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Abstract

Advances in artificial intelligence and machine learning have revolutionised data
analysis, including in the field of marine and fisheries sciences. However, many fish-
eries agencies manage sensitive or proprietary data that cannot be shared externally,
which can limit the adoption of externally hosted artificial intelligence platforms. In this
study, we develop and evaluate two residual network-based automatic image annota-
tion models to process fishery specific habitat data to support ecosystem-based
fisheries management in the Exmouth Gulf Prawn Managed Fishery in Western
Australia. Using an extensive dataset of 13,128 manually annotated benthic habitat
images, we train a grid-based annotation model and an image-level object detec-

tion model. Both models demonstrated high overall accuracy, with the grid-based
model achieving 90.8% and the image-level model 92.9%. Patch-wise accuracy of
the image-level model was 74.2%, highlighting its ability to classify broader spatial
context without requiring point-based labelling. Precision and recall values for both
models often exceeded 70% for dominant habitat classes such as unconsolidated
substrate, macroalgae, and seagrass. The development of these models supports the
potential for cost-effective, robust, and scalable in-house habitat classification for fish-
ery or ecoregion specific habitat data to support timely decision-making. Further, the
grid-based model uniquely integrates spatial precision with compatibility to existing
manual data workflows, enabling seamless adoption within many existing fisheries
monitoring programs. Despite limitations, such as a class imbalanced dataset, both
models present a scalable, data secure solution for fisheries management agencies.
This study establishes a foundation for integrating artificial intelligence driven image
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analysis of proprietary fisheries data, to further support responsive, standardised and
data-informed decision making.

Introduction

The growth of artificial intelligence and machine learning algorithms has revolu-
tionised scientific and industrial fields [1,2]. Innovative approaches to data analysis
and interpretation [2,3] are removing historical bottlenecks to analyses [4—6] and
producing results that can outperform human experts on benchmark datasets [6,7].
Automated Image Analysis (AlA) is a field of computer vision, artificial intelligence
and machine learning that uses models or algorithms to label images based on

their visual content or to identify similarities between image features and contextual
information, with high efficiency and low subijectivity [8]. AIA has received substantial
attention in recent times due to advances and affordability in video and photogram-
metry technology increasing the capacity to capture and store high resolution digital
imagery, which in turn has led to an increased level of image data to annotate [8—10].
The growth of AlA has been further driven by advances in computational technology,
enabling greater integration with deep learning techniques such as convolutional
neural networks (CNNs), which are highly effective at extracting subtle and complex
features from imagery and supporting precise, granular habitat categorisation [11].
However, the success and accuracy of AIA models are dependent on the availability
of large collections of expertly annotated training data, which are often associated
with significant costs, at least initially, in resourcing [12—14].

For fisheries and marine science, AIA has demonstrated its ability to streamline
data processing, thereby enhancing efficiency in scientific data provision that under-
pins sustainable management [4,15-20]. Identifying key fish and marine habitats
like seagrass, macroalgae, and reef structures from images has traditionally been
slow, manual, error prone, and resource intensive [21]. However, in recent years, the
field has progressed from annotation tools that are dependent on manual input from
human experts to analyse fish and marine habitats [22], such as Coral Point Count
with excel extension [23], BIIGLE [24], TransectMeasure (www.seagis.com,au),
EventMeasure (www.seagis.com.au), and VidSync (www.vidsync.org). This progres-
sion has been led by the development of software that utilises AlA for machine-
assisted processing of benthic imagery, such as CoralNet [25,26] ReefCloud [27] and
marine learning assisted image annotation in BIIGLE [6]. This type of development
and use of AIA models represents a significant shift in practice, aiming to retain the
accuracy of analysis while improving the scalability and speed of image annotation,
ultimately reducing labour costs and expediting workflows.

The adoption of AlA for processing benthic imagery is an opportunity to meet the
growing demand for marine habitat assessments, mapping and monitoring which
provide rapid, robust ecological data to support both ecosystem-based fishery man-
agement (EBFM). EBFM is a holistic approach to fisheries management that consid-
ers the broad range of ecological, social and economic aspects of fisheries [28], and
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broader ecosystem-based management (EBM), including marine spatial planning [29-32]. However, for many government
and fisheries management organisations, the use of externally hosted AlA platforms, such as ReefCloud or CoralNet,
requires careful consideration of the confidentiality requirements of data collected by, or in collaboration with, stakeholders
such as commercial fishers [33—35]. Despite the privacy, management, and permission settings offered by many external
hosted platforms, there is a need for fisheries management agencies to take a precautionary approach due to potential
legal liability and the real, or perceived, reputational risks associated with data breaches or unintentional exposure of
proprietary information [36,37].

In addition, some externally hosted platforms remain static in nature, with limited flexibility for the user to directly access or adjust
the code, or review the image databases that inform the model, to ensure standardisation with any new imagery, to meet the specific
requirements of their study area [19,38].To address these challenges, especially where fishers or fisheries data cannot be aggre-
gated and anonymised before external upload [36], fisheries agencies need the ability to develop or adopt secure, in-house AIA
models to handle sensitive datasets. These models must be cost-effective, align with global best practices in AlA, and be adaptable
to different fishery boundaries or ecosystems. Hosted on secure agency servers, such systems can ensure confidentiality while
enabling the appropriate aggregation of commercial data for public release to meet both fishery and agency EBFM needs, whilst
also being standardised to contribute to the broader scientific community [38] to support marine EBM and marine spatial planning.

This study focuses on the Exmouth Gulf Prawn Managed Fishery (EGPMF) nursery grounds, which is a specialised
fishery management zone that encompasses ~1,139km? of shallow (<20m), mostly turbid waters in southern and east-
ern extents of Exmouth Gulf in the remote tropical arid Gascoyne coast of Western Australia (22°0’S, 114°20°'E) (Fig 1)
[39,40]. The EGPMF has historically recorded recruitment failures, which have been linked, in part, to the likely loss of crit-
ical habitats in the nursery grounds from large scale natural perturbations (e.g., cyclones) [39,41]. While the relationship
between habitat loss and recruitment failure were not quantified, due to the lack of suitable of baseline habitat data, the
known stock-recruitment relationships in the EGPMF [39,42,43] demonstrates the need for the development of a rapid,
cost effective habitat assessment and monitoring program which can correlate to EGPMF recruitment models [44]. With
the time between broodstock surveys and recruitment surveys for the EGPMF being approximately six months [39,43,44],
the use of a robust and accurate AIA model to expedite processing of fisheries habitat data is critical for the delivery of a
habitat assessment and monitoring program for this fishery.

In this study, we develop and compare two AIA models to evaluate their ability to classify the benthic habitats of
Exmouth Gulf. The first model, a grid-based annotation model, replicates the manual annotation method previously under-
taken within the study area by generating labels at gridded points. The second, an image-level object detection model,
provides a list of which types of objects are present within an image without attempting to match a grid-based survey. This
study aims to compare the accuracy, precision, and suitability of the two techniques for fisheries habitat assessments,
evaluating the trade-offs between spatial resolution and generalisation. Although this study does not quantify biological
relationships between benthic habitats and fish and fisheries productivity, the aim of developing suitable AIA models is to
support future analyses by enabling rapid, broad-scale classification of key habitat types from commercial imagery, allow-
ing managers to prioritise ecologically relevant datasets for further investigation. By leveraging widely adopted algorithms
and robust fisheries datasets, our methodology aims to address the challenges faced by fisheries management agencies
to provide rapid, cost effective first pass habitat classifications using commercial data to support and integrate towards
EBFM and broader multi-user marine spatial management [45].

Methods
Data collection and manual annotation

Annotated imagery data for testing and training the AIA models were derived from imagery of benthic habitats
collected during six separate sampling trips between the March 2016 and March 2019. Imagery was collected
using a tethered drop video system equipped with a geo-referenced GoPro Hero3/3 + camera mounted on a drop
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Fig 1. Map of Exmouth Gulf with imagery collection locations between 2016 and 2019. The black dots demonstrate the initial 2016 survey site
locations and the red dots indicate the sites monitored intra annually (summer and winter) between 2017 and 2019.

https://doi.org/10.1371/journal.pone.0329409.9001

lander, capturing a 0.2 m? area of benthic imagery per drop. At each site, ten static frames were captured along
50 m transects, with drops occurring every 3—7 m, resulting in 2 m? of imagery per site. Habitat surveys in 2016
sampled up to 455 sites in summer and 539 sites in winter, while subsequent monitoring (2017-2019) revisited

up to 103 sites per season from a subset of the original survey locations (Fig 1). Collectively, sampling yielded a
total of 13,128 benthic images. Each image was processed using the manual annotation software TransectMea-
sure (www.seagis.com.au), with trained analysts annotating an 8 x 8 grid per image, generating 640 annotated

points per site (Fig 2). Habitat features were manually labelled to the highest resolution of the collaborative and
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Fig 2. Distribution of manually annotated CATAMI-broad habitat labels for AlA training and testing. Inset table displays the number of labels
assigned to each habitat type prior to consolidation into four classes.

https://doi.org/10.1371/journal.pone.0329409.9002

automated tools for analysis of marine imagery (CATAMI) classification scheme [46], however, only the broad-
level CATAMI categories were used for AIA model development. This comprehensive manually annotated dataset
provided a robust foundation for training and validating AIA models, to efficiently classify key habitat types in the
EGPMF nursery grounds.

All model training and evaluation used only the extensive manually annotated dataset, no model-generated pre-
dictions were used to retrain or refine either model. Although imagery was collected across multiple seasons and
years (2016-2019), potential ecological succession or temporal trends in community composition were not explicitly
analysed. However, by training the models on this multi-year dataset, we aim to capture natural spatial and tempo-
ral variability in benthic habitats to improve model outputs. All field data used in this study were collected under an
Instrument of Exemption issued pursuant to the Fisheries Resource Management Act 1994 (Western Australia), by
the Department of Primary Industries and Regional Development, Western Australia, which authorised sampling for
fisheries research purposes in the study area.

The manually annotated dataset used in our AIA model analysis exhibited a highly imbalanced distribution of labels,
where the top three classes (unconsolidated substrate, macroalgae, and seagrass) accounted for 99.1% of all annotations
(Fig 2). Due to imbalances in the dataset, ecologically similar labels were consolidated into four broad classes: unconsol-
idated substrate, macroalgae, seagrass, and reef structure (Fig 2 and Table 1), with remaining categories excluded from
the modelling. This approach was considered acceptable to achieve reliable model training while maintaining ecological
relevance for EBFM and EBM reporting in the study area.
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Table 1. List of consolidated classes used to train the AIA model.

Original Label Description Reduced Label
Unconsolidated Substrate (Sand) 1_UnCon Sub
Macroalgae 2_MA
Seagrass 3_SG

Sponge ReefStructure
Hard Coral ReefStructure
Soft Coral ReefStructure
Consolidated Substrate ReefStructure

https://doi.org/10.1371/journal.pone.0329409.t001

Grid-based annotation model

Before training the model, all input images were cropped and resized to 448 x 224 pixels to ensure a standardised resolu-
tion for annotation and feature extraction. A modified ResNet-50 framework [47,48] then served as the foundation neural
network architecture for the model (Fig 3). The ResNet-50 base model was modified to suit the grid-based annotation,
which can be thought of as a sparse version of per-pixel image segmentation. Instead of outputting a segmentation deci-
sion for every pixel, the model is provided with a list of pixel coordinates at which a classification output is required. These
coordinates are used to sample the ResNet-50 feature vectors at the specific locations that were requested. Since the
ResNet-50 model down samples the image between certain blocks, the pixel coordinates were similarly rescaled at each
stage. We also modified the ResNet model so that it did not down sample the image between blocks 3 and 4, to retain
spatial resolution in the feature vectors. The feature vectors after each residual block were concatenated then analysed
using a fully connected neural network (Fig 3).

A grid-based annotation model was implemented to systematically assign labels to 64 predefined points per image,
corresponding to a structured 8 x 8 grid which ensured alignment with manual annotation methodologies commonly used
in benthic habitat surveys (Fig 4). Each grid point represented a fixed spatial coordinate, ensuring consistent annotation
placement across all images. The model extracted features from these locations, indexing feature maps from residual
blocks 1, 2, 3, and 4 to capture both fine details and broader spatial patterns. Given the 28 x 56 feature map resolution,
each extracted feature corresponded to an 8 x 8 pixel region in the original image, allowing the model to integrate patterns
in colour, texture, and structure within a localised patch. These feature vectors were then concatenated before further
processing, ensuring that each grid point’s habitat label was based on a combination of spatial information from different
network depths.

To further improve classification accuracy, an attention module was incorporated after the final ResNet block. This
strategy, derived from its successful application in natural language processing and adapted for vision models [49,50],
allowed the network to recognise spatial dependencies and enhance feature discrimination in complex images. Trials were
conducted to evaluate various configurations of the attention module, testing its placement after the third, fourth, or both,
residual blocks. Performance was found to be comparable between the configuration with two attention modules and one
placed solely after the fourth block. For computational efficiency, the single fourth block set up was adopted. Additionally,
reducing the down sampling from 2 to 1 in residual blocks 3 and 4 [51], slightly improved performance by preserving more
spatial resolution. Introducing dilation to these convolutional elements had minimal impact.

The manually annotated dataset was then randomly split into training (80%) and testing (20%) sets, ensuring the test-
ing set remained unseen and was only used exclusively to evaluate model performance. For each grid point in the testing
set, the predicted labels were compared with the manually assigned labels to calculate key performance metrics, including
accuracy, precision, and recall. A confusion matrix was used to summarise the model’s ability to classify each habitat class
by tabulating the counts of true positives (correct classifications), false positives (incorrect classifications as the target
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https://doi.org/10.1371/journal.pone.0329409.9004
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class), true negatives (correctly classified as not belonging to the target class), and false negatives (missed classifications
of the target class). Metrics such as precision (proportion of predicted positives that are correct) and recall (proportion of
actual positives correctly identified) provided insights into the model’s strengths and weaknesses for each habitat class.
During training, data augmentation was implemented by the fastai library [52] with default settings plus vertical flipping to
increase robustness. Finally, the model was trained to minimise the cross-entropy loss, when averaged across all labels.

Image-level object detection model

The same dataset of manually annotated benthic imagery used for the grid-based annotation model was also used for
developing the image-level object detection model, randomly split into 80% training and 20% testing. Unlike the grid-
based approach, which assigns labels to specific spatial points, this model identifies the presence of the habitat types
within different regions of an image. This makes the model computationally simpler, as the system only identifies the
presence of habitat classes within the patches, without quantifying their amount or location. Although this approach may
omit minor or sparse features (e.g., thin blades of seagrass), its error rate is hypothesised to be comparable to grid-based
surveys.

Initially, small patches (224 x 224 pixels) of the images were extracted, centred around each of the labelled points (Fig
5), following previous reported approaches (Mahmood et al., 2016, 2020). However, the resultant patches where often

Fig 5. Example of small image patches extracted from full images, (e.g., Fig 4) around an individual labelled point, highlighting modelling
limitations at this resolution, such as over-zooming, loss of spatial context, and multiple habitat types within a single patch.

https://doi.org/10.1371/journal.pone.0329409.9005
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zoomed in too far, making it difficult to distinguish features, or the patches contained multiple objects which, because of the
point based precision of the manual annotated dataset, would lead to misclassification when a single label was assigned
(Fig 5). To address these limitations, larger patches (880 x 880 pixels) were extracted, covering multiple labelled points
within a single region (Fig 6). Each image was divided into three overlapping patches (left, centre and right), with each
patch assigned a binary label indicating the presence or absence of all four habitat classes. For example, the patch shown
in Fig 6 was labelled as 1_UnCon Sub=True, 2_MA=True, 3_SG=True, and ReefStructure =False. This approach aimed
to provide more spatial context, allowing the model to account for the coexistence of multiple habitat types, rather than
focus on a single point (Fig 6).

The large-patch image-level object detection model was implemented using a pretrained ResNet-101 network [7],
followed by two fully connected layers acting as classifiers. The model processes image patches through ResNet-
101, which extracts patterns and spatial structures relevant to habitat classification. These extracted features are
then passed to a hidden layer with 512 units followed by a linear output layer producing four binary outputs, cor-
responding to the presence or absence of the four habitat classes. The large patch image-level model was initially
trained with the three patches (left, centre and right) per image, each resized to 224 x 224 pixels, and subsequently
fine-tuned to larger inputs of 448 x 448 pixels to capture more detailed spatial information. Standard data augmen-
tation techniques, including random cropping, rotation, and vertical flipping, were applied during training to enhance
model robustness. The model was optimised using binary cross-entropy loss for each class, ensuring equal empha-
sis on all four habitat types. Model performance was evaluated by comparing the predicted presence or absence
of each habitat class within a patch to the aggregated manual annotations of labelled points within the same patch.
Accuracy, precision, and recall were calculated for each class to assess classification performance, based on the
80% training and 20% testing datasets.

Results

The performance of the AIA models developed for this study, using imagery of benthic habitat within the EGPMF nursery
grounds, demonstrated a high overall accuracy with 90.8% of labels assigned by the grid-based annotation model (Table
2), and 92.9% for the image-level object detection model (Table 3). However, differences emerged in how each model
classified specific habitat types and their potential applications. The grid-based model provided more spatially precise

1750

Fig 6. Example of a larger image extraction patch (red box), showing improved spatial context compared to small patches. Each source image
was divided into three overlapping patches (left, centre, and right) to capture multiple habitat types and reduce misclassification errors. Shown here is a
left patch.

https://doi.org/10.1371/journal.pone.0329409.9006
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Table 2. Performance metrics of the grid-based annotation model.

Metric Result
Overall Accuracy 90.8%
Unconsolidated Substrate (e.g., sand) Macroalgae Seagrass Reef Structure
Precision 96.4% 73.3% 59.6% 45.5%
Recall 94.2% 76.7% 72.2% 68.7%

https://doi.org/10.1371/journal.pone.0329409.t002

Table 3. Performance metrics of the image-level object detection model.

Metric Result

Overall Accuracy 92.9%

Patch-wise Accuracy (proportion of patches for which 74.2%

the presence or absence of all four classes is correct)
Unconsolidated Macroalgae Seagrass Reef Structure
Substrate

Precision 99.6% 85.0% 80.7% 36.8%

Recall 99.2% 83.0% 86.7% 65.0%

https://doi.org/10.1371/journal.pone.0329409.t003

classifications, while the image-level model leveraged broader spatial context, simplifying classification by not requiring
point-based labels.

Performance of grid-based annotation model

The grid-based annotation model achieved an overall accuracy of 90.8%, with precision and recall varied across habi-
tat classes (Table 2). Unconsolidated substrate exhibited the highest precision (96.4%) and recall (94.2%), reflecting the
model’s strong performance for this dominant and visually distinct class. Macroalgae demonstrated moderate precision
(73.3%) and recall (76.7%), indicating reliable identification of this habitat type, although the moderate precision suggests
occasional false positives where visually similar habitats might be misclassified as macroalgae. Seagrass exhibited a pre-
cision of 59.6% and recall of 72.2%, indicating the model is relatively effective at detecting seagrass (reasonable recall) but
generates more false positives compared to other classes. The imbalance between precision and recall suggests the model
occasionally overpredicts the seagrass class, likely due to the upright, thin morphology of some species, such as Syringo-
dium isoetifolium, particularly at habitat boundaries (Fig 7). Reef structure exhibited the lowest precision (45.5%) and recall
(68.7%), likely due to its limited representation in the training dataset (Fig 2), the high diversity within this class due to cat-
egory consolidation, and the inherent complexity of detecting smaller or less distinct features. The low precision indicates a
higher rate of false positives, suggesting the model overpredicts reef structure by misclassifying other habitats as reef.
These results highlight the model’s dependence on sufficient and balanced training data to maintain high classification
accuracy. Errors in classification may stem from an imbalance in the dataset, particularly the underrepresentation of reef
structure, which limits the model’s ability to distinguish this class. Additionally, imbalances between precision and recall,
particularly for seagrass, suggest overprediction due to habitat similarities. Other sources of misclassification include
ambiguity at habitat boundaries, habitat complexity (e.g., epiphytic turf algae growth on seagrass), and potential inaccura-
cies within the training dataset due to human annotation error.

Performance of image-level object detection model

The image-level object detection model achieved an overall accuracy of 92.9%, indicating strong performance in classi-
fying the benthic habitats within the EGPMF nursery grounds (Table 3). With a patch-wise accuracy of 74.2%, the model
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Fig 7. Example of classification errors due to ambiguous grid point placement, particularly at habitat boundaries (e.g., between seagrass and
sand). The model’s predicted labels (Pred) are compared to the manually annotated labels (True), highlighting common misclassifications.

https://doi.org/10.1371/journal.pone.0329409.9007

also effectively identified the presence or absence of all four habitat classes within each 448 x 448 pixel patch. These
results highlight the model’s ability to leverage broader spatial context by analysing larger image patches, simplifying the
classification task by not requiring spatially precise labelling. Performance metrics varied across habitat classes (Table 3).
Unconsolidated substrate exhibited the highest precision (99.6%) and recall (99.2%), indicating strong reliability for this
dominant class. Macroalgae and seagrass also demonstrated robust precision (85.0% and 80.7%, respectively) and recall
(83.0% and 86.7%, respectively), reflecting the model’s effectiveness in detecting these habitats. As with the grid-based
annotation model, the limited representation of reef structure, resulted in low precision (36.8%) and recall (65.0%) for this
class.

The high recall values observed in the image-level object detection model indicate strong potential for filtering large
unannotated datasets and identifying frames of interest in video data for manual inspection. Compared to the grid-based
model, which provides spatially precise classifications, the image-level model simplifies classification by analysing broader
spatial areas, reducing the reliance on point-based annotations. This model effectively identifies dominant habitat types
but is less precise for underrepresented classes, such as reef structure. The ability to screen complex or diverse imagery
suggests its utility in prioritising datasets that require further manual review, improving efficiency in large-scale habitat
classification.

Discussion

In this study we developed, evaluated and presented two residual network-based AlA models, both of which observed

an overall accuracy greater than 90%. The models were designed to evaluate whether bespoke in-house models could
be used to process habitat data, simultaneously supporting the EBFM requirements of the Western Australian fisheries
management agency (DPIRD) and managing real or perceived confidentiality concerns when using data from commer-
cial collection sources. Leveraging a large fisheries dataset of benthic imagery from the EGPMF nursery grounds (Fig 1),
which was manually annotated by trained analysts, we adapted and expanded upon established machine learning frame-
works to create both an in-house grid-based annotation model [47] and an in-house image-level object detection model
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[53,54]. Both models demonstrated high overall accuracy in classifying benthic habitat, with consistently strong precision
and recall values, particularly for the dominant habitats in the EGPMF nursery grounds (i.e., unconsolidated substrate,
macroalgae and seagrass) (Fig 2). These results demonstrated the model’s ability to effectively predict the occurrence of
these habitats in the image database, in line with human expert manual annotation. While our study uses a unique manu-
ally annotated fishery image dataset, the strong predictive performance and accuracies of our models closely aligns with
results from similar studies in benthic habitat classification, which demonstrated comparable accuracy to human expert
annotations [21,25,26] and achieved similar precision and recall values for features such as macroalgae [54].

Performance results for both our grid-based annotation model (Table 2) and image-level object detection model (Table 3),
align closely with those reported in similar AlA based benthic habitat classification studies [54]. For example, Mahmood et al.
(2020) applied hierarchical classification methods using features from deep residual networks (ResNet-50) to classify kelp
and other benthic species on the Benthoz-15 dataset. They achieved 90% accuracy for a binary “kelp versus not-kelp” classi-
fication, with a precision of 71% and recall of 65% in the flat classification approach. When extended to classify across all
145 classes in the dataset, their accuracy dropped to 57.6%, largely also due to imbalanced class representation. Notwith-
standing the limitations of imbalanced datasets, the high overall accuracy, precision, and recall values of both models devel-
oped in our study underscore their effectiveness in accurately discriminating dominant habitats in the EGPMF study area.

A key feature of our study is the adaptation of the 8 x 8 grid-based annotation model, which integrates spatial and
semantic mapping to achieve finer scale habitat classifications. Whole-image classification approaches commonly used in
computer vision [19,55-57] can oversimplify diversity and abundance, while pixel-wise image segmentation [51] requires
time-consuming labelling to annotate the precise boundaries between habitat classes. The 8 x 8 grid-based labelling
scheme used in our study balances spatial precision with sufficient imagery to provide adequate semantic information to
accurately describe habitats, mirroring the process used by human analysts, as seen by the achieved 90.8% overall accu-
racy and precision and recall values of between 59.6% and 96.4% for the dominant key benthic habitats of the EGPMF
nursery grounds. Our grid-based model also bridges the gap between manual annotation and automated classification by
associating labels with precise spatial locations. This structure supports existing long term fisheries habitat monitoring pro-
grams that use percentage composition and density estimates [58], while achieving comparable accuracy to the image-
level detection model and other optimised AlA approaches [21,25,26]. As with other AIA models, dataset imbalances
hindered model performance of underrepresented categories [59], such as reef structure. However, performance was
strong in classifying dominant habitat types, even when distinguishing ambiguous features such as fragmented sea-
grasses, which are common in the EGPMF nursery grounds [60,61]. While improvements in dataset balance and addi-
tional training data would likely enhance classification performance, the grid-based model offers a scalable and spatially
precise approach for fisheries habitat assessments, supporting EBFM and broader marine spatial planning.

The AIA models investigated here show the validity of the proposed approach of developing in-house models for habitat
analysis. However, a key challenge is the reliance on large manually annotated, fishery-specific training datasets, which
may affect the ease of scalability, adaptability and accuracy of the in-house models to other fisheries or regions [12—14].
Addressing this issue would require augmenting fisheries datasets with external data sources, such as FathomNet [62],
which although providing a standardised labelled data set, may still presents compatibility challenges related to labelling
frameworks, annotation standards, and classification schemes. Adapting datasets can be resource-intensive in the short
term and may also result in duplication of effort with existing externally hosted platforms (e.g., www.reefcloud.ai; www.
coralnet.ucsd.edu) [21,25,26]. However, while externally hosted platforms provide valuable infrastructure for large-scale
annotation and model training, they typically adopt pre-defined classification schemes that may not align with spatially
explicit labelling approaches used in fisheries specific applications. Further, they don’t address the challenge of many
fisheries agencies in the handling of confidential or proprietary data [33—35]. Therefore, while developing in-house fish-
eries specific AIA models requires a level of upfront staff resources for manual annotation, and sufficient computational
infrastructure, these upfront costs may be offset by long-term benefits in terms of data security, stakeholder trust, and
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operational efficiency [36,37]. Furthermore, because most of the data analysis would be undertaken by the tailored
in-house AIA model, with some retention for data validation by trained human analysts to review uncertain or ambiguous
outputs [63], future savings in resourcing can be used to improve, expand or refine data collection. To enhance trans-
ferability, future research should explore methods to aggregate data to a publicly available level, enabling the sharing of
standardised training datasets across agencies while maintaining data security.

By leveraging established machine learning models, grounded in the principles of global best practices
lenge faced by fisheries management agencies in adopting artificial intelligence use for processing potentially commercially
sensitive fisheries data [34,37]. In doing so, we provide greater opportunity for fisheries, and fisheries resource managers,
to further incorporate fishery-specific datasets, particularly in relation to collected benthic habitat imagery, to support sus-
tainable EBFM and broader marine spatial planning [64,65]. Specifically, the models developed in our studies, demonstrate
high accuracy in identifying key habitats for penaeid prawn recruits, such as seagrass and macroalgae [40,41,60]. These
models will further support the development of near real time habitat assessment and monitoring for the EGPMF, using
benthic image data collected from the nursery grounds, further supporting EBMF and good industry stewardship of a marine
environment facing cumulative natural and anthropogenic pressures [45,66]. However, it is important to emphasise that AIA
represents just one tool in a broader suite of habitat assessment and monitoring techniques, each with different strengths,
limitations, and data resolutions [67]. Within an EBFM framework, effective advice relies not only on the availability of data,
but an understanding of the confidence and constraints of each method used [30], whether from automated imagery, direct
sampling, or integrated approaches [68,69]. Future research should prioritise the validation of these models in other similar
fisheries management scenarios, such as Shark Bay and the Shark Bay Prawn Managed Fishery, and assess their effective-
ness, compared to other survey methods, in supporting decision-making. A key area of investigation is their ability to detect
temporal variations in habitat, which is critical for adaptive fisheries management and long-term ecosystem monitoring.
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