ResearchOnline@JCU

This is the author-created version of the following work:

Prentice, Caitlin Lauren Siobhan, Flavell, Carol Ann, Massy-Westropp, Nicola, and Milanese, Steven (2025) *Individualised exercise for patients with persistent low back pain and lateral abdominal muscle impairments: a randomised feasibility study.* Pilot and Feasibility Studies, . (In Press)

Access to this file is available from:

https://researchonline.jcu.edu.au/89641/

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any noncommercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

ResearchOnline@JCU

Please refer to the original source for the final version of this work:

https://doi.org/10.1186/s40814%2D025%2D01723%2D4

Individualised exercise for patients with persistent low back pain and lateral abdominal muscle impairments: a randomised feasibility study

AUTHORS:

Caitlin Lauren Siobhan Prentice¹, B Physio (Hons), PhD corresponding author precl004@mymail.unisa.edu.au;

Carol Ann Flavell^{2,3}, G Dip Phty MSc (Biomechanics), PhD <u>carol.flavell@jcu.edu.au</u>,

Nicola Massy-Westropp¹, B App Sc O.T., Hons (Anatomy), CHT (USA, retired), M. Health, PhD nicola.massy-westropp@unisa.edu.au;

Steve Milanese⁴, B.App.Sc.,Grad.Cert (Sports Physio) Grad.Dip (Ergonomics), M.App.Sc. (Manipulative Physiotherapy), PhD smilanese@swin.edu.au.

¹Allied Health and Human Performance, University of South Australia, 108 North Terrace, Adelaide, South Australia 5001, Australia

²College of Healthcare Sciences, James Cook University, Townsville, Australia,

Abstract

Background: This parallel randomised control trial assessed feasibility of an exercise intervention for individuals with low back pain and maladaptive changes in lateral abdominal muscle contraction. Feasibility was assessed considering participant retention, program adherence and a preliminary evaluation of intervention efficacy.

Methods: Sixty adults (40 female, 20 male, average 54.2 years of age) with persistent low back pain and maladaptive changes in lateral abdominal muscle contraction were randomly assigned to fully or partially individualised versions of the 12 week program. All participants

³Margaret Roderick Centre for Mental Health Research, James Cook University

⁴ Department of Allied Health, School of Health Sciences, Swinburne University of Technology

received motor control and graded activity exercise individualised to their low back pain symptoms, impairments and functional goals. Additionally, participants in the fully individualised group were asked what types of exercise they enjoy, and this informed the graded activity prescription. Lateral abdominal outcome measures included endurance and ultrasound imaging (muscle thickness at rest and during contraction, transversus abdominis slide), manual palpation and pressure biofeedback unit measures of contraction. Clinical outcomes included pain intensity (Numeric Rating Scale), disability (Roland Morris Disability Questionnaire), function (Pain Specific Functional Scale), physical activity (International Physical Activity Questionnaire) and lumbar instability (Lumbar Instability Questionnaire). Outcomes were measured at baseline, at the end of the intervention and clinical outcomes were measured again three months after the intervention concluded. Linear mixed effects models were used to compare the effects of the intervention within and between groups. Results: Retention and exercise compliance rates were 81% and >85% (86% control group, 87% experimental group) respectively. Participants in both groups achieved improved lumbar instability, disability, pain intensity, function, physical activity, lateral abdominal muscle endurance and contraction post intervention. The fully individualised group demonstrated greater between group improvements in function (mean [95%CI]: -2.577 [-3.239, -1.915] 12 weeks, -2.592 [-3.254, -1.930] 3 months) and physical activity (mean [95%CI]: -790.834 [-1712.05, 130.382] 12 weeks, -1080.748 [-2001.964, -159.532] 3 months).

Conclusions: The intervention demonstrated improvements in clinical outcomes, and acceptable exercise compliance. However, the intervention did not meet retention feasibility criteria to proceed to an adequately powered trial. Modifications to improve

retention including incorporating group activities are required. Following modifications, an adequately powered trial is required to determine the efficacy of the intervention.

Trial registration: This trial was prospectively registered on the Australian and New Zealand Clinical Trial Registry (ACTRN12622001284752 30 September 2022)

Keywords: lumbar, physical activity, motor control

Key messages regarding feasibility

What uncertainties existed regarding the feasibility?

Uncertainties existed regarding participant engagement with the program and the potential effect of the program on clinical and lateral abdominal muscle outcomes.

What are the key feasibility findings?

Participant retention was slightly below the threshold for the study being considered 'feasible'. However, the program met feasibility criteria for exercise compliance. Preliminary data suggested the program may demonstrate changes in clinical outcomes. It is unclear whether the between group differences in outcomes post intervention were due to baseline differences.

What are the implications of the feasibility findings for the design of the main study?

This study provides information about participant engagement and responses to an intervention designed for individuals with low back pain and maladaptive changes in lateral abdominal muscle contraction. In the following study, we will undertake an adequately powered study to have a greater understanding of the intervention effectiveness. Several strategies have been suggested to improve participant retention.

3

Background

Some individuals with persistent low back pain (pain ≥3 months; PLBP) present with maladaptive changes in trunk muscle activation, endurance, contraction and morphology.(1) Such motor control changes have been associated with PLBP recurrence.(1) (2) Hence, exercise may be prescribed to address maladaptive motor control changes. However, the evidence remains unclear regarding whether there is a superior type of exercise for individuals with maladaptive changes in lateral abdominal muscle activation, endurance, contraction or morphology (LAM; transversus abdominis [TrA], internal [IO] and external oblique [EO]).(3)

Two meta-analyses (Shanbehzadeh 2022 13 studies, 766 participants; Zhang 2021 18 studies, 1333 participants)) investigated the effectiveness of exercise types for improving abdominal muscle contraction and thickness in participants with PLBP.(4, 5) However, both concluded that various exercise programs (motor control, abdominal resistance, general and McKenzie exercises) may improve these measures.(4, 5) To the best of our knowledge, no reviews have examined the effectiveness of exercises for improving other measures of the LAM such as endurance.

The evidence is also inconclusive when comparing the effectiveness of exercise prescriptions for PLBP clinical outcomes including pain intensity, disability and function.(4-12) Some meta-analyses indicate motor control exercises were more effective for reducing pain intensity(4-8), disability(4, 5, 7, 13) and function(8) than other exercise interventions. However, other meta-analyses and systematic reviews have found various types of exercises to have comparable effects on such outcomes.(5, 9-12)

There are several potential reasons for why the evidence is inconclusive regarding the effectiveness of various exercise prescriptions for improving LAM and clinical outcomes. Firstly, sample populations often comprise patients with non-specific PLBP without further subgrouping.(14) Considering different mechanisms may contribute to non-specific PLBP, it is unlikely that individuals will respond to the same exercise program in the same way.(3) For example, preliminary evidence suggested that self-report lumbar instability significantly modified treatment response to a motor control or graded exercise program (interaction: 2.72; 95% confidence interval=1.39 to 4.06).(15) Additionally, motor control exercise programs have demonstrated greater effectiveness when applied to specific subgroups (for example acute unilateral LBP group, spondylolisthesis and pregnancy related pelvic girdle pain).(16) To more accurately understand whether different exercise programs are effective for individuals with PLBP and maladaptive LAM changes, samples should be comprised of individuals with maladaptive LAM changes.

Even if studies recruited participants based on specific clinical characteristics, interventions should be individualised.(17) Motor control exercise programs have demonstrated larger effects for reducing pain intensity where interventions have progressed to incorporating individualised functional exercises.(4) However, one systematic review examining various exercise programs for people with PLBP found that, of their included studies, 19% of exercise programs were individualised, 36% somewhat individualised and 45% were standardised.(10)

Recently, the authors of this article developed an individualised exercise intervention for patients with PLBP and maladaptive LAM muscle changes based upon the findings of a systematic review(18), scoping review (manuscript in preparation) and Delphi study(19) in

consultation with clinical practice guideline recommendations (20-40). The intervention aligns with many concepts outlined in previous motor control exercise prescription frameworks such as Motor Control Training and the Integrated Systems Framework.

However, this intervention has greater emphasis on the incorporation of patient preferences and following a graded activity approach.

Prior to exploring the effectiveness of the intervention, ideally through a randomised controlled trial (RCT), it was necessary to undertake a feasibility study to inform the design of a RCT in the future and if the intervention needed further refinement. Specifically, this study sought to 1) evaluate the acceptability and suitability of an intervention in reference to participant retention and adherence and 2) to gain a preliminary understanding of the effect of the intervention on LAM and clinical outcomes. Additionally, this study aimed to investigate the influence of individualisation on the outcomes, by comparing a more standardised and more individualised version of the intervention.

Method

This parallel randomised control trial follows CONSORT reporting guidelines for feasibility studies(41) (Additional file 1), was prospectively registered on the Australian and New Zealand Clinical Trial Registry (ACTRN12622001284752, Additional file 2) and approved by The University of South Australia Human Research Ethics Committee (204929).

Participants

Sixty people with PLBP (40 female, 20 male; average age 54.2 years) were recruited via convenience sampling using word of mouth, website, and social media advertisements according to the following eligibility criteria (Table 1).

Table 1 Eligibility criteria

Inclusion	Having pain for at least 12 weeks, located between the buttock crease and
	lower ribs, with or without pain in one or both legs. (42)

Aged 18 years or above.

Exclusion

Able to speak English to communicate with a physiotherapist.

Considered 'ready to exercise'* based on screening with the Physical Activity

Readiness Questionnaire. (43)

Demonstrated maladaptive changes in LAM contraction and/or thickness^

Demonstrated two or more symptoms of nerve root compromise for the same nerve root (weakness, loss of sensation or changes in reflexes)(44).

Were pregnant or had given birth within the last year.

Had potential or diagnosed serious pathology (cancer, cauda equina syndrome, fractures, infections)~.

Had systemic inflammatory conditions such as rheumatoid arthritis.

Had abdominal skin conditions which would preclude participants from having LAM ultrasound imaging.

Had comorbidities which prevented participants from participating in exercise e.g. spinal cord injury, or an assessment by a general practitioner found that the participant was unsuitable to participate in the exercise program. Participants were advised to seek medical assessment if required from the results of the Physical Activity Readiness Questionnaire. (43)

Maladaptive changes in LAM contraction were defined as, a deficiency in one or more of the following assessments measuring the ability to contract TrA: 1. Deep Muscle Contraction scale (score less than 10 which is considered optimal)⁽⁴⁵⁾; 2. Prone Pressure biofeedback unit testing (exhibiting substitution strategies such as spinal/pelvic movement and/or a change in pressure outside the optimal range which is a reduction of 4-10mmHg)⁽⁴⁶⁾; 3. USI ratios (suboptimal abdominal drawing in manoeuvre as measured using the TrA, preferential activation and preferential activation modified ratios). To the best of our knowledge,

^{*} Participants were advised to seek medical clearance prior to participation if required from the results of the Physical Activity Readiness Questionnaire. This requires a medical assessment where participants may/have: osteoporosis, difficulty controlling heart or cardiovascular conditions, an irregular heartbeat, chronic heart failure, difficulty controlling high blood pressure, a resting blood pressure ≥160/90mmHg, symptoms of undiagnosed diabetes, difficulty controlling diabetes, difficulty controlling any respiratory conditions, low blood oxygen, requiring supplemental oxygen therapy, use of asthma medication more than twice per week, low blood pressure causing dizziness, light headedness or fainting on a regular basis, previously having had a stroke, or, if the individual has cardiovascular disease and have not participated in regular exercise recently.

[^]Please see below for the criteria used to assess LAM contraction and thickness

[~]Participants were verbally screened for 'red flags' indicating potential cancer or cauda equina syndrome. Participants with 'red flags' required medical clearance before participation in this study.

definitive 'optimal' and 'suboptimal' scores for TrA, preferential activation and preferential activation modified ratios during the abdominal drawing in manoeuvre have yet to be defined. However, a higher ratio is indicative of increased TrA contraction(45), while lesser or negative ratios indicate insufficient use of TrA and/or increased oblique contraction depending on the ratio used.(45) Therefore, for this study, suboptimal USI ratios were defined as being 0 or negative. For LAM thickness, measures were required to be outside of 95% confidence intervals for previously published normative data: Male IO 6.1-17.3mm, EO 5.4-13.8mm, TrA 2.5-7.7mm; Female IO 3.5-12.7mm, EO 4.4-10.4mm, TrA 1.7-5.7mm.⁽⁴⁷⁾

Procedures

Eligible participants provided informed consent and were then randomised into control or experimental treatment groups by the researcher (CP) using simple randomisation (Random Allocation Software © Version 1.0 2004 M Saghaei).(48) The intervention and data collection was conducted by one physiotherapist (CP) at the University of South Australia Clinical Trial Facility. Control and experimental groups undertook their intervention in parallel.

Participants were blinded to treatment groups as the participant information sheet only provided limited disclosure about the nature of the research study: participants were not informed that only the experimental group would have their exercise preferences incorporated into the program. It was not possible to blind the physiotherapist to baseline results or intervention study group allocation as they conducted data collection and randomisation.

In the first session, the physiotherapist completed a standard subjective examination to understand the patient's history and goals for the program. The physiotherapist then

observed the participant's standing and seated posture, and movement during activities identified by the participant during the subjective examination as problematic, such as sit to stand and bending over.

The physiotherapist and participant then collaboratively developed the exercise program consisting of daily motor control exercises (posture, movement +/- muscle activation) and graded activity exercises to complete a set number of times per week (cardiovascular + resistance).

Motor control exercise consisted of muscle activation, movement and posture exercises.

Muscle activation exercises aimed to increase and/or decrease LAM activation according to results of the baseline assessment.(14) Participants were encouraged to practice corrected posture and movement strategies in activities they described as aggravating (e.g. sitting posture/sit to stand). Such exercises aimed to improve alignment/movement which was associated with improvements in participants' symptoms. Thus, prescription of motor control exercise was individualised considering the symptoms, impairments in posture, movement and/or muscle activation that were objectively assessed and participants' functional goals. Progression of the motor control exercise consisted of a transition from static (if required) to dynamic and functional exercises and was based upon the protocol described by Hodges et al (14).

Participants in the control group were asked to perform walking for cardiovascular exercise and resistance exercises were centred around functional goals e.g. sit to stand. Participants in the experimental group were asked what type/s of exercise they enjoy, and their resistance and cardiovascular exercises were developed integrating these preferences in addition to consideration of their functional goals. In both groups, the frequency of sessions

and time dedicated to exercise was adjusted to suit the individual's lifestyle. All other factors described below were consistent across both intervention groups.

For the graded activity component, cardiovascular exercise was progressed by either increasing the exercise frequency (adding 1 session), duration (increase of no more than 10 mins per session) or intensity (moderate or vigorous) towards World Health Organisation exercise prescription guidelines.(49) Resistance exercises were progressed by increasing session frequency (adding 1 session, up to non-consecutive days) and/or by using more challenging versions of exercises e.g. sit to stand -> squat. Only motor control exercises and cardiovascular OR resistance exercises would be progressed, never all three at once. Only one progression strategy (e.g. increased frequency) was used for each type of exercise at a time. Participants were not progressed if they could not demonstrate correct exercise technique to the physiotherapist, were having difficulty complying with the current exercise regime or reported their physical activity/function/pain goals were met. If participants reported difficulty in complying with the current regime, the physiotherapist discussed how it could be integrated into their lifestyle or made adjustments accordingly. Through targeting both motor control and graded activity, it aimed to reduce pain intensity, improve maladaptive LAM changes, functional capacity and education. See Table 2 for an overview of the intervention.

Table 2 Exercise prescription intervention

Components	Motor control exercise	Resistance exercise (Endurance and strength)	Cardiovascular exercise	Education
Aims	Improve movement and motor control	Improve global strength (and specific muscle strength if required)	Incorporate moderate/vigorous physical activity	Understand importance of exercise/staying active
Prescription	Posture, movement	Begin with simple, functional, low resistance	Progress towards exercise	Pain neuroscienc

	and or specific muscle activation retraining Progress from specific muscle exercise (e.g. learn to control deep muscles independently from superficial muscles) to	global strengthening exercises with good movement quality If required, incorporate trunk stabilisation exercises such as bridging, planks and bird dogs once motor control during functional positions/activities achieved. Endurance: Progress towards 2-3 sets of 15-25	prescription guidelines e.g. World Health Organisation, American College of Sports Medicine	e education
	functional	reps		
	activities	Strength: Progress towards 3 sets of 8-12 reps ~3x per week		
Principles	lifestyle, impair The program do The program sh pain intensity Paced progress ability to maint	e program considering the pat ments, and symptoms bes not necessarily require equiould improve patient's function ion based on principles of grad	Do not include indepth biomedical explanations	

During each appointment, the physiotherapist discussed pain science education according to the "Explain Pain" workbook.(50) This describes the biology of pain and concepts that may lead to the continuation of pain, such as central sensitisation. The physiotherapist used this information to explain the need for and prescription of graded activity.

Participants met with the physiotherapist individually: weekly during the first month, fortnightly during the second month and once in the final month of the 12-week program. The decreased frequency of appointments was planned to provide participants with greater autonomy. After the first appointment, participants could choose to conduct the follow-up appointments in person or via Telehealth using Zoom©. Participants were asked to record how often and what exercises they completed each week in an electronic or paper 'diary' (Additional file 3). Participants could choose which type of diary they preferred to use. This was brought to each appointment for discussion with the physiotherapist.

Feasibility outcome measures

Outcomes used in this study included: participant retention and compliance with the exercise regime, pain intensity, disability, function, physical activity, and LAM thickness/contraction/endurance. Intra-rater reliability testing was conducted by the examiner, finding moderate to excellent reliability across the LAM measures.(51)

Self-report outcomes questionnaires were completed and recorded using REDCap © electronic data capture tools (Vanderbilt) hosted at the University of South Australia. The questionnaires were sent to participants via an emailed or posted survey. Participants that did not complete the survey within a week were reminded via email/phone and if they did not respond within another week, they were contacted once more. A description of the

3.

Table 3 Outcome measures co				

Data point / outcome	Timepoint	ime point across the feasibility study Psychometric properties
measure	collected	,
Anthropometric characteristics (Age, sex, height, weight, body mass index, pain duration, occupation)	Baseline	N/A
Pain intensity (measured using 0 to 10 Numeric Rating Scale) (52)	Baseline and 12 weeks (end intervention) and 3 months post intervention	Evidence for reliability (ICC 0.92) and construct validity (moderate association between numeric rating scale and pain intensity and disability scores) in PLBP population(53) (54) Minimally Clinically Important Difference: 2 (absolute value) or >30% change from baseline.(52)
Disability (measured using the Roland Morris Disability Questionnaire) (55)		Evidence for reliability (ICC 0.9) and content validity (Content validity confirmed via semi-structured interviews with participants with PLBP. Interviews explored the impact of low back pain on daily living and participants understanding and beliefs on the appropriateness of the Roland Morris Disability Questionnaire)(53) (56) Minimally Clinically Important Difference: 5 (absolute value) or >30% change from baseline. (52)
Lumbar instability (LISQ) (15)		Evidence for reliability (ICC 0.84), unclear construct validity in PLBP population when compared with the pain detect questionnaire (57)
Function (Pain Specific Function Scale) (58)		Evidence for reliability (ICC 0.91) and construct validity in PLBP population (moderate to good correlation with the global perceived effect scale, moderate to strong correlations with Oswestry disability index, global rating of change, functional rating index and Roland Morris Disability Questionnaire) (53, 59) Minimally Clinically Important Difference: 2.3 (absolute value).(53)
IPAQ – short form (60)		Evidence for reliability (75% of correlation coefficients above 0.65 across multiple countries in adults aged between 18 and 65), concurrent and criterion validity (fair to moderate agreement with accelerometers) in PLBP population (60)
LAM USI*	Baseline and 12 weeks (end intervention)	Evidence for reliability (ICC 0.7) and construct validity with electromyography in PLBP population.(51, 61) (45, 62)
LAM Pressure biofeedback	•	Evidence for reliability (ICC 0.69 to 0.97) and some

unit*(46) evidence for concurrent validity with

electromyography in PLBP population. (51, 63)

(64)

LAM Deep Muscle Evidence for reliability (ICC 0.7) and some

Contraction scale*(45) evidence for concurrent validity with USI in PLBP

population. (45, 51)

LAM endurance (side plank Evidence for reliability (ICC 0.95) in PLBP

holding time) (65) population(66)

Survey about physical 3 months post N/A – developed for this intervention

activity and low back pain intervention

(Likert scale)

Participant retention: Percentage of participants that attended all in-person appointments of the 12-week program. Only inclusive of those who completed baseline measurements. Reasons for attrition were noted.

Compliance with the exercise regime: Percentage of prescribed sessions completed (where participants completed all prescribed exercises) according to a self-report exercise diary during the intervention.

Abbreviations: DMC, Deep muscle contraction scale; ICC, intra-class correlation coefficient; IPAQ, international physical activity questionnaire; LSIQ, lumbar instability questionnaire; NRS, numeric pain rating scale; PBU, pressure biofeedback unit; PLBP, persistent low back pain; PSFS, pain specific functional scale; RMDQ, Roland Morris disability questionnaire; USI, ultrasound imaging

Data analysis

Statistical analyses were performed using SPSS V.29 ©computer software. Retention and exercise compliance outcomes were assessed using the following assumptions: 1. Retention: Feasible if: At least 85% of people enrolled in the study are retained. Not feasible if: Less than 70% of people enrolled in the study are retained. These criteria were developed considering attrition bias is unlikely to affect the study where attrition does not exceed 20% and 15% respectively.(67, 68)

2. Exercise compliance: Feasible if: Participants complete on average at least 85% of scheduled exercise sessions. Not feasible if: Participants complete on average less than 65% of their scheduled exercise sessions. These assumptions were generated considering compliance with prescribed exercise in participants with PLBP has been demonstrated to range between 15 and 95%.(69, 70) As the program was designed to be individualised to

^{*}All contraction measures were assessed during the abdominal drawing in manoeuvre. USI was also used to measure resting LAM thickness

participants' lifestyle with regular monitoring and modification, the researchers hypothesised that exercise compliance would be at the higher end of that spectrum. The authors determined that the program would be considered 'feasible with modifications' if feasibility outcomes fell between the feasible and not feasible thresholds for both participant retention and exercise compliance.

Participant characteristics were described with descriptive statistics. Analyses of the effect of the intervention on clinical and LAM outcomes were conducted using linear mixed models. Group and time were fixed effects, with time modelled as a repeated measure and the group x time interaction was analysed. Within-person correlation was modelled as a random effect. All analyses were adjusted for participants' baseline data and using a Bonferroni correction. All analyses were conducted by intention to treat and reported using 95% confidence intervals. Pressure biofeedback data being a categorical variable was analysed between groups using a Chi-Squared test.

Odds ratios were calculated to compare the odds of achieving minimally clinically important difference (MCID) changes in pain intensity, disability and function between groups and reported using 95% confidence intervals.

The Likert scale three month follow up survey responses were exported from REDCap© and analysed descriptively using medians and interquartile ranges. Additionally, the percentage of agreement with each statement was calculated. Responses between groups were analysed using Chi-Squared tests.

Sample size

Sample size calculations were conducted according to the framework Lewis et al(71) proposed for feasibility studies. The required sample size assuming an alpha of 0.05 and power of 80% for the feasibility assumptions described above were as follows: retention – 56, exercise compliance – 34 (for experimental arm, therefore a total of 68 participants). It was decided to use the criterion requiring the highest numbers (exercise compliance).

Assuming potential attrition of up to 15%, it was aimed to recruit 80 people.

Results

Recruitment occurred between January – April 2023 (Figure 1). Nine participants withdrew (81% retention from enrolment) for reasons unrelated to the study. Two adverse events occurred, but these were unrelated to the study. One participant sustained a hip injury during a home renovation. One participant attended the final session of data collection and reported extreme dizziness on arrival. The participant was hospitalised but completed data collection on a separate day (nine days later) after receiving medical clearance.

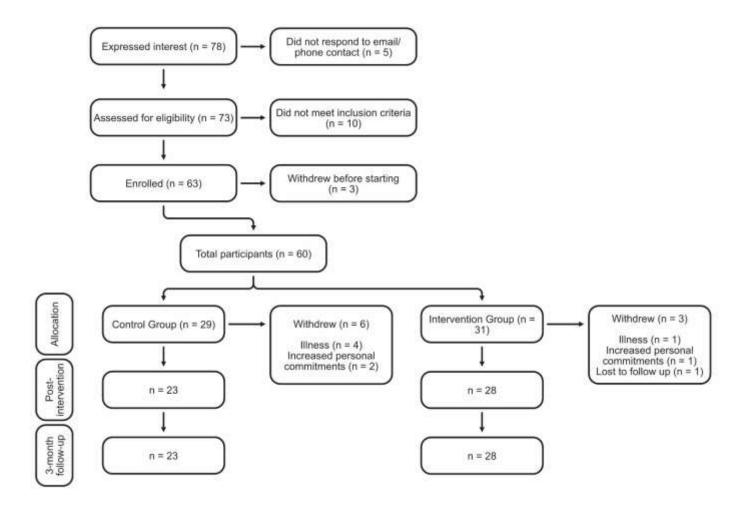


Figure 1 Participant recruitment and progress through the feasibility study

Participants in control and experimental groups were comparable for baseline characteristics except age, for which the intervention group were younger (Table 4). Type of intervention attendance (face-to-face versus telehealth) was similar between groups. Most participants attended the intervention face-to-face (16 in control group and 19 in experimental group). Four participants in each group attended via a combination of telehealth and face-to-face visits. Five participants in the experimental group and three participants in the control group attended via telehealth only. Physical activity levels and time holding a side bridge were greater in the experimental group at baseline. Baseline

LAM thickness was within 95% CI of normative data for most participants, with only three participants' EO thickness and two participants' IO thickness below normative data ranges.

One participant's TrA thickness was above normative data ranges.

Table 4 Baseline participant characteristics

Characteristic	Control group	Experimental
	(n = 29)	Group (n = 31)
Sex	20 F, 9 M	20 F, 11 M
Age	59.17 (11.1)	50.52 (15.79)
BMI	27.91 (5.82)	27.05 (6.78)
Symptom duration (years)	12.88 (10.51)	12.86 (9.06)
Previous back surgery ⁺	28 N, 1 Y	29 N, 2 Y
Number of health professionals seen about low back pain ⁺	2.39 (1.23)	2.62 (1.21)
Pain areas according to the Nordic Body Chart [⁺]	2.30 (1.1)	2.17 (1.1)
Number of participants with unilateral low back pain ⁺	22 N, 6 Y	25 N, 4 Y
Number of participants with unilateral pain spanning to	23 N, 5 Y	26 N, 3 Y
above knee ⁺		
Number of participants with unilateral pain spanning to	24 N, 4 Y	25 N, 4 Y
below knee ⁺		
Number of participants with bilateral low back and lower	25 N, 3 Y	26 N, 3 Y
limb pain (above or below knee) ⁺		
Number of participants with central low back pain ⁺	6 N, 22 Y	4 N, 25 Y
Number of participants with referred pain (lower limb) +	16 N, 12 Y	17 N, 12 Y
Number of patients with anaesthesia/paraesthesia ⁺	23 N, 5 Y	24 N, 6 Y
Do you think this intervention will help your low back pain?	4.41 (0.78)	4.16 (1.13)
(5 Yes, 4 Possibly, 3 Unsure, 2 Possibly not, 1 No)		
Exercise compliance	87.16%	86.25%

⁺ Back pain characteristics obtained during the subjective examination.

Distribution of pain and presence referred pain and anaesthesia/paraesthesia was not reported by one participant in the control group and two participants in the intervention group. This could not be followed up as these participants subsequently withdrew.

Exercise compliance was comparable for the control and experimental groups and met the feasibility criteria (Table 4).

Participants in both groups achieved improvements over time in lumbar instability, disability, pain intensity, function, physical activity levels, time holding a side bridge, IO thickness and LAM contraction as measured by TrA slide, preferential activation, preferential activation modified and TrA ratios, the Deep Muscle Contraction Scale and Pressure Biofeedback Unit and LAM endurance (Table 5, Figure 2). The experimental group

Note all values are presented as mean (standard deviation) unless stated otherwise.

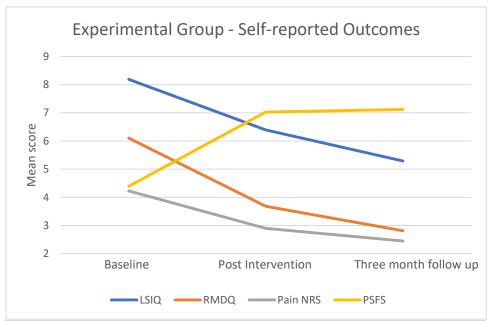
demonstrated greater improvements in function (95% CI -2.05, -0.18 time point 1, -2.33, -0.46 time point 2) and physical activity (95% CI -2401.85, -248.54 time point 1, -2451.06, -297.75 time point 2) at both time points. Both groups were comparable for all other self-report outcomes. The percentage of participants achieving MCID changes in such outcomes were similar between groups (Table 6).

For the LAM, the control group demonstrated greater improvements in the DMC, TrA ratio, and TrA slide compared to the experimental group. In contrast, the experimental group demonstrated greater improvements in TrA and EO thickness as well as the left side bridge. LAM thickness largely remained within 95% confidence intervals for normative data.

Table 5 here (see table 5 at the end of PDF – was unable to include here due to journal guidelines as it is longer than one page)

Table 6 Percentage of participants who achieved a minimally clinically important difference in clinical outcomes post intervention

Outcome	Criteria for achieving minimally clinically important change	Control Group	Experimental Group
Pain	Absolute minimally clinically important difference	52%	42%
intensity	(improvement 2 or more)		
	30% improvement from baseline score	55%	48%
Disability	Absolute minimally clinically important difference	34%	26%
	(improvement of 5 or more)		
	30% improvement from baseline score	62%	65%
Function	Absolute minimally clinically important difference	41%	58%
	(improvement of 2.3 or more)		


Three months post the intervention, 74% and 89% of participants in the control group and experimental groups respectively reported continuing with the exercises prescribed in the intervention. Five participants in the experimental group and one participant in the control group reported health changes which impacted their ability to exercise following the intervention. Such changes, for example, respiratory illness, were unrelated to the

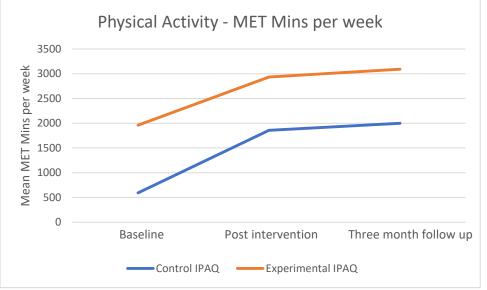

intervention. Despite this, the follow up Likert scale questions revealed the experimental group had greater agreement (median scores) with statements regarding continuation with physical activity and confidence to manage PLBP (Table 7).

Table 7 Three month follow up survey results

Statement	Control Group n =	= 23	Experimental Group n = 28	
	Percentage of Agreement	Median (Q1, Q3)	Percentage of Agreement	Median (Q1, Q3)
I can effectively fit physical activity into my life	87.0%	5 (4, 5.5)	96.4%	6 (5, 6)
I have continued with regular physical activity since completing the intervention	91.3%	5 (4, 5)	89.3%	6 (5, 6)
I feel confident to continue with regular physical activity without the supervision of a physiotherapist	95.7%	5 (4, 5)	92.9%	6 (5, 6)
I feel confident to manage and or prevent my back pain	87%	5 (4, 5)	92.9%	5 (4, 6)
My back pain has improved in the 3 months after finishing the program	78.3%	5 (4, 5)	78.6%	5 (4, 6)
Other questions	Yes	No	Yes	No
Have you continued with the exercises prescribed as part of the intervention?	17	6	25	3
Since completing the intervention have you had any changes in your health which have limited your ability to exercise?	1	22	5	23

Abbreviations: IPAQ, international physical activity questionnaire; LSIQ, lumbar spine instability questionnaire; PSFS, pain specific functional scale; NRS, numeric rating scale; N/A, not applicable; 3M F/U, 3 Month follow up. Note all data are presented as means (standard deviations) unless reported otherwise.

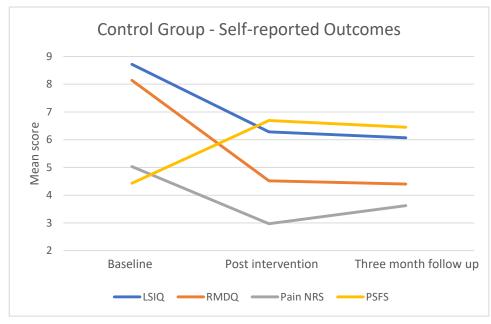


Figure 2 Mean changes in outcomes across the intervention for the experimental and control groups

Abbreviations: IPAQ: International Physical Activity Questionnaire, LSIQ: Lumbar Instability

Questionnaire, MET: Metabolic Equivalent, NRS: Numeric Rating Scale, PSFS: Patient Specific Functional

Scale, RMDQ: Roland Morris Disability Questionnaire

Discussion

This study aimed to determine the preliminary effectiveness and feasibility of an exercise and educational intervention for participants with PLBP and maladaptive changes in LAM contraction. Retention and exercise compliance rates were above 80%. Participants in both groups achieved improved lumbar instability, disability, pain intensity, function, physical activity, lateral abdominal muscle endurance and contraction post intervention. The fully individualised group demonstrated greater between-group improvements in function and physical activity at the end of the intervention and 3 months after the intervention finished. Retention met the 'feasible with modifications criterion'. Attrition was due to participants developing unrelated and unpreventable illnesses, and increased family/work commitments. Due to the individualised nature of the program and options for telehealth, it was anticipated that time dedicated to exercise would be sustainable for participants with changing commitments. However, participants that withdrew did so after session one, so did not have the opportunity to trial adapting the program to their new circumstances. Previous pilot and feasibility studies assessing exercise programs for patients with PLBP have reported lower rates of attrition then the current study. (70, 72) One non-individualised program with 7% attrition required had less frequent appointments and patients were provided a mobile app to monitor compliance. (72) This model would reduce the intervention's time burden however, fewer sessions with the physiotherapist may decrease opportunity for participants' progression. Another program trialling group yoga sessions with a combined sample of participants with PLBP and neck pain showed 86% retention at 12 weeks.(70) Potentially the peer aspect of the program provided an incentive to continue.

The present intervention could incorporate a mobile app and/or peer activities to reduce attrition.

Exercise compliance met the feasibility criteria (≥85% compliance). A cross-sectional study found self-report exercise compliance to be 39%, physiotherapist perceived exercise compliance to be 16% and the ability to accurately remember and demonstrate prescribed exercises to be 15% in patients with PLBP.(69) Higher rates of compliance in the present study may be due to bias, as, recruitment for this exercise intervention may have attracted people who were more interested in exercising. (73) In comparison, Peek's study was retrospectively analysing data from patients that had attended treatments for PLBP. However, compliance of up to 95% compliance has been reported in other studies.(70) Reviews of the literature have examined factors influencing participants' with PLBP adherence to exercise. (74, 75) Factors associated with higher adherence incorporated into the present program included: patient education, supervision/feedback on exercise performance, individualisation, and telehealth options. (74, 75) Additional factors identified in those reviews such as incorporating behavioural change motivational strategies may further improve exercise compliance.(75) Some behavioural change from the intervention was noted, with greater physical activity levels post intervention and at the three month follow up in the experimental group. This suggests the experimental variable of incorporating participant exercise preferences may improve short term exercise compliance. However, this assumption may be confounded by the experimental group having greater physical activity levels at baseline compared to the control group. Thus, it remains unclear whether the differences post intervention were due to the experimental condition or baseline physical activity.

This study also measured the effect of the program on LAM outcomes, disability, function, pain intensity, perceived lumbar instability and physical activity. The lack of between group differences post intervention for most outcomes suggests that the incorporation of patient preferred exercise did not impact intervention effectiveness. Between group differences in physical activity and function outcomes are limited considering the experimental groups' greater physical activity levels at baseline and use of an underpowered sample. It is hypothesised that the incorporation of preferred physical activity may have facilitated a sustained increase in physical activity for the experimental group which led to sustained improvements in function. However, further research is required to confirm this.

Average changes in pain intensity, disability and function were comparable to previous motor control exercise interventions(76-82), suggesting this intervention was not superior. The effects did not consistently achieve minimum clinically important differences, but most participants achieved a 20% reduction in pain intensity which is considered a minimal worthwhile effect for an individualised exercise program.(83) Future studies should compare this protocol with a no intervention control group to determine clinical relevance using the smallest worthwhile effect threshold. As there are a range of definitions for what is considered a clinically important difference, clinicians should discuss likely outcomes of this treatment with patients based on current evidence so they can make an informed decision of whether this is appropriate for them. It is unlikely that patients would make a full recovery from this program.

Participants in both groups demonstrated improvements in Pressure Biofeedback Unit,

Ultrasound imaging and Deep Muscle Contraction Scale measures of TrA contraction,

triangulating these findings. While the normative values for TrA slide are unknown, baseline

slide for this sample was lower than previous samples of participants with PLBP: 0.44(84), 0.76(85) and 1.1cm(86) which may be due to purposive sampling used in this study. Changes in slide, however, were comparable, suggesting this intervention was not superior. As these studies had similar program durations, potentially there is a ceiling effect for change that can be achieved within a time period. For the Deep Muscle Contraction scale, the improvement was slightly lower than what has been achieved in a previous study. (45) However, the present study's participants baseline scores were higher than those of Oliveira et al 2017⁽⁴⁵⁾, potentially limiting capacity for change. Two other trials have reported on TrA contraction using pressure biofeedback in the prone position. Both demonstrated significantly improved TrA contraction(87, 88), with specific muscle activation exercises being superior to abdominal strengthening. (88) These findings support the use of motor control exercises if TrA contraction is reduced.

Endurance improved in both groups post intervention. On average, participants did not demonstrate an imbalance between right and left side endurance at baseline. A non-significant trend towards asymmetry in side bridge holding times has been demonstrated in a previous sample of participants with a history of PLBP.(2) Compared to asymptomatic samples endurance times (54 to 97 seconds)(65, 89), baseline side bridge holding times for participants in this chapter were considerably lower. While baseline data is comparable to other PLBP samples(66, 90), normative data for side bridge endurance in PLBP samples has not been determined. A previous randomised controlled trial found both motor control and abdominal resistance exercises to improve side bridge endurance.(90) This supports the inclusion of both types of exercises in the present protocol if clinicians are aiming to improve LAM endurance.

While LAM thickness demonstrated some changes over the intervention, at baseline this was within normative data ranges for most participants. Therefore, achieving hypertrophy was likely irrelevant for most participants. Hence, it remains unknown how individuals with muscle atrophy may respond to this program. For the few participants' whose LAM thickness was outside of normative data ranges at baseline, the intervention did not consistently increase and or decrease LAM thickness into normative ranges. Previous literature has found some samples of people with PLBP demonstrate significantly decreased thickness of LAM compared to asymptomatic samples(91, 92) which may be associated with increased LBP.(92) However, other samples demonstrate no differences compared to asymptomatic samples.(93) Perhaps such inconsistent evidence supports the need for individualisation and inclusion of strength/hypertrophy exercises only if atrophy is found as recommended in the intervention.

Limitations

There were several limitations of this study. Firstly, due to attrition and recruitment resources (time and funding), the study was underpowered to test feasibility of exercise compliance. Additionally, statistical results on intervention efficacy were mostly underpowered, meaning findings must be replicated in an adequately powered study to draw conclusions on efficacy. However, it was sufficiently powered to examine participant retention. Secondly, while the Deep Muscle Contraction scale, TrA ratio, TrA slide and EO and TrA thickness indicated between group differences after the intervention, the changes were not greater than the minimal detectable change calculated by the authors from reliability data. Therefore, it is plausible that these differences may be due to normal measurement variability. While reliability was moderate to excellent, further research

should aim to improve reliability of these outcome measures. Otherwise, it remains unclear how effective interventions are for improving LAM contraction. Thirdly, the experimental group had greater physical activity levels at baseline, therefore it is uncertain whether increased physical activity after the intervention was related to the intervention, or baseline physical activity levels. Fourthly, providing the option for participants to access the program via telehealth may be a confounding factor to assessing the feasibility of the intervention.

While the use of telehealth was comparable between groups, the literature is unclear regarding its effectiveness compared to other interventions for patients with PLBP. One systematic review found telehealth based interventions were not more effective than educational interventions.(94) However, a more recent randomised controlled trial found remotely delivered physiotherapy to be comparable to usual care for musculoskeletal conditions.(95) Thus, it is unclear whether delivering the program via different means may have affected the outcomes presented in this chapter. Finally, the researcher was not blinded to participants' group allocation or data collection.

Conclusion

This exercise program may improve motor control and muscle endurance (relevant to LAM), pain intensity, disability, function and physical activity levels. The trial was below feasibility criteria for participant retention but met feasibility criteria for exercise compliance in both intervention groups. Preliminary data indicated the incorporation of patient preferred general exercise may be associated with increased function and physical activity at the three month follow up. Further research should trial the program using an adequately powered sample to determine whether group differences were related to baseline physical activity or the use of patient preferred exercise.

Tables longer than one page

Table 5 Effect of exercise intervention on outcome measures

		Unadjusted mean score (SD) Adjusted between group difference			Adjusted mean difference over time – a participants	
Variable	Time	Control Group	Experimental Group	Mean (95% CI)	(all values compared against time 0) Mean (95% CI)	
LSIQ	0	8.72 (2.67)	8.19 (3.21)	Weari (55% Ci)	Wearr (55% Cr)	
LSIQ	1	6.28 (3.15)	6.39 (2.91)	-1.269 (-2.714, 0.176)	2.351 (1.292, 3.409)	
	2	6.07 (3.53)	5.29 (3.33)	-0.443 (-1.888, 1.003)	2.805 (1.747, 3.863)	
RMDQ	0	8.14 (4.27)	6.10 (4.70)	(=)		
	1	4.52 (4.11)	3.68 (4.13)	0.162 (-1.098, 1.422)	2.792 (1.891, 3.692)	
	2	4.4 (3.8)	2.81 (4.14)	0.93 (-0.330, 2.190)	3.658 (2.757, 4.558)	
NRS	0	5.03 (1.64)	4.23 (2.05)			
	1	2.97 (2.03)	2.90 (1.97)	0.069 (-1.05, 1.187)	1.575 (0.768, 2.383)	
	2	3.62 (1.80)	2.45 (1.80)	0.656 (-0.462, 1.775)	1.503 (0.695, 2.311)	
PSFS	0	4.43 (1.91)	4.39 (2.36)			
	1	6.69 (2.17)	7.03 (2.47)	-1.113 (-2.045, -0.180)	-2.577 (-3.239, -1.915)	
	2	6.45 (2.07)	7.12 (2.74)	-1.394 (-2.326, -0.461)	-2.592 (-3.254, -1.930)	
IPAQ	0	590.66 (485.18)	1959.48 (1462.16)			
	1	1857.80 (1706.83)	2934.89 (2562.15)	-1325.197 (-2401.851, -248.542)	-790.834 (-1712.05, 130.382)	
	2	1998.96 (2434.15)	3094.06 (2580.51)	-1374.407 (-2451.061, -297.752)	-1080.748 (-2001.964, -159.532)	
DMC	0	6.86 (1.41)	7.17 (1.40)			
	1	8.52 (1.3)	8.73 (1.26)	1.043 (0.496, 1.59)	-1.852 (-2.251, -1.452)	
PA ratio	0	0.033 (0.04)	0.034 (0.03)			
	1	0.054 (0.05)	0.04 (0.03)	0.016 (-0.004, 0.036)	-0.014 (-0.024, -0.003)	
PAM	0	0.034 (0.06)	0.042 (0.04)			
ratio						
	1	0.061 (0.06)	0.05 (0.04)	0.014 (-0.011, 0.039)	-0.017 (-0.03, -0.003)	
TrA ratio	0	1.40 (0.26)	1.40 (0.33)			
	1	1.57 (0.36)	1.41 (0.23)	0.198 (0.049, 0.347)	-0.088 (-0.165, -0.012)	
Oblique ratio	0	1.19 (0.19)	1.16 (0.12)			
	1	1.19 (0.22)	1.15 (0.12)	0.068 (-0.015, 0.15)	0.000 (-0.043, 0.042)	

Table 5 Effect of exercise intervention on outcome measures

	Unadjusted mean score (SD)		score (SD)	Adjusted between group difference	Adjusted mean difference over time – all participants (all values compared against time 0)	
Variable	Time	Control Group	Experimental Group	Mean (95% CI)	Mean (95% CI)	
TrA slide	0	4.3 (3.40)	2.7 (3.50)			
	1	7.9 (5.10)	5.5 (4.60)	0.244 (0.032, 0.457	-0.032 (-0.440, -0.201)	
TrA thickness	0	4.4 (1.20)	4.3 (1.30)			
	1	4.4 (1.20)	4.7 (1.40)	-0.073 (-0.132, -0.013	-0.014 (-0.034, 0.006)	
IO thickness	0	7.1 (2.50)	7.8 (2.80)			
	1	7.3 (2.50)	8.1 (3.00)	0.005 (-0.096, 0.106)	-0.027 (-0.052, -0.002)	
EO thickness	0	4.4 (1.00)	4.6 (1.30)			
	1	4.3 (0.90)	4.8 (1.50)	-0.095 (-0.148, -0.042)	0.000 (-0.016, 0.017)	
Right side bridge	0	20.64 (18.73)	35.92 (22.03)			
	1	41.90 (23.70)	56.29 (23.29)	-4.439 (-12.297, 3.419)	-19.035 (-24.36, -13.71)	
Left side bridge	0	20.80 (19.57)	35.36 (21.73)			
	1	36.00 (24.38)	55.00 (21.30)	-15.956 (-20.663, -11.249)	-16.239 (-19.408, -13.07)	

Abbreviations: DMC, Deep Muscle Contraction; EO, External Oblique; IO, Internal Oblique; IPAQ, International Physical Activity Questionnaire; LSIQ, Lumbar Spine Instability questionnaire; MET, Metabolic Equivalent of Task, NRS, pain Numerical Rating Scale;

PA, Preferential Activation; PAM, Preferential Activation Modified; PSFS, Patient Specific Functional Scale; RMDQ, Roland Morris Disability Questionnaire; SMD, standard mean difference; TrA, Transversus Abdominis

Additional material

Additional file 1: CONSORT checklist guidelines for feasibility studies Additional file 2: Trial registration protocol Additional file 3: Exercise compliance diary All additional files are located in the one PDF. List of abbreviations: EO: external oblique IO: internal oblique LAM: lateral abdominal muscles PLBP: persistent low back pain TrA: transversus abdominis USI: ultrasound imaging Declarations: Ethics approval and consent to participate: This study was approved by The University of South Australia Human Research Ethics Committee (204929). Participants provided informed consent prior to participation.

Consent for publication: Not applicable

Availability of data and materials: The datasets generated and/or analysed during the current study are not publicly available due to privacy or ethical restrictions but are available from the corresponding author on reasonable request.

Competing interests: The authors declare that they have no competing interests.

Funding: This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Authors' contributions: CP (conception, design, data acquisition, data analysis, data interpretation, drafting), SM (conception, design, data interpretation, drafting), CF (conception, design, data interpretation, drafting), NMW (conception, design data interpretation, drafting). All authors read and approved the final manuscript.

Acknowledgements: Not applicable

Reference List:

- 1. Van Dieen J, Reeves NP, Kawchuk G, Van Dillen L, Hodges P. Motor control changes in low back pain: divergence in presentations and mechanisms. J Orthop Sports Phys Ther. 2019;49(6):370-9.
- 2. McGill S, Grenier SG, Bluhm M, Preuss R. Previous history of LBP with work loss is related to lingering deficits in biomechanical, physiological, personal, psychosocial and motor control characteristics. Ergonomics. 2003;46(7):731-46.
- 3. Hodges P. Hybrid approach to treatment tailoring for low back pain: a proposed model of care. J Orthop Sports Phys Ther. 2019;49(6):453-63.
- 4. Shanbehzadeh S, S S, Hides J, Ebrahimi Takamjani I, Rasouli O. Effect of motor control training on trunk muscle morphometry, pain, and disability in people with chronic low back pain: a systematic review and meta-analysis. J Manipulative Physiol Ther. 2022;45(3):202-15.
- 5. Zhang C, Li Y, Zhong Y, Feng C, Zhang Z, Wang C. Effectiveness of motor control exercise on non-specific chronic low back pain, disability and core muscle morphological characteristics: a meta-analysis of randomised controlled trials. Eur J Phys Rehabil Med. 2021;57(5):793-806.
- 6. Searle A, Spink M, Ho A, Chuter V. Exercise interventions for the treatment of chronic low back pain: a systematic review and meta-analysis of randomised controlled trials. Clin Rehabil. 2015;29(12):1155-67.

- 7. Bystrom M, Rasmussen-Barr E, Johannes W, Grooten W. Motor control exercises reduces pain and disability in chornic and recurrent low back pain a meta-analysis. Spine 2013;38(6):350-8.
- 8. Ford J, Bower S, Ford I, de Mello M, Carneiro S, Balasundaram S, et al. Effects of specific muscle activation for low back pain on activity limitation, pain, work, participation or recurrence: A systematic review. Musculoskelet Sci Pract. 2020;50:102276.
- 9. Saragiotto B, Maher C, Yamato T, Costa L, Menezes Costa L, Ostelo R, et al. Motor control exercise for chronic non-specific low-back pain. Cochrane Database Syst Rev. 2016;Jan 8(1).
- 10. Hayden J, Ellis J, Ogilvie R, Stewart S, Bagg MK, Stanojevic S, et al. Some types of exercise are more effective than others in people with chronic low back pain: a network meta-analysis J Physiother. 2021;67:252-62.
- 11. Owen PJ, Miller CT, Mundell NL, Verswijveren SJJM, Tagliaferri SD, Brisby H, et al. Which specific modes of exercise training are most effective for treating low back pain? Network meta-analysis. Br J Sports Med. 2020;54:1279-87.
- 12. Smith B, Littlewood C, May S. An update of stabilisation exercises for low back pain: a systematic review with meta-analysis. BMC Musculoskelet Disord. 2014;15(416).
- 13. Gomes SRA, Macedo LB, Borges DT, Costa KSA, Melo SA, Brasileiro JS. Effect of whole body vibration on the electromyographic activity of core stabilizer muscles: WBV ON CORE STABILIZER MUSCLES. J Bodyw Mov Ther. 2021;25:1-5.
- 14. Hodges P. Motor Control and Pain. In: Sluka K, editor. Mechanisms and Management of Pain for the Physical Therapist. 2 ed. Philadelphia, United States: Wolters Kluwer; 2016.
- 15. Macedo LG, Maher C, Hancock M, Kamper SJ, McAuley J, Stanton T, et al. Predicting response to motor control exercises and graded activity for patients with low back pain: preplanned secondary analysis of a randomized controlled trial Physical Therapy. 2014;94(11):1543-54.
- 16. Hodges P, Van Dillen L, McGill S, Brumagne S, Hides J, Moseley GL. Integrated clinical approach to motor control interventions in low back and pelvic pain. In: Hodges P, Cholewicki J, van Dieen J, editors. Spinal Control: The Rehabilitation of Back Pain. Sydney: Churchill Livingstone; 2013.
- 17. Van Dieen J, Reeves NP, Kawchuk G, Van Dillen L, Hodges P. Analysis of motor control in patients with low back pain: a key to personalized care? J Orthop Sports Phys Ther. 2019;49(6):380-8.
- 18. Prentice C, Milanese S, Flavell CA, Massy-Westropp N. A dose response analysis of exercise prescription variables for lateral abdominal muscle thickness and activation: A systematic review. J Bodywork Mov Ther. 2024;38(April):24-41.
- 19. Prentice C, Flavell CA, Massy-Westropp N, Milanese S. Exercise Prescription for Patients With Persistent Low Back Pain Who Present With Impaired Lateral Abdominal Muscle Activation: A Delphi Survey. Physiother Res Internat. 2025;30(2):e70060.
- 20. George S, Fritz JM, Silfies SP, Schneider M, Benecuik J, Lentz T, et al. Interventions for the management of acute and chronic low back pain: revision 2021. J Orthop Sports Phys Ther. 2021;51(11):531-50.
- 21. Scottish Intercollegiate Guidelines Network. Management of chronic pain: a national clinical guideline. Edinburgh; 2013.
- 22. Agency for Healthcare Research and Quality. Low back lumbar & thoracic (acute & chronic). Agency for Healthcare Research and Quality; 2011.

- 23. Al-Jassir FF, KA A. KSUMC evidence-based clinical practice guideline for management of persistent non-specific low back pain. 2013.
- 24. Amescua-Garcia C, Colimon F, Guerrero C, Jreige Iskandar A, Berenguel Cook M, Bonilla P, et al. Most relevant neuropathic pain treatment and chronic low back pain management guidelines: a change pain latin america advisory panel consensus. Pain Med. 2018;19(3):460-70.
- 25. Chenot J, Greitemann B, Kladny B, Petzke F, Pfingsten M, Schorr S. Non-specific low back pain. Deutsches Ärzteblatt International. 2017;114(883-90).
- 26. Globe G, Farabaugh RJ, Hawk C, Morris CE, Baker G, Whalen WM, et al. Clinical practice guideline: Chiropractic care for low back pain J Manipulative Physiol Ther. 2016;39(1):1-22.
- 27. Toward Optimized Practice (TOP) Low Back Pain Working Group. Evidence-informed primary care management of low back pain: clinical practice guideline. 2017.
- 28. Hegmann KT, Travis R, Andersson GBJ, Belcourt RM, Carragee EJ, Donelson R, et al. Non-invasive and minimally invasive management of low back disorders. J Occup Environ Med. 2020;62(e111-e138).
- 29. Hong JY, Song KS, Cho JH, Lee JH, Kim NH. An updated overview of low back pain management. Asian Spine J. 2021.
- 30. Hussein MMA, Singh D, Mansor M, Kamil OlM, Choy CY, Cardosa MS, et al. The Malaysian Low Back Pain Management Guidelines. Malaysian Association for the Study of Pain & Spine Society Malaysia; 2007.
- 31. Kassolik K, Rajkowska-Labon E, Tomasik T, Pisula-Lewadowska A, Gieremek K, Andrzejewski W, et al. Recommendations of the polish society of physiotherapy, the polish society of family medicine and the college of family physicians in Poland in the field of physiotherapy of back pain syndromes in primary health care. Family Medicine and Primary Care Review. 2017;19(3):323-34.
- 32. Livingston C, King V, Little A, Pettinari C, Thielke A, Gordon C. State of Oregon Evidence-based Clinical Guidelines Project. Evaluation and management of low back pain: A clinical practice guideline based on the joint practice guideline of the American College of Physicians and the American Pain Society (Diagnosis and treatment of low back pain). Salem: Office for Oregon Health Policy and Research; 2011.
- 33. National Institute for Health and Clinical Excellence (UK). NICE clinical guidelines: Low back pain: Early management of persistent non-specific low back pain. 2016.
- 34. Pangarkar SS, Kang DG, Sandbrink F, Bevevino A, Tillisch K, Konitzer L, et al. VA/DoD Clinical Practice Guideline: Diagnosis and Treatment of Low Back Pain. J Gen Intl Med. 2019;34(11):2620-9.
- 35. Qaseem A, Wilt T, McLean R, Forciea M. Noninvasive treatments for acute, subacute and chronic low back pain: a clinical practice guideline from the American College of Physicians. Ann Intern Med. 2017;166(7):514-30.
- 36. Rossignol M, Arsenault B, Dionne CE, Poitras S, Tousignant M, Truchon M, et al. Clinic on Low-Back Pain in Interdisciplinary Practice (CLIP) Guidelines. Montreal: Clinic on Low-Back Pain in Interdisciplinary Practice (CLIP) Guidelines; 2007.
- 37. Shirado O, Arai Y, Iguchi T, Imagama S, Kawakami M, Nikaido T, et al. Formulation of Japanese Orthopaedic Association (JOA) clinical practice guideline for the management of low back pain- the revised 2019 edition. J Orthop Sci. 2022;27(1):3-30.

- 38. State of Colorado Department of Labor and Employment: Division of Worker's Compensation. Low Back Pain Medical Treatment Guidelines. Denver, Colorado; 2021.
- 39. Parfenov V, Yakhno NN, Davydov OS, Kukushkin ML, Churyukanov MV, Golovacheva VA, et al. Chronic nonspecific (musculoskeletal) low back pain. Guidelines of the Russian Society for the Study of Pain (RSSP). Neurology, Neuropsychology, Psychosomatics. 2019;22(2S):7-16.
- 40. Van Wambeke P, Desomer A, Ailliet L, Berquin A, Demoulin C, Depreitere B, et al. Low back pain and radicular pain: assessment and management. Good Clinical Practice (GCP). Brussels: Belgian Health Care Knowledge Centre (KCE); 2017. Contract No.: 287.
- 41. Schulz KF, Altman DG, Moher D, Group ftC. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMC Med. 2010;8(18).
- 42. Hartvigsen J, Hancock M, Kongsted A, Louw Q, Ferreira M, Genevay S, et al. What low back pain is and why we need to pay attention. Lancet. 2018;391(10137):2356-67.
- 43. Warburton D, Jamnik V, Bredin S, Gledhill NobotP-QC. The physical activity readiness quetsionnaire for everyone (PAR-Q+) and electronic physical activity readiness medical examination (ePARmed-X+). Health Fitness J Can. 2011;4(2):3-23.
- 44. Macedo LG, Hodges P, Bostick G, Hancock M, Laberge M, Hanna S, et al. Which Exercise for Low Back Pain? (WELBack) trial predicting response to exercise treatments for patients with low back pain: a validation randomised controlled trial protocol. BMJ Open. 2021;11(1):e042792.
- 45. Oliveira C, Negrao Filho RF, Franco M, Morelhao PK, Araujo AC, Pinto R. Psychometric properties of the deep muscle contraction scale for assessment of the drawing-in maneuver in patients with chronic nonspecific low back pain. J Orthop Sports Phys Ther. 2017;47(6):432-41.
- 46. Richardson C, Jull G, Hodges P, Hides J. Therapeutic Exercise for Spinal Segmental Stabilisation in Low Back Pain: Scientific Basis and Clinical Approach. Edinburgh: Churchill Livingstone; 1999.
- 47. Rankin G, Newham D, Stokes M. Abdominal muscle size and symmetry in normal subjects. Muscle Nerve. 2006;34:320-6.
- 48. Saghaei M. Random allocation software for parallel group randomised trials. BMC Med Res Methodol. 2004;Nov 9(4):26.
- 49. World Health Organisation. WHO guidelines on physical activity and sedentary behaviour: at a glance. Geneva: World Health Organisation; 2020.
- 50. Butler D, Moseley GL. Explain Pain. 2 ed. Adelaide: NOlgroup; 2013.
- 51. Prentice C, Flavell CA, Massy-Westropp N, Milanese S. Correlating the abdominal drawing in manoeuvre between ultrasound imaging, pressure biofeedback and manual palpation measurements in participants with low back pain: An observational cross-sectional study. Musculoskelet Sci Pract. 2025;77:103303.
- 52. Ostelo R, Deyo R, Stratford P. Interpreting change scores for pain and functional status in low back pain: towards international consensus regarding minimal important change. Spine. 2008;33(1):90-4.
- 53. Maughan E, Lewis J. Outcome measures in chronic low back pain. Eur Spine J. 2010;19(9):1484-9.

- 54. Nugent S, Lovejoy T, Shull S, Dobscha S, Morasco B. Associations of pain numeric rating scale scores collected during usual care with research administered patient reported pain outcomes. Pain Med. 2021;22(10):2235-41.
- 55. Nussbaum L, Natour J, Ferraz M, Goldenberg J. Translation, adaptation and validation of the Roland-Morris Questionnaire Brazil Roland-Morris. Braz J Med Bio Res. 2001;34:203-10.
- 56. Burbridge C, Randall J, Abraham L, Bush E. Measuring the impact of chronic low back pain on everyday functioning: content validity of the Roland Morris disability questionnaire. Journal Patient Rep Outcomes. 2020;28(7).
- 57. Saragiotto B, Maher C, New C, Catley M, Hancock M, Cook CE, et al. Clinimetric testing of the lumbar spine instability questionnaire. J Orthop Sports Phys Ther. 2018;48(12):915-22.
- 58. Pengel LH, Refshauge K, Maher C. Responsiveness of pain, disability and physical impairment outcomes in patients with low back pain. Spine. 2004;29(879-883).
- 59. Nazari G, Bobos P, Lu SW, Reischi S, Almeida PO, MacDermid J. Psychometric properties of the patient-specific functional scale in patients with low back pathology: A systematic review and meta-analysis. Physiother Can. 2022;74(1):6-14.
- 60. Craig C, Marshall A, Sjostrom M, Bauman A, Booth M, Ainsworth B, et al. International Physical Activity Questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35:1381-95.
- 61. Koppenhaver S, Hebert J, Parent EC, Fritz JM. Rehabilitative ultrasound imaging is a valid measure of trunk muscle size and activation during most isometric sub-maximal contractions: a systematic review. Aust J Physiother. 2009;55(3):153-69.
- 62. Valentin-Mazarracin I, Nogaledo-Martin M, Lopez-de-Uralde-Villanueva I, Fernandez-de-Las-Penas C, Stokes M, Arias-Buria JL, et al. Reproducibility and concurrent validity of manual palpation with rehabilitative ultrasound imaging for assessing deep abdominal muscle activity: analysis with preferential ratios. Diagnostics (Basel). 2021;11(2):13.
- 63. de Paula Lima PO, de Oliveira R, de Moura AG, Raposo M, Costa L, Laurentino G. Reproducibility of the pressure biofeedback unit in measuring transversus abdominis muscle activity in patients with chronic nonspecific low back pain. J Bodywork Mov Ther. 2011;16:251-7.
- 64. Hodges P, Richardson C, Jull G. Evaluation of the relationship between laboratory and clinical tests of transversus abdominis function. Physiother Res Int. 1996;1(1):30-40.
- 65. McGill S, Childs A, Liebenson C. Endurance times for low back stabilization exercises: clinical targets for testing and training from a normal database. Arch Phys Med Rehabil. 1999;80(8):941-9.
- 66. Kahraman B, Sengul Y, Kahraman T, Kalemci O. Developing a reliable core stability assessment battery for patients with nonspecific low back pain. Spine. 2016;41(14):E844-E50.
- 67. Furlan AD, Pennick V, Bombardier C, M; vT, Editorial Board CBRG. 2009 updated method guidelines for systematic reviews in the Cochrane Back Review Group. Spine (Phila Pa 1976). 2009;34(18):1929-41.
- 68. PEDro scale 1999 [Available from: http://www.pedro.org.au/wp-content/uploads/PEDro_scale.pdf.

- 69. Peek K, Carey M, Mackenzie L, Sanson-Fisher R. Patient adherence to an exercise program for chronic low back pain measured by patient-report, physiotherapist-perception and observational data. Physiother Theory Pract. 2019;35(12):1304-13.
- 70. Krkoska P, Vlazna D, Sladeckova M, Minarikova J, Barusova T, Batalik L, et al. Adherence and effect of home-based rehabilitation with telemonitoring support in patients with chronic non-specific low back pain: a pilot study. Int J Environ Res Public Health. 2023;20(2):1504.
- 71. Lewis M, Bromley K, Sutton C, McCray G, Myers H, Lancaster G. Determining sample size for progression criteria for pragmatic pilot RCTs: the hypothesis test strikes back! Pilot Feasibility Stud. 2021;7(40).
- 72. Groessl EJ, Casteel D, McKinnon S, McCarthy A, Schmalzl L, Chang DG, et al. Comparing types of yoga for chronic low back and neck pain in military personnel: a feasibility randomized controlled trial. Glob Adv Health Med. 2022;16(11).
- 73. de Souto Barreto P, Ferrandez A, Saliba-Serre B. Are older adults who volunteer to participate in an exercise study fitter and healthier than non-volunteers? The participation bias of the study population J Phys Act Health. 2013;10(3):359-67.
- 74. McLeod G, Morgan E, McMillan S, McCahon S, N S. Why are patients not doing their prescribed home-based exercises? An updated review of the factors affecting adherence to prescribed home-based exercise in patients with chronic low back pain. Home Health Care Manag Pract. 2023;35(2):114-22.
- 75. Beinart N, Goodchild C, Weinman J, Ayis S, Godfrey E. Individual and intervention-related factors associated with adherence to home exercise in chronic low back pain: a systematic review. The Spine J. 2013;13(12):1940-50.
- 76. Costa LO, Maher C, Latimer J, Hodges P, Herbert RD, Refshauge K, et al. Motor control exercise for chronic low back pain: a randomized placebo-controlled trial. Phys Ther. 2009;89(12):1275-86.
- 77. Macedo LG, Latimer J, Maher CG, Hodges PW, McAuley JH, Nicholas MK, et al. Effect of motor control exercises versus graded activity in patients with chronic nonspecific low back pain: a randomized controlled trial. Phys Ther. 2012;92(3):363-77.
- 78. Ferreira PH. Changes in recruitment of transversus abdominis correlate with disability in people with chronic low back pain. Br J Sports Med. 2010;44(16):1166-72.
- 79. Noormohammadpour P, Kordi M, Mansournia MA, Akbari-Fakhrabadi M, Kordi R. The role of a multi-step core stability exercise program in the treatment of nurses with chronic low back pain: a single-blinded randomized controlled Trial. Asian Spine J. 2018;12(3):490-502.
- 80. Unsgaard-Tondel M, Fladmark A, Salvesen O, Vasseljen O. Motor control exercises, sling exercises, and general exercises for patients with chronic low back pain: a randomized controlled trial with 1-year follow-up. Phys Ther. 2010;90(10):1426-40.
- 81. Rabin A, Shashua A, Pizem K, Dickstein R, Dar G. A clinical prediction rule to identify patients with low back pain who are likely to experience short-term success following lumbar stabilization exercises: a randomized controlled validation study. J Orthop Sports Phys Ther. 2014;44(1):6-B13.
- 82. Puntumetakul R, Chalermsan R, Hlaing SS, Tapanya W, Saiklang P, R B. The effect of core stabilization exercise on lumbar joint position sense in patients with subacute non-specific low back pain: a randomized controlled trial. J Phys The Sci. 2018;30(11):1390-5.

- 83. Hansford H, Jones MA, Cashin AG, Ostelo R, Chiarotto A, Williams S, et al. The smallest worthwhile effect on pain intensity of nonsteroidal anti-inflammatory drugs and exercise therapy for acute and chronic low back pain: a benefit-harm trade-off study. J Physiother. 2023;69(4):240-8.
- 84. Hides J, Stanton W, Wilson S, McMahon S, Sims K. Retraining motor control of abdominal muscles among elite cricketers with low back pain. Scand J Med Sci Sports. 2010;20(834-842).
- 85. Vasseljen O, Fladmark A. Abdominal muscle contraction thickness and function after specific and general exercises: a randomized controlled trial in chronic low back pain patients. Man Ther. 2010;15(5):482-9.
- 86. Unsgaard-Tondel M, Lund Nilsen TI, Magnussen J, Vasseljen O. Is activation of transversus abdominis and obliquus internus abdominis associated with long-term changes in chronic low back pain? A prospective study with 1-year follow-up. Br J Sports Med. 2012;46(10):729-34.
- 87. Kumar T, Kumar S, Nezamuddin M, Sharma VP. Efficacy of core muscle strengthening exercise in chronic low back pain patients. J Back Musculoskeletal Rehabil. 2015;28(4):699-707.
- 88. Franca FJR, Burke TN, Hanada ES, Marques A. Segmental stabilization and muscular strengthening in chronic LBP: a comparative study. Clinics. 2010;65(10):1013-7.
- 89. Oliveira I, Pilz B, Santos R, Vasconcelos R, Mello W, Grossi D. Reference values and reliability for lumbopelvic strength and endurance in asymptomatic subjects. Braz J Phys Ther. 2017;22(1):33-41.
- 90. Shamsi M, Rezaei M, Zamanlou M, Sadeghi M, Pourahmadi MR. Does core stability exercise improve lumbopelvic stability (through endurance tests) more than general exercise in chronic low back pain? A quasi-randomised controlled trial. Physiother Theory Pract. 2016;32(3):171-8.
- 91. Ota M, Kaneoka K. Differences in abdominal muscle thicknesses between chronic low back pain patients and healthy subjects. J Phys Ther Sci. 2011;23(6):855-8.
- 92. Rahmani N, Mohseni-Bandpei M, Salavati M, Vameghi R, Abdollahi I. Comparative study of abdominal muscle thickness on ultrasonography in healthy adolescents and patients with low back pain. J Med Ultrasound. 2018;37(4):905-12.
- 93. Whittaker J, Warner M, Stokes M. Comparison of the sonographic features of the abdominal wall muscles and connective tissues in individuals with and without lumbopelvic pain. J Orthop Sports Phys Ther. 2013;43(1):11-9.
- 94. Dario AB, Moreti Cabral A, Almeida L, Ferreira ML, Refshauge K, Simic M, et al. Effectiveness of telehealth-based interventions in the management of non-specific low back pain: a systematic review with meta-analysis. Spine. 2017;17(9):1342-51.
- 95. Withers H, Glinsky J, Chu J, Jennings MD, Starkey I, Parmeter R, et al. Remotely delivered physiotherapy is as effective as face-to-face physiotherapy for musculoskeletal conditions (REFORM): a randomised trial. J Physiother. 2024;70(2):124-33.