage in spot spraying trials, as weed density varies randomly 
across different trial paddocks.

4.4. Water quality improvements

Water quality sampling and analysis was performed following the 
aforementioned methodology for trials 3, 4, 5, and 6. Table  5 docu-
ments the results and Figs.  14 and 15 compare the mean concentrations 
and loads of herbicide found in runoff between spot spraying and 
blanket spraying.

Figs.  14 and 15 show that herbicide concentrations and loads are 
proportional to the amount of herbicide sprayed across all trials. They 
also show that on average across all trials, spot spraying reduced the 
mean concentrations and loads of herbicides in runoff by 39% and 54% 
12 
of the blanket spray, respectively. By limiting the amount of herbicide 
sprayed to areas with weed coverage and not spraying bare ground, 
spot spraying technology can reduce the environmental footprint of 
herbicide control.

Spray trial 3 included separate analyses for the two active in-
gredients of the Krismat herbicide product. Much higher loads and 
concentrations of ametryn were found in runoff compared to trifloxy-
sulfuron because of its higher concentration in the product that was 
applied. For both active ingredients in spray trial 3, concentrations and 
loads were directly proportional to the amount of herbicide applied. 
Ametryn is reportedly very toxic at low concentrations to aquatic plants 
and algae (i.e. EC50 algae acute 72 h — 0.0036 mg/L).

For spray trials 4 and 5, the concentrations and loads were generally 
proportional to the amount of herbicide applied. Despite very low 
concentrations found in the runoff, haloxyfop and acifluorfen only have 
low to moderate impact on aquatic organisms (EC50 aquatic plants 
acute 7 day — 0.0002 mg/L, EC50 algae acute 72 h — 0.0053 mg/L).

Before spray trial 6, ametryn was blanket sprayed through the 
whole trial block. Halosulfuron load and concentration runoff data 
were, therefore, expressed in proportion to ametryn data (not shown). 
Similar to previous trials, halosulfuron concentrations and loads were 
proportional to the amount of herbicide sprayed, but generally higher.

Paired t-tests on trial averages indicate a trend of reduced knock-
down (Fig.  12), concentration (Fig.  14), and loads (Fig.  15) with spot 
spraying, aligning with expectations. However, the small sample sizes 
and small number of within-trial replicates limit statistical power. 

5. Discussions and future works

In this study, we report a comprehensive set of field experiments 
testing robotic weed spot spraying when targeting different weeds and 
using different chemical herbicides. The results are very promising in 
terms of maintaining a high weed knockdown efficacy whilst signifi-
cantly reducing the amount of herbicide applied and consequently, the 
amount of herbicide detected in water run-off induced by irrigation. 
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Fig. 14. A comparison of the mean concentration of herbicide found in runoff for blanket spraying and spot spraying across the trials.
Fig. 15. A comparison of the mean herbicide loads found in runoff for blanket spraying and spot spraying across the trials.
Therefore, robotic spot spraying has substantial potential to reduce 
herbicide use.

The technology presented in this project was specifically developed 
for managing sugarcane weeds. However, crop rotation in sugarcane 
paddocks is a fundamental practice in sustainable agriculture, con-
tributing to long-term soil productivity, environmental health, and 
economic viability for farmers. We demonstrated that our technology 
is effective even when different rotation crops are cultivated. This 
13 
adaptability is a strength of our spot-spraying technology that can 
seamlessly adjust to other weeds and crops using the same detection 
and spraying hardware, as well as the same detection framework. Our 
DL detection method remains consistent across the five different pad-
docks (with varying growth and natural environments), three different 
weed categories (with diverse morphologies, colours, and textures), 
and the two different crops (with distinct morphologies, colours, and 
textures). Additionally, our trial 6 was conducted in a plant cane rather 
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than a ratoon cane, adding extra variability to our experiments. This 
approach is aligned with the well-known site-specific approach, one 
needs to retrain a previous model or develop a new model using data 
from a new paddock, which could have a previously addressed or a new 
weed/crop.

The scope of this work was limited to sugarcane (and a rotation crop 
in sugarcane) paddocks with common weeds in the Burdekin region 
of Queensland, Australia. Therefore, the datasets and detection models 
collected and developed herein may not have utility in other sugarcane 
farming regions, and a site-specific approach should be adopted for 
new weed/crop scenarios. Nevertheless, we expect that the general 
conclusions regarding the effectiveness of the technology would apply 
to other regions.

Another limitation of our work is the lack of yield data for our trials. 
This was primarily because yield analysis was beyond the scope of the 
current study, as we did not have the resources to obtain and analyse 
yield data for the farm blocks where we conducted our spraying trials. 
However, it is known that registered herbicides can negatively impact 
crop yield. Sugar Research Australia routinely screens a range of herbi-
cides for their impact on cane varieties, with results updated yearly 
and available in the Sugar Research Australia variety guides (Aus-
tralia, 2024). When weeds are controlled and not competing with 
the crop, reduced herbicide usage may improve yield. Since we have 
demonstrated that spot-spraying with AutoWeed can reduce herbicide 
use while maintaining weed control, we expect that AutoWeed may 
positively impact overall yield. This needs to be fully verified in future 
studies.

Another limitation of this work is that it heavily relies on human an-
notation of collected datasets in order to train weed detection models. 
This study does not take advantage of recent innovations in semi-
supervised and unsupervised learning approaches. Such approaches 
may drastically increase the speed of annotation and turnaround time 
from dataset collection to spraying. In order to build larger datasets 
with regional invariance, unsupervised and semi-supervised methods 
must be relied upon.

This work is also limited to targeting nutgrass in ratoon sugarcane, 
nutgrass in plant sugarcane and grass and broadleaf weeds in mung 
beans. There are many other priority weeds of interest to the Burdekin 
region and other sugarcane farming regions in Australia and interna-
tionally. Some challenging weed species exist which present as visually 
similar to sugarcane, such as Guinea grass and wild sorghum.

Another limitation of our study is the slight unintentional varia-
tions in our experiments, which occurred due to the nature of trial 
work involving several uncontrollable factors. Ideally, we would have 
conducted all trials on sugarcane. However, only four out of six trials 
were performed on sugarcane, with the remaining two conducted on a 
rotation crop on a sugarcane farm to utilise all available opportunities. 
Additionally, we had to use two different spraying systems due to the 
unavailability of the initial farming machine. Nonetheless, this did not 
impact our results as the detection and spraying control electronics 
remained consistent.

Future work in this area includes: investigating and applying shadow
removal techniques for improved weed classification in real-world 
situations, removing or lessening the burden of human annotation 
with unsupervised or semi-supervised learning approaches, targeting 
hard-to-identify perennial grass weed species which present as visually 
similar to sugarcane crops, and building larger datasets and training 
AI models that are robust to regional variance in weeds and sugarcane 
crops outside the Burdekin region, within which this work was limited.

6. Conclusions

This study highlights how advanced robotics combined with com-
puter vision and deep learning can revolutionise weed control in agri-
culture. The field evaluation of AutoWeed shows that precision appli-
cation not only reduces herbicide usage on sugarcane farms but also 
promotes a more sustainable approach by minimising chemical use.
14 
By targeting only the necessary areas, AutoWeed shifts the focus 
from blanket application to a smarter method, cutting input costs and 
reducing the chemical burden on ecosystems. The resultant improve-
ments in water quality further underscore the environmental benefits 
of this technology.

In summary, AutoWeed represents a significant step forward in 
precision agriculture, setting the stage for future innovations that marry 
technology with sustainability to safeguard both farm productivity and 
the environment. 
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