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ABSTRACT
In central Australia, an apparently coeval gneiss dome (Entia Dome) developed adjacent 

to a thrust belt (Arltunga Nappe Complex) within an intracratonic setting. Here we employ a 
combination of fieldwork, geochronology, and numerical modeling to investigate the structure 
and tectonic evolution of these features. We present a structural model linking an extensional 
domain comprising the Entia Dome, across a transitional zone containing the Bruna décol-
lement zone and the Illogwa shear zone, into a contractional zone comprising thrusts and 
duplexes of the Arltunga Nappe Complex. Supported by numerical modeling, we propose a 
tectonic model in which the dome and nappe complex formed synchronously because of the 
convergent gravitational collapse of the 30–40-km-deep Paleozoic Harts Range rift.

INTRODUCTION
Defying traditional plate tectonics, the Alice 

Springs orogeny developed between 450 and 
300 Ma deep within the interior of the Austra-
lian continent (Fig. 1) at significant distances 
from any plate boundaries. It spans ∼600 km, 
following a WNW-ESE-striking corridor amidst 
the weaker regions between the North, South, 
and West Australian cratons (Nixon et al., 2022). 
Before the Alice Springs orogeny, a large por-
tion of the Australian Paleoproterozoic interior 
remained buried beneath the Neoproterozoic to 
Devonian Centralian Superbasin, remnants of 
which include the Amadeus Basin (Fig. 1). Dur-
ing much of the Paleozoic Era, Australia existed 
as a Gondwana promontory bordered by active 
margins on the NW (Metcalfe, 2021), N (Jost 
et al., 2018), and Pacific margins (Rosenbaum, 
2018). Consequently, the intracratonic Alice 
Springs orogeny has been attributed to a combina-
tion of mantle dynamics (Houseman and Molnar, 
2001; Roberts and Houseman, 2001) and far-field 
stresses (Klootwijk, 2013; Silva et al., 2018).

The region NE of the Amadeus Basin pres-
ents the intriguing geological association of the 

Entia gneiss dome, in which Paleoproterozoic 
upper amphibolite facies gneisses were exhumed 
alongside a series of nappes (Fig. 1). The nappe 
complex comprises the amphibolite to granu-
lite facies rocks (10 kbar, 850 °C; Hand et al., 
1999; Mawby et al., 1999) of the Harts Range 
Metamorphic Complex, the Paradise Nappes, 
and their lower-grade Neoproterozoic covers 
(Forman, 1971). These isoclinal fold nappes 
were thrust onto the greenschist facies Ruby 
Gap duplex and White Range duplex, which 
consist of Amadeus Basin sequences, overlap-
ping the Amadeus Basin (Dunlap and Teyssier, 
1995). Collectively, these nappes constitute the 
Arltunga Nappe Complex.

Understanding of the regional geology 
took a transformative turn when detrital zircon 
data revealed that the Harts Range Metamor-
phic Complex, into which the Entia Dome was 
emplaced, did not belong to the Paleoprotero-
zoic basement. Instead, these gneisses are the 
metamorphic equivalent of Neoproterozoic to 
Paleozoic marine siliciclastic and limestone sed-
iments of the Amadeus Basin with interlayered 
metavolcanics (Maidment et al., 2013; Tucker 
et al., 2015). Amphibolite to granulite facies 
metamorphism between 470 and 450 Ma is asso-
ciated with bedding-parallel fabrics, suggesting 
syn-rift high-temperature (high-T) metamor-

phism within the Harts Range rift, a 30–40-km-
deep sub-basin adjacent to the Amadeus Basin 
(Hand et al., 1999; Mawby et al., 1999; Maid-
ment et al., 2005; Tucker et al., 2015). Granulite 
facies conditions seem to have been confined to 
deeper parts of the Harts Range rift, with little 
effect on the adjacent Paleoproterozoic base-
ment (Mawby et al., 1999).

Episodic pegmatite emplacement between 
450 and 300 Ma within the Entia Dome and 
the Harts Range Metamorphic Complex sug-
gests the maintenance of high-T conditions in 
the deeper crust during most of the Paleozoic 
(Buick et al., 2008; Varga et al., 2022). Hence, 
the Entia Dome is a post–460 Ma structure that 
ascended through the Harts Range Metamor-
phic Complex during the Alice Springs orogeny. 
The driver for protracted partial melting follow-
ing an episode of high-grade metamorphism in 
this intracontinental setting remains enigmatic 
(Buick et al., 2008; Asimus et al., 2023).

This paper focuses on the structure and tec-
tonic history of the region between the Entia 
Dome and the Ruby Gap duplex across the inter-
vening Illogwa shear zone (Fig. 1). We document 
a structural continuity from the Entia Dome to 
the Ruby Gap duplex and argue that the dome 
and duplex, active between 340 and 310 Ma, rep-
resent an extensional and contractional domain, 
respectively, linked by a translational domain 
that consists of the Bruna décollement zone and 
the Illogwa shear zone. We propose that the deep 
Harts Range rift basin led to a significant gravita-
tional potential anomaly that relaxed via inward 
convergent gravitational collapse.

TRANSECT FROM DOME TO DUPLEX
Entia Dome

The Entia Dome comprises migmatitic 
quartzofeldspathic gneisses and layered 
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amphibolites and calc-silicates. A composite 
layer-parallel compositional banding fabric 
defines an internal architecture involving two 
subdomes separated by a planar high-strain 
zone (Figs. 1 and 2A). The subdome cores 
host the Huckitta and Inkamulla granodiorites 
dated (U-Pb zircon) at 1762 Ma and 1773 Ma, 
respectively (Maidment et al., 2005). Both 
granodiorites display a magmatic to solid-
state fabric concordant with overlying mig-
matitic gneisses. On average, lineations within 
the dome trend to the NE (Fig. 1) and plunge 
20°–30° to the NE. Polyphase structures in 
the migmatites show evidence of at least three 
fabric-forming events (Figs. 2D and 2E) with 
a clear regional partitioning. In the dome, the 

metatexite compositional layering and layer-
parallel foliation are folded into tight to iso-
clinal recumbent folds, ranging from centime-
ters to tens of meters in amplitude (Figs. S1A 
and S1B in the Supplemental Material1). The 
subhorizontal migmatitic layering displays 
locally subhorizontal asymmetric boudinage 
and low-angle extensional shear bands with 

melt segregation that point to a strong exten-
sional tectonic regime above the solidus (Fig. 
S1C). The magmatic fabric in the granodiorites 
preserves remnants of older structures (Fig. 
S2). At the margin of the dome, the recumbent 
folds are refolded by cascading recumbent 
folds (Fig. S3). Granite-bearing extensional 
fractures, some axial planar to these second-
generation folds, show that these folds also 
developed at temperatures above the solidus 
(Figs. 2D and 2E). In between the subdomes, 
the high-strain zone records a strong horizon-
tal NW-SE shortening, with tight to isoclinal 
upright folds (Fig. S4). The strain distribu-
tion is consistent with that expected during the 
exhumation of a migmatitic-cored dome, with 

1Supplemental Material. Additional field photo-
graphs, structural data, geochronology methodology 
and results, and additional information on the numeri-
cal modeling setup. Please visit https://doi​.org​/10​
.1130​/GEOL​.S.24891495 to access the supplemental 
material; contact editing@geosociety​.org with any 
questions.

Figure 1.  Geological map of the study area, central Australia, including location of geochronology data (40Ar/39Ar on muscovite from Reno and 
Fraser, 2021), using a combination of our own data and data from Forman (1971), Shaw et al. (1984), Shaw and Freeman (1990), and Dunlap 
(1992). HRG—Harts Range Group.
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vertical shortening and horizontal extension 
on top of the dome, gravity folding along its 
margin (Cruden, 1990), and horizontal short-
ening between the subdomes (Rey et al., 2017).

U-Pb ages of metamorphic monazite from 
Entia gneisses between 365 and 308 Ma (Wade 
et  al., 2008, and references therein; Varga 
et al., 2021) as well as U-Pb ages of metamor-
phic zircon growth in the Huckitta Granodio-
rite at ca. 332 ± 3 Ma (Maidment et al., 2005) 
and ca. 330 ± 6 Ma (Hand et al., 1999) point 
to a protracted metamorphism from 360 to 
310 Ma, peaking at 7–9 kbar and 680–720 °C 
(Varga et al., 2021, and references therein) and 
melt-present conditions (Asimus et al., 2023). 
To better constrain the age of deformation, we 
conducted U-Th-Pb laser ablation–inductively 
coupled plasma–mass spectrometry (LA-ICP-
MS) geochronology (Fig. S8) on monazite from 
a folded leucocratic vein within a metatexite 
between the subdomes (Figs. 1 and 2D; Fig. 
S4). Two distinct date populations identified at 
339 ± 4 Ma and 314 ± 4 Ma as well as a con-
cordant date at 365 ± 8 Ma are interpreted as 
representing two pulses of doming and melt 
extraction during a ca. 365 Ma to 310 Ma 
period of protracted metamorphism, melting, 
and deformation.

Southern Margin of the Entia Dome
The Bruna décollement zone deforms the 

contact between the Paleoproterozoic Entia 
gneisses and the Neoproterozoic to Paleozoic 
Irindina Gneiss at the base of the Harts Range 
Metamorphic Complex (Fig. 1) (James et al., 
1989). Separating the basement and cover, the 
Bruna Granitic Gneiss (Fig. S5) has been inter-
preted as a ca. 1745 Ma (U-Pb zircon) laccolith 
(Ding and James, 1985; Mortimer et al., 1987; 
Cooper et al., 1988). The Bruna Granitic Gneiss 
records heterogeneous deformation (James 
et al., 1989). Along the S margin of the Entia 
Dome, the Bruna décollement zone corresponds 
to a prominent S-dipping normal shear zone. A 
strong L-S fabric carries a mineral and stretching 
lineation plunging to the SSW (Fig. 2F). Sm-Nd 
whole rock–garnet–hornblende isochron dating 
of Bruna Granitic Gneiss from the sheared NW 
margin of the Entia Dome yielded an age of 
449 ± 10 Ma, interpreted to reflect a phase of 
Ordovician deformation (Mawby et al., 1999). 
Similar ages have been reported in the Harts 
Range (e.g., Buick et al., 2008). To constrain 
the age of shearing along the S margin of the 
dome, we have performed in situ LA-ICP-MS 
U-Pb dating of titanite from an isoclinally folded 
aplite vein (Fig. 2C) hosted in sheared Bruna 

Granitic Gneiss (Fig. 1). We obtained a date of 
315 ± 4 Ma (Fig. S8), interpreted as the mini-
mum emplacement age for the vein and maxi-
mum age for shearing and folding, closely 
agreeing with the 314 ± 4 Ma age obtained in 
the high-strain zone between the subdomes.

South of the Entia Dome, the Bruna décol-
lement zone flattens into a broad synform 
(Fig. 2A). The L-S fabric is flat lying, with the 
prominent stretching lineation gently plunging 
to the SSW or NNE. In some localities, strain 
shadows around K-feldspar and S-C fabrics in 
the Bruna Granitic Gneiss support a top-to-the-
SW sense of shear (Figs. S6A and S6B). How-
ever, deformation was heterogeneous, varying 
in intensity and involving both simple and pure 
shear (Fig. S6C). The Bruna Granitic Gneiss 
thins out above the roof thrust of the Ruby Gap 
Duplex (Fig. 2).

Ruby Gap Duplex and the Illogwa Shear 
Zone

South of the Bruna Granitic Gneiss, the 
Illogwa shear zone consists of quartzofeld-
spathic gneisses and schists with mafic and calc-
silicate interlayering, reminiscent of the rocks 
in the Entia Dome. The foliation dips 30°–50° 
to the N and carries a down-dip stretching and 

A
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E

Figure 2.  (A) Composite cross section from Ruby Gap Duplex to Entia Dome. Major thrust faults are shown as thick black lines. Lighter shad-
ing indicates interpretation above the current topography. The Harts Range Metamorphic Complex, including the Irindina Gneiss, is shown in 
light blue. Section lines and legend are shown in Figure 1. (B) Folds in the Bitter Springs Group. (C) Folded aplite vein with axial planar folia-
tion in the Bruna décollement zone (pen for scale). (D, E) Upright folds (notebook for scale) (D) refolded into cascading folds (pen for scale) 
(E) in the high-strain dome envelope. (F) L-S tectonite within the Bruna décollement zone. (G) Kinematic indicators in the Illogwa shear zone.
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muscovite lineation. We have observed S-C 
fabrics, δ-clasts, and σ-clasts recording clear 
top-to-the-SW kinematics (Fig. 2E; Fig. S7). 
This shear zone is in structural conformity with 
the overlying upper amphibolite facies Bruna 
décollement zone to the N and the underlying 
greenschist facies Ruby Gap duplex to the S. 
Although the Illogwa shear zone is commonly 
presented as a retrograde shear zone (Foden 
et al., 1995), it is part of an inverted metamor-
phic gradient linking the upper amphibolite 
facies fabric at the Entia Dome’s S margin to 
the greenschist facies fabric of the Ruby Gap 
duplex (Collins and Teyssier, 1989; Dunlap and 
Teyssier, 1995). We speculate that the Illogwa 
shear zone fabric is the axial planar fabric of 
an anticlinal fold nappe made mainly of Paleo-
proterozoic gneisses, which may be structurally 
underneath the Paradise Nappes (Figs. 2 and 
3). 207Pb/206Pb zircon ages of 1794 ± 6 Ma and 
1769 ± 3 Ma are interpreted as crystallization 
and later alteration ages, respectively. In con-
trast, the 327 ± 2 Ma 40Ar/39Ar age obtained on 
muscovite (Reno and Fraser, 2021) defining the 
lineation (Fig. S7) can be interpreted as the age 
of the Alice Springs orogeny fabric.

Underneath and in structural conformity with 
the Illogwa shear zone, the Ruby Gap duplex is 
a S-directed duplex comprising Amadeus Basin 
sequences and the underlying Paleoproterozoic 
basement. To the W, it occupies the lowest 
structural level of the Arltunga Nappe Com-
plex, underlying the Paradise and Harts Range 
Metamorphic Complex nappes and coeval with 

the structurally equivalent White Range duplex 
(Dunlap and Teyssier, 1995) (Fig. 1). To the first 
order, what is preserved is the duplicated limb 
of an anticlinal fold nappe (Fig. 2A). The base-
ment and the competent Heavitree Formation are 
attached, and the overlying incompetent Bitter 
Springs Group (Fig. 2B) acts as a décollement. 
Thrusting occurred between 336 and 311 Ma 
(40Ar/39Ar on white mica) at temperatures strad-
dling the ductile-brittle transition (250–300 °C; 
Dunlap, 1997). Under these conditions, thrust 
sheets internally deform by stretching in the 
transport direction.

Summary
The structure across our transect consists of 

the Entia Dome, with a double-dome architec-
ture, adjacent to the Arltunga Nappe Complex 
to the S comprising a stack of imbricated meta-
morphic fold nappes including the Illogwa shear 
zone (Figs. 2A and 3). The structural geology is 
conformal, with a progressive decrease in met-
amorphic conditions from upper amphibolite 
facies in the Entia Dome and the Bruna Granitic 
Gneiss to lower amphibolite facies across the 
Illogwa shear zone and greenschist facies in the 
Ruby Gap duplex (Figs. 2A and 3). Structures 
within the Entia Dome and the Bruna décol-
lement zone developed under extension, while 
the Arltunga Nappe Complex developed under 
contraction. Exhumation of the Entia Dome, 
shearing along the Bruna décollement zone and 
Illogwa shear zone, and thrusting of the Arltunga 
Nappe Complex are age bracketed between ca. 

345 and ca. 310 Ma. The structural continuity 
and geochronology indicate that these features 
are synchronous and interrelated.

TECTONIC MODEL
The Entia Dome was emplaced into the 

30–40-km-deep Harts Range rift basin (i.e., 
Irindina province), the base of which reached 
granulite facies metamorphism and melting at 
ca. 470 Ma (Maidment et al., 2013; Tucker et al., 
2015). The density contrast between the Neo-
proterozoic to Paleozoic sedimentary basin infill 
and the metamorphic Paleoproterozoic basement 
creates a strong horizontal pressure gradient, 
leading to significant gravitational stresses act-
ing laterally toward the basin (Rey et al., 2001). 
As the geotherm in the basin reached melting 
conditions, these gravitational forces may have 
overcome viscous strength to drive centripetal 
flow, forcing the exhumation of the Entia Dome 
and the development of gravity nappes.

To test this hypothesis, we ran a set of 
thermo-mechanical numerical experiments 
using the Underworld framework (Moresi 
et  al., 2007). The model setup comprises a 
34-km-deep rift basin embedded into a meta-
morphic basement overlying a viscous mantle 
(Fig. 4A). The temperature field reflects condi-
tions at ca. 470 Ma and delivers partial melting 
in the deeper level of the basin as well as the 
basement. Rheology is dependent on tempera-
ture, stress, strain, strain rate, and melt fraction. 
Detailed model information is provided in the 
Supplemental Material.

Figure 3. Two schematic 
views of the structural 
architecture of Entia Dome 
and Arltunga Nappe Com-
plex. Paradise Nappes are 
colored green. Legend 
and section lines are 
shown in Figure 1. HRG—
Harts Range Group.
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We have tested static conditions and mild 
and faster convergent and divergent velocity 
conditions. All sets of experiments lead to the 
exhumation of a basement-cored double dome, 
pushing the basin infill upward and laterally into 
gravity nappes (Figs. 4B–4D). This experiment 
(Fig. 4) suggests that the contractional collapse 
of the Harts Range rift basin exhumed the Entia 
Dome and triggered S-SW gliding of gravity-
driven fold nappes, accommodated by isoclinal 
folding and foliation-parallel slip. At cooler 
conditions, limbs of the isoclinal fold nappes 
were imbricated, forming the Ruby Gap duplex 
and White Range duplex. A transitional domain 
links the extensional exhumation of the dome 
to the contractional deformation at the front of 
the nappe complex (Fig. 4D). The delay between 
granulite facies conditions at 470–450 Ma and 

doming at ca. 340–310 Ma may be due to rift-
ing’s divergent velocity balancing the conver-
gent gravitational velocity until ca. 355 Ma and 
slow conductive heating delaying basement 
weakening and convergent flow.

CONCLUSIONS
We propose a tectonic model linking the 

Entia Dome and the Ruby Gap duplex based 
on (1) the structural and metamorphic continu-
ity between the dome and the duplex, (2) geo-
chronological constraints showing synchronous 
dome exhumation and nappe emplacement from 
ca. 340 to ca. 310 Ma, and (3) coupled thermo-
mechanical numerical experiments illustrating 
the geodynamics. Our model invokes the con-
tractional gravitational collapse of the Neopro-
terozoic to Devonian Harts Range rift basin as 

the driver for exhumation of the Entia dome, 
associated with gravitational spreading of the 
basin infill. This gravity-driven deformation was 
superimposed on far-field stresses driven by plate 
tectonics and may have contributed to deforma-
tion along the N margin of the Amadeus Basin. 
While the processes described here explain some 
Carboniferous features observed in the eastern 
Arunta region, it cannot explain the totality of 
the Alice Springs orogeny strain field.
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