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ARTICLE INFO ABSTRACT

Keywords: Precise robotic weed control plays an essential role in precision agriculture. It can help significantly reduce
Precision agriculture the environmental impact of herbicides while reducing weed management costs for farmers. In this paper, we
Weed control demonstrate that a custom-designed robotic spot spraying tool based on computer vision and deep learning

Deep learning can significantly reduce herbicide usage on sugarcane farms. We present results from field trials that compare

robotic spot spraying against industry-standard broadcast spraying, by measuring the weed control efficacy,
the reduction in herbicide usage, and the water quality improvements in irrigation runoff. The average results
across 25 hectares of field trials show that spot spraying on sugarcane farms is 97% as effective as broadcast
spraying and reduces herbicide usage by 35%, proportionally to the weed density. For specific trial strips
with lower weed pressure, spot spraying reduced herbicide usage by up to 65%. Water quality measurements
of irrigation-induced runoff, three to six days after spraying, showed reductions in the mean concentration
and mean load of herbicides of 39% and 54%, respectively, compared to broadcast spraying. These promising
results reveal the capability of spot spraying technology to reduce herbicide usage on sugarcane farms without
impacting weed control and potentially providing sustained water quality benefits.

1. Introduction plants indiscriminately. For instance, a common green-on-brown detec-
tion technology is Near-Infrared (NIR) optical sensing, which has been

Herbicides are a serious threat to non-target plants and animals implemented in systems such as WeedSeeker (Trimble and Weedseeker,
because they are readily carried by water run-off from farmland into 2022) and Weed-IT (Weed-IT, 2022). These systems react to the NIR
rivers, creeks, coastal and inshore areas. Consequently, herbicide usage light emitted by plants during photosynthesis. As a result, these systems
has attracted significant public attention and pressure from regulators. do not discriminate between plant types and therefore cannot separate
A promising approach to reduce herbicide runoff is to use precision crop from weed. Hence, they can only be applied in a green-on-brown

agriculture and digital technologies (Allmendinger et al., 2022). Ex-
amples of such technologies include the use of Unoccupied Aerial
Vehicles (UAV) for precise weed mapping, non-chemical robotic weed
management, and the use of UAVs (Rai et al., 2022) and ground
vehicles (Calvert et al., 2021) for spot-spraying of weeds. Spot spraying
allows for a much more efficient use of chemicals since herbicides
can be sprayed only where required, and not onto the bare ground or
non-target plants.

In many scenarios, herbicides must be applied during the growth of
the crop. This requires the spot sprayer to discriminate between weed
and crop plants, a situation which is called green-on-green detection.
This differs from so-called green-on-brown detection, which targets all processing has progressed significantly (Chen et al., 2022).

scenario, such as in fallow paddocks.

Other sensor technologies for weed detection include multi-spectral,
hyper-spectral, 3D, and depth cameras, as well as stereo and ultrasonic
sensors. The most commonplace sensor that can be used to detect
weeds in a green-on-green scenario is a standard Red-Green-Blue (RGB)
camera, which works in the visible light spectrum. Precise detection
of weeds among surrounding green plants, which can have similar
features, is a complex problem in Computer Vision (CV). Fortunately,
with the advent of Deep Learning (DL) technology and Convolutional
Neural Networks (CNN) in the past decade, weed detection with image
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Fig. 1. (a) An illustration of the AutoWeed system where the AutoWeed unit detects the weed (1) and activates the sprayer (2). (b) A photo of the AutoWeed system mounted

to a broadcast spraying boom.

In this paper, we describe the development of a ground-based spot-
spraying tool for sugarcane, which we call AutoWeed. Our system is
illustrated in Fig. 1. We developed the computer vision algorithms for
weed detection and designed the spraying system to be retrofitted to
existing farm machinery. We carried out field trials in the Burdekin
region of Queensland, Australia, which is one of Australia’s largest
sugarcane growing regions.

We conducted a comprehensive set of experiments to measure the
real-world impact of spot spraying in terms of the reduction of herbi-
cide used, the resulting weed knockdown efficacy, and the measured
concentration of herbicide active ingredients in water runoff induced
by irrigation. We hypothesised that:

1. Spot spraying is more efficient in terms of herbicide usage
compared to blanket spraying.

2. Spot spraying provides comparable weed knockdown efficacy
compared to blanket spraying.

3. Spot spraying results in lower concentrations of herbicide active
ingredients in water runoff compared to blanket spraying.

4. Spot spraying positively impacts crop yield compared to tradi-
tional blanket spraying methods.

By addressing these hypotheses, we aim to provide a comprehensive
evaluation of the efficacy and efficiency of the AutoWeed system.

The rest of this paper is organised as follows. Section 2 presents the
background and related work. Section 3 explains the methods used in
this study including the DL detection algorithms, our collected datasets,
our DL training and validation approaches, as well as the utilised water
quality measurement protocols. In Section 4, we provide on-ground
trial results of our project including the weed killing efficacy, herbicide
usage reduction, cost saving, and water quality improvements afforded
by the technology, compared to current industry practice of broadcast
(a.k.a. blanket) spraying. In Section 5, we provide discussions around
the use of the technology and how its benefits can be expanded to
other crops and farms. We also shed light on the future features and
capabilities that can improve the uptake of robotic spot spraying to
deliver a step change in water quality and environmental benefits. We
conclude the paper in Section 6.

2. Background and related work
2.1. Deep learning and its application to precision agriculture

Deep learning has grown to be a prevalent technology that has
brought astonishing performance to computer vision. Deep learning-
enabled CV algorithms are currently being applied in various precision
agriculture domains.

Similarly, in the past few years, computer vision for precision
agriculture and weed detection has significantly grown. For instance,
Lu et al. have conducted a survey of public datasets for computer vision
tasks in precision agriculture using machine and deep learning (Lu

and Young, 2020). They have surveyed 10 studies for fruit detection,
disease, damage and flower detection and counting, as well as yield
prediction, using deep learning.

Among the precision agriculture applications that Lu et al. have
surveyed, weed control has emerged as a major priority. They reported
that there have been 15 publicly available ground and aerial image
datasets collected in field using various sensors, such as RGB cameras,
multi-spectral and multi-modal sensors, in the past 8 years. Several
of these datasets such as Lameski et al. (2017) have been used in
deep learning-based weed control tasks (Chen et al.,, 2022). Here,
weed control can be any use of computer vision and deep learning to
segment, or simply classify weeds for mapping or spraying.

Other studies have demonstrated the potential of deep learning for
weed detection and control in precision agriculture. For instance, Jin
et al. (2022) developed a deep learning-based method for detecting
herbicide weed control spectrum in turfgrass, which can be used in
a machine vision-based autonomous spot-spraying system of smart
sprayers. Similarly, Harders et al. (2022) proposed a deep learning
approach for UAV-based weed detection in horticulture using edge
processing and presented experimental results. In addition to detecting
weeds, researchers have also explored the use of deep learning to
generate synthetic weed images. Chen et al. (2023) applied diffusion
probabilistic models to generate high-quality synthetic weed images
based on transfer learning, while Divyanth et al. (2022) aimed to
reduce the effort needed to prepare large image datasets by creating
artificial images of maize and common weeds through conditional
Generative Adversarial Networks. Other researchers have focused on
developing autonomous systems for weed detection and control. Patel
et al. (2022) described the design of an autonomous agricultural robot
for real-time weed detection using CNN, while Gao et al. (2022) devel-
oped a deep convolutional network that enables the prediction of both
field and aerial images from UAVs for weed segmentation and mapping
with only field images provided in the training phase. Narayana and
Ramana (2023) also developed an efficient real-time weed detection
technique using deep learning. To facilitate the development of deep
learning-based weed detection methods, Wang et al. (2022) presented
Weed25, a deep learning dataset for weed identification containing
14,035 images of 25 different weed species. Finally, Murad et al. (2023)
conducted a systematic literature review on current state-of-the-art DL
techniques for weed detection.

In this paper, we use weed classification for spot-spraying. Classifi-
cation, as opposed to segmentation, is an easier computer vision task
that can be carried out very accurately using deep learning (Chen et al.,
2022; Calvert et al., 2021). The goal here is to identify if an image
includes one or more weed(s) of interest.

2.2. DL for weed spot-spraying
Although many works have investigated and reported the potential

of using CNNs for weed classification in different scenarios within on-
ground (Knoll et al., 2019) or UAV images, research works on in-field
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Fig. 2. The AutoWeed weed detection and spraying boom mount design for a 1-metre boom section, including (a) the AutoWeed detection unit including a machine vision camera,
an NVIDIA Jetson GPU, and a custom solenoid sprayer board that can individually control up to four solenoids per camera; (b) a protective sun shade, (c) a 1“ wet boom, (d) a
40 x 40 mm steel hollow section frame, and (e) TeeJet solenoids and nozzle body adaptors.

weed detection in conjunction with spot-spraying has not seen wide
exploration. This is mainly due to the significant efforts required to
perform efficient in-field trials outside a lab environment. However,
recent advancements in deep learning have shown promising results
in the detection and classification of weeds, which is crucial for the
development of targeted spraying systems.

In one of the earliest studies (Partel et al., 2019), Partel et al.
developed a prototype spot-spraying system and simulated it using two
scenarios. In the first scenario, a vegetable field was simulated using
artificial weeds (targets) and artificial plants (non-targets), while in the
second scenario, they applied their prototype to real plants. They also
investigated the weed detection performance and system operations
using two different Graphics Processing Units (GPUs) reporting the
achieved accuracies. Finally, they utilised a GPS device integrated into
their detection system to produce weed maps. Although this showcased
the use of deep learning technology to perform spot-spraying of weeds,
it was in a controlled and simulated environment.

In Liu et al. (2021), a variable rate chemical spraying system was
partially trialled in the field at a low application speed of 3 km/h using
a prototype system controlling chemical usage in a strawberry crop.
However, this was only a prototype design that did not report herbicide
reduction achieved or the potential water quality benefits that could be
obtained.

In Du et al. (2022), a CNN-based multi-class under-canopy weed
control robotic unit named SAMBot was developed and trialled in a
limited setting in flax fields with medium weed density. SAMBot was
able to achieve an average weed classification accuracy of 90%. It also
showed reduced herbicide usage compared to a commercial sprayer.
This study trialled the robot in only 15 m of fields and further results
should be shown before the efficacy of the system could be fully
demonstrated.

While significant advancements have been made in the application
of deep learning for weed detection, the integration of these technolo-
gies into in-field weed spot-spraying systems remains under-explored.
Future research should focus on conducting more extensive field trials
and reporting on the practical benefits such as herbicide reduction and
water quality improvements, which are the objectives of our paper.

2.3. Current status of research on target spraying robots

Target spraying robots have become a pivotal technology in preci-
sion agriculture, significantly improving the accuracy and efficiency of
herbicide application. In a recent study, Allmendinger et al. reviewed
different commercial technologies and prototypes for precision patch
spraying and spot spraying (Allmendinger et al., 2022). They demon-
strated that weed spot-spraying using DL has seen a lot of attention
from the industry and several systems are currently being trialled and
made commercially available. For a detailed review of these systems,

please see Allmendinger et al. (2022). Key developments in target
spraying robots include:

Autonomous Navigation and Detection Systems: Modern target
spraying robots are equipped with advanced navigation systems and
real-time weed detection capabilities. For instance, autonomous robots
like the one developed by Abanay et al. (2022) use GPS and LiDAR to
navigate fields and identify weed locations accurately.

Integration of Deep Learning Models: The use of deep learning
models, such as CNNs, for weed detection has been a game-changer.
Systems like those reviewed by Rai et al. (2023) utilise DL models
to distinguish between crop and weed species with high precision,
enabling targeted herbicide application.

Field Trials and Practical Implementations: Extensive field trials
have been conducted to test the efficacy of target spraying robots under
real-world conditions. Studies by Sapkota et al. (2023) demonstrated
significant herbicide savings and improved weed control efficacy in
large-scale agricultural settings.

Commercialisation and Industry Adoption: Several commercial prod-
ucts have emerged from this research, including Bilberry (Bilberry,
2024), Blue River’s See and Spray (Blue River Technology, 2024),
and EcoPatch (Eco Patch Technology, 2024). These systems are be-
ing adopted by farmers globally, driven by their potential to reduce
chemical usage and enhance crop yields.

3. Methods
3.1. The AutoWeed system

The prototype AutoWeed units are shown in Fig. 2.

These units were purpose-built for retrofitting to existing agricul-
tural vehicles. Each unit comprises a machine vision camera, an NVIDIA
Jetson embedded GPU processor, and a custom solenoid sprayer board
that can individually control up to four solenoids per camera. The
design is enclosed in a robust PVC housing attached to a mounting
plate to protect the internals from the harsh environment. The units
can be mounted to any 40 mm or 50 mm steel hollow section frame
and are compatible with the commercially-available TeeJet boom and
spray nozzle components.

In this project, the AutoWeed detection and spraying prototypes
were retrofitted for broadcast spraying and Irvin leg spraying on two
spraying vehicles. The first was a large 13-row high-rise John Deere
R4720 self-propelled sprayer (see Fig. 3, a and b). The second was a
smaller 4-row three-point linkage boom sprayer towed behind a Landini
tractor (as shown in Fig. 3, ¢ and d). For both systems, the AutoWeed
detection units were mounted in front of the sprayers and positioned
between the sugarcane row centres.
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(d) Detection units on spray boom frame

Fig. 3. Illustration of the AutoWeed system retrofitted on different sprayers: (a) a 13-row high-rise John Deere R4720 self-propelled sprayer for Irvin leg spraying, with (b)
detection units mounted in front of the Irvin legs between cane row centres; (c) a 4-row sprayer fitted for broadcast spraying, with (d) detection units mounted to the spray boom

frame.

3.2. Weed image acquisition, analysis, and application technology

The AutoWeed units utilise a machine vision camera pointing di-
rectly down to capture images of the field (see Fig. 2). The height of
the camera in the detection unit, as shown in Fig. 1(b), is set based on
the required field of view of the target crop row width. For sugarcane
paddocks in the Burdekin region, the row width usually varies between
1.5 to 1.6 metres. To achieve a field of view that captured the full
sugarcane row width, the camera lens was positioned at least 1 m above
the ground to ensure a horizontal field of view of at least 1.6 metres.
We also utilised separately adjustable mounting for the camera and the
spray nozzles so that the height of the spray nozzle to the target weeds
could be adjusted without affecting the height of the camera.

Deep learning image classification models are trained using large
labelled image datasets collected from the fields and weeds of interest.
These models are then used in-field to analyse the images collected in
real-time during spot-spraying and detect those containing weeds of
interest to spot-spray them using our custom solenoid sprayer board
that can individually control up to four solenoids per detection unit
(see Fig. 2e). This process is explained in detail below.

3.2.1. The weed dataset

One of the crucial first steps when developing a deep learning algo-
rithm is collecting suitable datasets. The quantity, quality, and diversity
of the data used to train the model directly impact its performance.
For weed detection and spot-spraying, the collected dataset should
contain diverse images of both crops and weeds in different growth
stages, lighting conditions, and environments. The larger and more
diverse the dataset, the better the model will be able to generalise and
accurately identify weeds in new, unseen situations. It is also important
to carefully label the data to ensure that the model is properly trained
on the correct classifications (Chen et al., 2022). In spot-spraying ap-
plications using deep learning, the image dataset is typically collected
from a specific site and focuses on the weed(s) of interest, for which a
dedicated model is trained. This method, known as site-specific weed
control, is effective because it considers the unique conditions of each
site, including the growth stage and the variety in shape and features
of the same weeds, which can differ significantly between locations.

For the project presented in this paper, we collected a total of
1,447,456 site-specific images before each of the respective six spray
trials as described in Table 1. This data allowed training site-specific
deep learning algorithms to detect target weeds for the different sugar-
cane paddocks. Data collection was performed in the Burdekin region
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Fig. 4. The classification approach for sugarcane where the camera is centred on the interrow and (a) images are split into four tiles for annotation and (b) the field of view is
cropped to have two tiles of equal size in the centre of the frame for inference. For each tile, if a weed is detected the corresponding spray nozzle is activated.

Table 1

Summary of images collected and annotated for each of the six spray trials. Grass weeds included summer grass and crowsfoot;
broadleaf weeds included vines, giant pigweed, and sesbania pea.

Trial Weed (s) Crop Images collected Images annotated
1&2 Nutgrass Ratoon sugarcane 244,346 81,800

3 Nutgrass Ratoon sugarcane 369,744 8,638

4 &5 Grass and broadleaf weeds Mung bean 303,362 55,030

6 Nutgrass Plant sugarcane 530,004 90,858

Total 1,447,456 236,326

of Queensland, Australia using an All-Terrain Vehicle (ATV) retrofitted
with AutoWeed detection units that include a machine vision camera
pointing downward, similar to that shown in Calvert et al. (2021). For
adaptation to sugarcane, the AutoWeed detection units were retrofitted
onto spray booms centred on the interrow (i.e. in between crop rows).
This allowed clear vision of weeds in the row underneath the sugarcane
leaf canopy and in the interrow soil area, as shown in Fig. 4. Each
dataset collection took approximately one hour, during which a few
hundred thousand images (see Table 1) were collected from several
sugarcane rows.

In the six trials presented in our paper, we focused on annual
grasses, broadleaf weeds and nutgrass. The weeds present in our tri-
als were selected based on direct consultation with the participating
sugarcane grower, and were common weeds of sugarcane paddocks in
the Burdekin region of QLD, Australia. As shown in Table 1, nutgrass
(Cyperus rotundus) has been one of the main weeds targeted in our
project. This sedge can be controlled in a sugarcane crop by applying
a selective and costly herbicide treatment (halosulfuron-methyl) and
shares similar colour and shape features with early stage sugarcane,
which makes it an interesting target for spot-spraying applications
using deep learning among sugarcane crops. Other weeds of interest
included two grass species: summer grass (Digitaria ciliaris) and crows-
foot (Eleusine indica); and broadleaf weeds: Red convolvulus (Ipomoea
hederifolia), giant pigweed (Trianthema portulacastrum) and sesbania
pea (Sesbania cannabina), which we treated in a mung bean rotation
crop. It is worth noting that while each paddock may have different
weeds, targeting these specific weeds was prioritised due to their higher
impact and herbicide costs. Additionally, in our trial, we grouped all
grass and broadleaf weeds in two respective categories, as there was
no need to spot-spray specific species of broadleaf or grass weeds.

3.2.2. Dataset annotation for DL training

Following data collection, a group of annotators manually anno-
tated the presence of target weeds in each weed training dataset in a
binary fashion, i.e. labelled images with weed present as weed, and
the others as non-target. A tiled classification approach was chosen
whereby collected images were split into 2 x 2 tiles for annotation (Fig.

4a) and 1 x 2 tiles for inference during the use of the system for spot-
spraying (Fig. 4b). This allowed rapid collection and annotation of high
tile counts during dataset collection, and high-speed performance with
a batch size of two during inference. It is worth noting that, the exact
spatial position of the weeds was not recorded in annotations or used
in our spray application. Instead, if an image tile contained a weed, its
corresponding spray nozzle was activated, as shown in Fig. 4b. Because
the design of the system is made for crops with rows that travel in a
straight line direction, this system will accurately identify and spray
weeds by only needing to tune the spray on time and spray duration
based on the vehicle’s speed of travel.

Annotation was performed using the Computer Vision Annotation
Tool (CVAT). This allowed for rapid annotation of approximately 2,000
tile images per hour, and an overall annotation time between 4.5 h for
trial 3 and 45 h for trial 6. Annotators labelled the presence of target
weeds in each tile using a binary approach for spray trials 1, 2, 3 and 6.
However, the training dataset for spray trials 4 and 5 required a multi-
label classification approach due to the presence of two target weeds
(grass and broadleaf) in the dataset. Fig. 5 provides sample images from
the site-specific training datasets that were collected and annotated for
each of the trials.

3.2.3. DL training and validation for weed classification

Following the labelling process, the training datasets for each trial
were randomly split into 80% and 20% subsets of training and valida-
tion, where 80% of the labels were set aside for training and 20% of
the labels were set aside for model validation. The class distribution
between training and validation subsets was stratified such that the
ratio of the weed class(es) to the negative class was (i.e. without weeds)
consistent across both subsets.

To allow for benchmarking of accuracy metrics for researchers,
machine learning datasets are usually split three ways with training and
validation subsets, and a test subset that is heldout to test the model.
We have foregone this data splitting approach here, to train models
on the most data possible. Furthermore, the test set for this work is the
real-time in situ data when evaluating spot-spraying performance in the
field.
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(b)

(©)

(d)

Fig. 5. Sample annotated images from the training datasets for (a) trials 1 & 2, (b) trial 3, (c) trials 4 & 5, and (d) trial 6. Red borders indicate a tile contains a target weed and

green borders do not. The blue border for (c) indicates a second target weed.

The TensorFlow machine learning backend was used together with
the Python-based high-level API Keras, to train a MobileNetV2 ar-
chitecture following the training methodology of Chen et al. (2022)
and Calvert et al. (2021). MobileNetV2 is a deep learning model
designed for efficient image classification tasks, particularly on mobile
and embedded devices. It employs an architecture that balances high
accuracy with low computational cost, using depthwise separable con-
volutions and inverted residuals. The loss function commonly used for
training MobileNetV2 is categorical cross-entropy, which measures the
difference between the predicted probability distribution and the true
distribution of the class labels. On average, the training process took
4-5 h on an NVIDIA GTX 1080Ti Graphical Processing Unit (GPU).
Early stopping was used to halt training when the validation loss failed
to decrease after 16 successive epochs.

Fig. 6 presents the confusion matrices for each collected dataset,

which captures how well each trained model classifies its target weed(s).

This data shows lab inference using the MobileNetV2 model from the
epoch with the lowest validation loss, which is also used for field
implementation. We utilised 20% of the annotated data to test model
performance shown in Fig. 6. The data volume used for the various
trials can be calculated from the information provided in Table 1. This
volume ranges from 1727 images (20% of 8638) to test the model
developed for detecting nutgrass in trial 3, to 18172 images for testing
the nutgrass detection model developed for trial 6.

3.2.4. In-field spot-spraying trials

For each trial shown in Table 1, the MobileNetV2 model from the
training process with the epoch with the lowest validation loss was
selected for field implementation.

The light-weight MobileNetV2 architecture was chosen, similar to
other works Chen et al. (2022), Calvert et al. (2021), because it offers
the high-speed inference required to achieve real-time spot spraying
while travelling at up to 8 km per hour. When running on an NVIDIA
Jetson Nano embedded device, the MobileNetV2 architecture performs
inference at 21.9 ms per image or 45.7 frames per second.

Our in-field spot-spraying trials demonstrated that a model with
high real-world inference accuracy is suitable for spot-spraying target

weeds in the field for two main reasons. First, most field variations,
such as ambient light, mechanical vibration, and background com-
plexity, are captured in the large training dataset collected for each
trial (see Table 1). Second, since the deep learning model has multiple
opportunities to see the same weed due to the high frame processing
rate and capturing images from the same view multiple times, the weed
hit rate in the field is even higher than the per-image model accuracy.
This is evidenced by the data presented in the next Section, which
shows a high weed knockdown hit rate for spot-spraying, consistent
with the accuracy of the deep learning models trained on the dataset.

There are also several sources of time delay from the moment that
an image is captured to the time that the chemical hits the target weed.
These include image acquisition time (i.e. the time it takes for the image
to be captured and made available for processing), pre-processing time
(i.e. the time it takes to prepare the image format for inference on
the embedded GPU device), inference time (i.e. the time to perform
inference using the embedded GPU target device and return a result
indicating the presence of a weed or not) and solenoid response time
(i.e. the time to send a command to engage a solenoid and have the
solenoid electrically engaged).

For this work, we have measured the average time for each of these
delays as shown in Table 2. The total average response time from image
capture to weed spray is 58.16 ms, using the MobileNetV2 architecture.
While travelling at 8 km/h, the spray vehicle would have only moved
approximately 129.2 mm over this response time. To ensure adequate
coverage of the target weed, we activate the sprayer as quickly as
possible to ensure that the sprayer is fully on before the centre of the
sprayer passes over the identified weed target. We also instituted a
spray duration, that is based on the vehicle speed, so that the sprayer
remains on until the sprayer has passed over the target weed to give it
full coverage of herbicide. Typically, a spray duration of 0.45 s was
used for a travel speed of 8 km/h. This ensured spray sections of
approximately 1 metre for identified targets.
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Fig. 6. The confusion matrices evaluating the performance of the MobileNetV2 weed detection models in lab inference on 20% of the labelled validation data. Negative (in a-b,
and d) and Background (in c) refer to instances where there is no weed present in the image. The model may incorrectly identify an image with no weed as containing weed
(false positive), or miss a weed (false negative). Here, (a) shows results from spray trials 1 and 2, (b) from spray trial 3, (¢) from spray trials 4 and 5, and (d) from spray trial 6.

Table 2

Average time measurements for the spot spraying workflow from image acquisition
to solenoid activation showing the average and standard deviation measurements in
milliseconds.

Time measurement Average (ms) Std. Dev. (ms)

Image acquisition time 5.85 0.75
Image pre-processing time 8.88 0.05
Inference time 21.90 5.53
Solenoid response time 21.53 1.70
Total execution time 58.16 5.83

3.3. Weed knockdown efficacy and herbicide usage analyses

Participating growers for the trial work were recruited by Sugar
Research Australia, whose active presence in the Burdekin region gar-
nered great interest in the project from local growers. Trial paddocks
were restricted to early-stage ratoon sugarcane, plant sugarcane, or
rotational crops with the presence of common and priority weeds in
the Burdekin region. The aforementioned six experimental trials were
conducted with details provided in Table 3.

For each trial, a 12-13 row replicated strip trial design was im-
plemented as illustrated in Fig. 7. For each 12-13 row strip, chemical
treatments were alternated between spot spraying and blanket spraying
while using the same herbicide mixtures. Trials 1 and 2 were conducted
using a 13-row self-propelled sprayer, while the other trials utilised
a 4-row tractor boom sprayer. Trials 4 and 5 were conducted in the
morning and afternoon, respectively, on the same crop on the same
day. In this situation, two different chemicals were required to control
different types of weeds.

Herbicide usage was measured for each treatment using the flow
rate controller and tank measurements on the retrofitted spray booms.
Custom-made electronics on-board the vehicle also recorded the GPS
location and duration of each nozzle activation which allowed visuali-
sation of spray application maps after each trial.

To quantify the efficacy of each treatment on weeds, UAVs were
deployed to capture high-resolution imagery from random locations

along the trial paddock across all treatments before and after spraying.
“Before maps” were collected on the day of the trial before applying the
treatments. “After maps” were collected between 6-14 days after the
treatment depending on the time it took visual symptoms to manifest
on the targeted weeds after herbicide application. Fig. 8 presents
the collected drone maps from each target trial site as part of the
weed knockdown efficacy analysis. OpenDroneMap (OpenDroneMap
Authors, 2020) was used to generate orthomosaics from the raw drone
imagery and QGIS (Open Source Geospatial Foundation Project, 2022)
was used to georeference the before and after orthomosaics and extract
comparative 1.5 x 1.5 metre — 1.6 X 1.6 metre images from the maps. A
team of annotators were then able to manually annotate each image
counting the number of target weeds sprayed and target weeds missed.
The weed knockdown hit rate for each treatment was calculated as

Weedssprayed

(€8]

hit rate =

Weedsspmyed + weedS igeed

The weed knockdown efficacy of spot spraying compared to blanket
spraying was calculated as

hit rategpy gpray

(2)

efficacy = ———8 ——.
Y hit Tateyjynket spray

3.4. Water quality measurements

The impact of the spot spraying on water quality was measured by
sampling the run-off water from the first irrigation event that followed
the spraying. Unfortunately, irrigation water sampling could not be
performed for trials 1-2 due to unexpected rain that generated runoff
that could not be captured. Therefore, water quality data are only
available for trials 3-6.

The trial farms use a furrow irrigation method, whereby water is
released at the top of each row and allowed to run along the ground,
gradually flowing downhill under the influence of gravity. Each farm-
ers’ normal infrastructure was used for the irrigation. Irrigation was
timed to occur as soon as possible after the spraying while complying
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Table 3
Summary of the experimental trials that were completed in this work.
Trial Date Weed Crop Herbicide Nozzle type Spray boom width Blanket spraying runs Spot spraying runs
1 11/11/2021 Nutgrass Ratoon sugarcane Sempra Irvin leg 13-row 2x1.25 ha 2x1.25 ha
2 11/11/2021 Nutgrass Ratoon sugarcane Sempra Irvin leg 4-row 2x1.25 ha 2% 1.25 ha
3 11/12/2021 Nutgrass Ratoon sugarcane Krismat Irvin leg 4-row 2% 1.10 ha 2% 1.10 ha
4 21/3/2022 Grass weeds Mung bean Verdict Flat boom 4-row 2x0.9 ha 2x0.9 ha
5 21/3/2022 Broadleaf weeds Mung bean Blazer Flat boom 4-row 2x%x0.9 ha 2x%x0.9 ha
6 2/8/2022 Nutgrass Plant sugarcane Sempra Flat boom 4-row 2%0.75 ha 2%0.75 ha
Treatment 1 Treatment 2 Treatment 3 Treatment 4
Spot Spray Blanket Spray Spot Spray Blanket Spray

Fig. 7. An illustration of the replicated-strip trial design which was implemented for all spray trials with four 12-13 row alternating treatments of spot spraying and blanket

spraying.

(a) (b)

(c)

Fig. 8. The before and after UAV maps for (a) spray trial 2, (b) spray trial 3, (c) spray trials 4 and 5 and (d) spray trial 6. The different colours indicate different treatment

areas. Maps for trial 1 were not obtained due to a technical issue with the UAV.

Fig. 9. (a) RBC flumes installed by SRA staff between sugarcane rows to allow sampling of water quality for each treatment. (b) In-field water quality sampling taking place after

the first irrigation event following spray trial 6.

with each herbicide’s label restrictions. This was done to maximise
the concentration of herbicide in the sampled water to increase the
likelihood of the concentration being sufficiently above the limit of
detection to enable an accurate measurement. Therefore, the runoff
measurements represent the worst case scenario for water quality.
However, all irrigation timing complied with the label restrictions and
therefore may be used in practice by farmers.

To measure the flow rate and collect water samples, RBC (Replogle,
Bos, and Clemmens) flumes were installed on selected rows per plot as
shown in Fig. 9. The selected rows were typically close to the centre
of each trial strip, to ensure minimal cross-contamination from rows
belonging to another treatment.

The start time of the irrigation and the flow rate were decided in
consultation with each grower so that the water would reach each
flume when the staff were ready to collect the samples. Once water
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Spray Trial Boundary

Fig. 10. Spray application maps for each of the six spray trials which were spread across the Burdekin region in Queensland Australia. Gaps in the spray application indicate

regions without weeds, and hence opportunities to reduce herbicide use.

reached the flume, the water height within it was monitored every five
minutes to calculate the flow rate. The first water sample was taken
1 min after the runoff began, and further collections occurred on a
flow basis (i.e. after a specified volume of water had passed the flume,
to capture a total of 1 to 3 L composite sample throughout the runoff
event). For each sample, 100 mL of runoff water was collected in a
glass container. Each 100 mL sample was mixed into a 1 L glass bottle
to create a composite sample, with fresh 1 L bottles used if needed, until
the end of the runoff event. The total event duration was approximately
5 h for trial 3 and 2-3 h for trials 4 to 6. The water bottles were kept
cold using an ice block in a portable insulated cooler box and wrapped
with aluminium foil to keep the liquid away from sunlight.

Water samples were refrigerated at 4-6 °C, and a representative
subsample was dispatched by overnight road freight (while being kept
cold) to the Sugar Research Australia laboratories for chemical anal-
ysis to determine the concentration of each herbicide’s active ingre-
dients. After 0.45 pm filtration, concentration was measured using
High-Performance Liquid Chromatography (HLPC) on a Shimadzu Nex-
era X2 and LCMS-2020 system with a Kinetex 1.7 pm C18, 100 x
2.1 mm LC column. The analyte was eluted using an ultra-high pressure
gradient method with a clean-up step over a period of 30 min using
mobile phases consisting of 0.2% formic acid in water (A), and 0.2%
formic acid in (5:95 v/v) water and acetonitrile mixture (B) from 8 to
95% (B) at a flow rate of 0.200 mL/min at 40 °C.

Analyte detection was performed by a single quadrupole mass spec-
trometer with a Dual Ion Source (DUIS) probe in both positive and
negative Selective Ion Monitoring (SIM) modes using the LabSolution
software. Quantitation was achieved by internal standardisation using
stable-labelled isotope with a calibration range between 0.0005 to
0.200 mg/L.

4. Results

Herbicide application during the six field trails is visually sum-
marised in Fig. 10. The maps show the application of herbicide across
each of the sites, and the alternating strips of blanket and spot spraying
are visible in the images.

Table 4 gives the weed knockdown hit rate for each spraying
method (based on Eq. (1)) and spot spraying knockdown efficacy (based
on Eq. (2)) from the trial work. It also shows a significant reduction
in herbicide usage using spot spraying compared to blanket spraying.
Table 5 summarises the water quality improvement results from these
trials.

4.1. Weed knockdown hit rate and efficacy of spot compared to blanket
spraying

Weed knockdown hit rate and efficacy were respectively measured
using Egs. (1) and (2) for trials 2-6 using the aforementioned UAV-
based approach. Fig. 11 displays examples before and after UAV im-
agery collected from the trials. Weed knockdown could not be mea-
sured with this approach for spray trial 1 due to technical issues during
the drone flight following the trial. Weed knockdown was visually
determined by looking for visible effects of the herbicide on the target
weed. The UAV imagery was collected with approximately 2 mm per
pixel resolution. Different herbicides generated different visual symp-
toms on the target weeds at the time of the follow-up UAV mapping.
For example, Sempra in trials 2 and 6 is a slow-acting herbicide, and at
the time of assessment, symptoms were observed as a slight yellowing
of nutgrass. On the other hand, Krismat is a faster acting herbicide,
which generated strong yellowing and wilting of nutgrass at the time
of assessment. For trials 4 and 5, Verdict led to the destruction of
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Summary of the spot spraying knockdown efficacy (Eq. (2)) and herbicide usage reduction compared to blanket spraying results for the trials.

Trial Weed / Herbicide Blanket Spot spraying Blanket Spot spraying Spot spraying Spot spraying
Crop spraying knockdown spraying herbicide knockdown herbicide
knockdown hit rate (%) herbicide usage (L/ha) efficacy reduction
hit rate (%) usage (L/ha) (%) (%)
12 Nutgrass / Sempra - - 200 177 - 11
Ratoon
sugarcane
2 Nutgrass / Sempra 97 95 198 81 98 59
Ratoon
sugarcane
3 Nutgrass / Krismat 97 89 199 183 92 8
Ratoon
sugarcane
4 Grass Verdict 99 96 211 100 97 53
weeds /
Mung bean
5 Broadleaf Blazer 100 100 211 178 100 16
weeds /
Mung bean
6 Nutgrass / Sempra 100 96 207 73 96 65
Plant
sugarcane
Average Various Various 929 95 204 132 97 35
2 Note that no knockdown comparison was possible for all spray trial 1 plots due to technical error during the follow up UAV flights.
Table 5
Summary of the water quality results for the trials.
Trial Weed / Herbicide Mean Loads in Mean Loads in Reduction of Reduction
Crop commercial concentration runoff for concentration runoff for mean of loads in
name/ in runoff for blanket in runoff for spot concentration runoff (%)
active blanket spraying spot spraying in runoff (%)
ingredient spraying (g/ha) spraying (g/ha)
(ng/L) (ng/L)
12 Nutgrass / Sempra / - - - - - -
Ratoon Halosulfuron
sugarcane
28 Nutgrass / Sempra / - - - - - -
Ratoon Halosulfuron
sugarcane
30 Nutgrass / Krismat / 111.5 15 54.25 5.94 51% 60%
Ratoon Ametryn
sugarcane
30 Nutgrass / Krismat / 3.56 0.48 2.13 0.23 40% 51%
Ratoon Trifloxysulfuron
sugarcane
4 Grass Verdict / 0.5 0.03 0.27 0.01 46% 67%
weeds / Haloxyfop
Mung bean
5 Broadleaf Blazer / 28.95 2.04 21.68 0.91 25% 55%
weeds / Acifluorfen
Mung bean
6 Nutgrass / Sempra / 0.74 0.74 0.49 0.49 34% 34%
Plant Halosulfuron
sugarcane
Average Various Various 29.05 3.66 15.76 1.52 39% 54%

a Water quality analyses could not be completed for spray trials 1 and 2 due to more than 90 mm of unforecasted rain in the days after spraying and before the planned date

for water quality sampling.

b Spray trial 3 used Kristmat which has two active chemical agents present for the water quality analysis.

grass weed growth points, and Blazer generated necrotic symptoms on
broadleaf weeds.

Fig. 12 summarises the weed knockdown hit rate data from Table
4. This shows that across all trials, robotic spot spraying on sugarcane
farms achieved 95% average weed knockdown compared to 99% when
using the industry standard of blanket spraying. The lowest weed
knockdown result for spot spraying was from trial 3, which only
achieved an 89% hit rate compared to 97% with blanket spraying. Trial
5 achieved the best knockdown with an average of 100% knockdown
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across treatments for both spot and blanket spraying. The results for
trials 2, 4 and 6 were all comparable to the average result. Another
way of comparing spraying efficacy is to use Eq. (2) that calculates
spot spraying hit rate in proportion to that of blanket spraying. The
results reported in the second last column of Table 4 show that on
average across the six trials spot spraying is 97% as effective as blanket
spraying.

These trials show that spot spraying is not 100% as effective as the
industry practice of blanket spraying. The 4% drop in weed knockdown
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(d)

Fig. 11. Example UAV images from before (top) and after (bottom) spot spraying for (a) spray trial 2, (b) spray trial 3, (c) spray trials 4 and 5 and (d) spray trial 6 showing the
knockdown of target weeds. Note that there was no drone data for trial 1 due to technical issues and trials 4 and 5 use the same drone imagery.

Weed Knockdown by Spray Type
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Fig. 12. A comparison of the weed knockdown hit rate results (based on Eq. (1)) for blanket spraying and spot spraying and the average hit rate across the six trials.

hit rate or the 3% drop in efficacy are largely attributable to instances
where the Al detection model failed to classify a target weed. A small
percentage of failed classifications are unavoidable when deploying an
Al model in a real-world environment with difficult variations. Such
unavoidable variations include occlusion of target weeds by the crop
plant, or incorrect exposure when the auto-exposure algorithm lags
behind a transition of scene brightness. Trial 3 offered the lowest
classification results of all trials. A review of the collected images from
trial 3 found that a non-trivial number of images were incorrectly
under-exposed when shadows from the spraying vehicle were cast on
the camera’s field of view. This is a potential limitation contributing to
the drop in weed knockdown that could be improved in the future.
Despite the small drop in average performance in these trials, if spot
spraying can achieve 95% weed knockdown hit rate with a large drop
in herbicide usage then it is a palatable new tool for sugarcane growers.

4.2. Herbicide usage reduction

Herbicide usage was measured for all trials, as shown in Table
4 and is presented in Fig. 13 averaged across treatments of blanket
spraying and spot spraying. Fig. 13 also superimposes the approximate
weed density from each treatment, measured as the number of weed
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detections divided by the total number of images in each treatment.
On average, spot spraying reduced herbicide usage by 35% across the
trials while being 97% as effective as blanket spraying. And for all
trials, the herbicide usage for spot spraying is strongly correlated to
the approximate weed density measured in the paddock.

For spray trials 1, 3 and 5, spot spraying used a similar amount of
herbicide to blanket spraying, only reducing herbicide usage by 11%,
8%, and 16%, respectively. These trials also recorded strong efficacy
results being 98%, 97% and 100% as effective as blanket spraying for
trials 1, 3, and 5. The best herbicide reductions were seen for trials 2, 4
and 6, where spot spraying reduced herbicide usage by 59%, 53% and
65%, respectively. Meanwhile, trials 4 and 6 were both 96% as effective
as blanket spraying, but spray trial 2 was only 92% as effective.

4.3. Statistical analysis of spray trial data

This section presents the statistical analysis of the spray trial data,
comparing spot and blanket herbicide application methods. The anal-
ysis encompasses herbicide usage rates and the correlation between
weed density and spot spray application rate.
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Herbicide Usage and Weed Density by Spray Type
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Fig. 13. A comparison of herbicide usage (left axis) for blanket spraying and spot spraying across the trials. Weed density (%) is measured as the number of images with a weed

detected in them divided by the total number of images in each trial area.

Table 6
Statistical analysis of spray trial data.
Metric Spot spray Blanket spray Test statistic p-value
Mean SD Mean SD
Herbicide Usage (L/Ha) 132 50 204 9 t = —4.5754* 0.0007
Weed Knockdown (%) 94.67 4.44 98.33 1.37 - -
Correlation: Weed Density vs. Herbicide Used r=0.9824> -

@ Paired t-test to compare Herbicide Usage rate between Spot and Blanket methods.

b Pearson correlation coefficient.

4.3.1. Herbicide usage analysis

We calculated the mean and standard deviation of herbicide used in
L/Ha for both spot and blanket spray methods. This analysis provides
insights into the overall herbicide usage and its variability across differ-
ent plots. As shown in Table 6, the spot-spraying method shows much
higher variability (higher Standard Deviation), which is attributed to
the highly variable weed density (see Fig. 13) in the various plots in
the 6 trials.

To determine if there is a significant difference in herbicide usage
data between spot and blanket spray methods, we conducted Welch’s
t-test, which is appropriate for samples with unequal variances. The p-
value shows a statistically significant difference between the herbicide
usage using two spraying methods.

4.3.2. Correlation analysis

Fig. 13 illustrates a clear positive correlation between weed density
and herbicide application rate. To quantify this relationship, we calcu-
lated the Pearson correlation coefficient, yielding a value of r = 0.9824,
as shown in Table 6, indicating a very strong correlation between
the two variables. This also explains the high standard deviation of
herbicide usage in spot spraying trials, as weed density varies randomly
across different trial paddocks.

4.4. Water quality improvements

Water quality sampling and analysis was performed following the
aforementioned methodology for trials 3, 4, 5, and 6. Table 5 docu-
ments the results and Figs. 14 and 15 compare the mean concentrations
and loads of herbicide found in runoff between spot spraying and
blanket spraying.

Figs. 14 and 15 show that herbicide concentrations and loads are
proportional to the amount of herbicide sprayed across all trials. They
also show that on average across all trials, spot spraying reduced the
mean concentrations and loads of herbicides in runoff by 39% and 54%
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of the blanket spray, respectively. By limiting the amount of herbicide
sprayed to areas with weed coverage and not spraying bare ground,
spot spraying technology can reduce the environmental footprint of
herbicide control.

Spray trial 3 included separate analyses for the two active in-
gredients of the Krismat herbicide product. Much higher loads and
concentrations of ametryn were found in runoff compared to trifloxy-
sulfuron because of its higher concentration in the product that was
applied. For both active ingredients in spray trial 3, concentrations and
loads were directly proportional to the amount of herbicide applied.
Ametryn is reportedly very toxic at low concentrations to aquatic plants
and algae (i.e. EC50 algae acute 72 h — 0.0036 mg/L).

For spray trials 4 and 5, the concentrations and loads were generally
proportional to the amount of herbicide applied. Despite very low
concentrations found in the runoff, haloxyfop and acifluorfen only have
low to moderate impact on aquatic organisms (EC50 aquatic plants
acute 7 day — 0.0002 mg/L, EC50 algae acute 72 h — 0.0053 mg/L).

Before spray trial 6, ametryn was blanket sprayed through the
whole trial block. Halosulfuron load and concentration runoff data
were, therefore, expressed in proportion to ametryn data (not shown).
Similar to previous trials, halosulfuron concentrations and loads were
proportional to the amount of herbicide sprayed, but generally higher.

Paired t-tests on trial averages indicate a trend of reduced knock-
down (Fig. 12), concentration (Fig. 14), and loads (Fig. 15) with spot
spraying, aligning with expectations. However, the small sample sizes
and small number of within-trial replicates limit statistical power.

5. Discussions and future works

In this study, we report a comprehensive set of field experiments
testing robotic weed spot spraying when targeting different weeds and
using different chemical herbicides. The results are very promising in
terms of maintaining a high weed knockdown efficacy whilst signifi-
cantly reducing the amount of herbicide applied and consequently, the
amount of herbicide detected in water run-off induced by irrigation.



M. Rahimi Azghadi et al

Computers and Electronics in Agriculture 235 (2025) 110365

Herbicide Mean Concentration in Runoff

111.50

100 A

Mean Concentration (ug/L)

Il Blanket Spray
Il Spot Spray

Trial and Target Herbicide

Fig. 14. A comparison of the mean concentration of herbicide found in runoff for blanket spraying and spot spraying across the trials.
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Fig. 15. A comparison of the mean herbicide loads found in runoff for blanket spraying and spot spraying across the trials.

Therefore, robotic spot spraying has substantial potential to reduce
herbicide use.

The technology presented in this project was specifically developed
for managing sugarcane weeds. However, crop rotation in sugarcane
paddocks is a fundamental practice in sustainable agriculture, con-
tributing to long-term soil productivity, environmental health, and
economic viability for farmers. We demonstrated that our technology
is effective even when different rotation crops are cultivated. This
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adaptability is a strength of our spot-spraying technology that can
seamlessly adjust to other weeds and crops using the same detection
and spraying hardware, as well as the same detection framework. Our
DL detection method remains consistent across the five different pad-
docks (with varying growth and natural environments), three different
weed categories (with diverse morphologies, colours, and textures),
and the two different crops (with distinct morphologies, colours, and
textures). Additionally, our trial 6 was conducted in a plant cane rather
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than a ratoon cane, adding extra variability to our experiments. This
approach is aligned with the well-known site-specific approach, one
needs to retrain a previous model or develop a new model using data
from a new paddock, which could have a previously addressed or a new
weed/crop.

The scope of this work was limited to sugarcane (and a rotation crop
in sugarcane) paddocks with common weeds in the Burdekin region
of Queensland, Australia. Therefore, the datasets and detection models
collected and developed herein may not have utility in other sugarcane
farming regions, and a site-specific approach should be adopted for
new weed/crop scenarios. Nevertheless, we expect that the general
conclusions regarding the effectiveness of the technology would apply
to other regions.

Another limitation of our work is the lack of yield data for our trials.
This was primarily because yield analysis was beyond the scope of the
current study, as we did not have the resources to obtain and analyse
yield data for the farm blocks where we conducted our spraying trials.
However, it is known that registered herbicides can negatively impact
crop yield. Sugar Research Australia routinely screens a range of herbi-
cides for their impact on cane varieties, with results updated yearly
and available in the Sugar Research Australia variety guides (Aus-
tralia, 2024). When weeds are controlled and not competing with
the crop, reduced herbicide usage may improve yield. Since we have
demonstrated that spot-spraying with AutoWeed can reduce herbicide
use while maintaining weed control, we expect that AutoWeed may
positively impact overall yield. This needs to be fully verified in future
studies.

Another limitation of this work is that it heavily relies on human an-
notation of collected datasets in order to train weed detection models.
This study does not take advantage of recent innovations in semi-
supervised and unsupervised learning approaches. Such approaches
may drastically increase the speed of annotation and turnaround time
from dataset collection to spraying. In order to build larger datasets
with regional invariance, unsupervised and semi-supervised methods
must be relied upon.

This work is also limited to targeting nutgrass in ratoon sugarcane,
nutgrass in plant sugarcane and grass and broadleaf weeds in mung
beans. There are many other priority weeds of interest to the Burdekin
region and other sugarcane farming regions in Australia and interna-
tionally. Some challenging weed species exist which present as visually
similar to sugarcane, such as Guinea grass and wild sorghum.

Another limitation of our study is the slight unintentional varia-
tions in our experiments, which occurred due to the nature of trial
work involving several uncontrollable factors. Ideally, we would have
conducted all trials on sugarcane. However, only four out of six trials
were performed on sugarcane, with the remaining two conducted on a
rotation crop on a sugarcane farm to utilise all available opportunities.
Additionally, we had to use two different spraying systems due to the
unavailability of the initial farming machine. Nonetheless, this did not
impact our results as the detection and spraying control electronics
remained consistent.

Future work in this area includes: investigating and applying shadow
removal techniques for improved weed classification in real-world
situations, removing or lessening the burden of human annotation
with unsupervised or semi-supervised learning approaches, targeting
hard-to-identify perennial grass weed species which present as visually
similar to sugarcane crops, and building larger datasets and training
Al models that are robust to regional variance in weeds and sugarcane
crops outside the Burdekin region, within which this work was limited.

6. Conclusions

This study highlights how advanced robotics combined with com-
puter vision and deep learning can revolutionise weed control in agri-
culture. The field evaluation of AutoWeed shows that precision appli-
cation not only reduces herbicide usage on sugarcane farms but also
promotes a more sustainable approach by minimising chemical use.
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By targeting only the necessary areas, AutoWeed shifts the focus
from blanket application to a smarter method, cutting input costs and
reducing the chemical burden on ecosystems. The resultant improve-
ments in water quality further underscore the environmental benefits
of this technology.

In summary, AutoWeed represents a significant step forward in
precision agriculture, setting the stage for future innovations that marry
technology with sustainability to safeguard both farm productivity and
the environment.
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