

Wiley Scientifica Volume 2025, Article ID 3367875, 26 pages https://doi.org/10.1155/sci5/3367875

Review Article

Therapeutic Potential Targeting Gut Microbiota Modulation With Emphasis on *Lactobacillus* spp. in Common Metabolic Disorders: A Systematic Review

Md. Mizanur Rahaman , 1,2 Phurpa Wangchuk, 3,4 and Subir Sarker 1,2,5

Correspondence should be addressed to Subir Sarker; subir.sarker@jcu.edu.au

Received 10 March 2025; Revised 26 September 2025; Accepted 15 October 2025

Academic Editor: Carlos Viegas

Copyright © 2025 Md. Mizanur Rahaman et al. Scientifica published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Metabolic disorders are complex conditions that arise from abnormal biochemical reactions, disrupting normal metabolic processes. The most prevalent metabolic disorders include obesity, Type 2 diabetes mellitus (T2DM), cardiovascular disease (CVD), nonalcoholic fatty liver disease (NAFLD), and inflammatory bowel disease (IBD). Despite extensive research, no definitive therapeutic strategy has been established for a complete cure. Emerging evidence suggests that gut microbiome dysbiosis plays a critical role in the pathogenesis of these disorders, as maintaining microbial homeostasis is essential for metabolic health. Shortchain fatty acids (SCFAs) are a key metabolite produced by gut microbiota and exhibit significant therapeutic potential by serving as an energy source for colonocytes, enhancing gut barrier integrity, and modulating inflammation. Our analysis reveals that targeted microbial modulation—particularly through SCFA-producing probiotics and prebiotics—consistently benefits host metabolism and reduces systemic inflammation across multiple conditions. Thisreview highlights the importance of gut microbiota as a viable therapeutic target and underscore the need for further clinical trials to validate microbiome-based interventions in metabolic disease management.

Keywords: dysbiosis; gut microbiome; inflammation; metabolic disorders; therapeutic potential

1. Introduction

Metabolic disorders, including obesity, Type 2 diabetes mellitus (T2DM), cardiovascular disease (CVD), non-alcoholic fatty liver disease (NAFLD), and inflammatory bowel disease (IBD), represent a significant global health burden, contributing to rising morbidity and mortality rates. These disorders arise from disruptions in fundamental

metabolic processes, leading to energy dysregulation and redox imbalance [1]. Key risk factors, collectively referred to as metabolic syndrome, include dyslipidemia, leptin and adiponectin dysregulation, insulin resistance, impaired insulin secretion, and glucose intolerance [2]. At the cellular level, metabolic disorders disrupt essential biochemical pathways involved in macronutrient metabolism, thereby impairing homeostasis [3]. The underlying pathophysiology

¹Biomedical Sciences and Molecular Biology, College of Medicine and Dentistry, James Cook University, Townsville 4811, Queensland, Australia

²Australian Institute of Tropical Health and Medicine, James Cook University, Townsville 4811, Queensland, Australia

³College of Science and Engineering, James Cook University, Nguma Bada Campus, McGregor Rd, Smithfield, Cairns 4878, Queensland, Australia

⁴Australian Institute of Tropical Health and Medicine, James Cook University, Nguma Bada Campus, McGregor Rd, Smithfield, Cairns 4878, Queensland, Australia

⁵Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria 3086, Australia

Scientifica Scientifica

is multifaceted, involving impaired insulin sensitivity, excessive visceral fat accumulation, lipid metabolism disturbances, and vascular endothelial impairment, hypertension, genetic predisposition, and a hypercoagulable state [4]. Despite significant advances in understanding disease mechanisms, effective long-term management remains a challenge due to the complex and multifactorial nature of these conditions. Current therapeutic strategies, such as pharmacological interventions and lifestyle modifications, often yield variable outcomes and are limited by poor patient adherence, side effects, and a lack of personalized treatment approaches [5, 6]. Although bariatric surgery has shown promise in severe cases, its accessibility and long-term sustainability remain concerns [7, 8].

Gut microbiome plays a pivotal role in the treatment of metabolic disorders, making it a promising candidate for therapeutic interventions. The adult gut microbiota contains 10-100 trillion micro-organisms, which is equal to ten times the total amount of human somatic and germ cells [9]. This microbial ecosystem exerts profound effects on host physiology, influencing immune system development, gut epithelial homeostasis, pathogen defense, and drug metabolism [10-13]. Despite its vast diversity, gut microbiota is largely dominated by four major phyla, Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria, with other phyla contributing to a lesser extent [14]. This microbiota influences host metabolism through various mechanisms, including the production of SCFAs, bile acid metabolism, regulation of gut permeability, and modulation of inflammatory pathways [15]. Given the increasing prevalence of metabolic disorders such as obesity and T2D, probiotics and prebiotics have gained considerable attention for their potential in modulating gut microbiota composition and function, particularly in pediatric populations [16-18]. Probiotic-mediated modulation of intestinal microbiota has been shown to promote microbial homeostasis, offering potential benefits as an adjunctive therapy for T2D and insulin resistance [18, 19]. Additionally, probiotic supplementation has demonstrated the ability to reduce inflammation in mesenteric adipose tissue (MAT), thereby mitigating hyperglycemia and insulin resistance [20, 21]. Furthermore, a recent study underscores the role of gut microbiota in metabolic dysfunctionassociated fatty liver disease (MAFLD). Abenavoli et al. [22] reviewed therapeutic approaches of Mediterranean diet, probiotics, and fecal microbiota transplantation (FMT), highlighting their potential benefits while also indicating limitations in clinical studies, due to small sample sizes and short follow-up durations. However, challenges such as variability in microbiome responses, the long-term stability of microbial interventions, and the need for robust clinical validation must be overcome to maximize the therapeutic efficacy of gut microbiome in combating metabolic disorders.

This systematic review critically examines the role of gut microbiota in mitigating common metabolic disorders. By synthesizing findings from preclinical and clinical studies, we aim to delineate the therapeutic potential of targeting gut microbiota and identify key microbial signatures associated with metabolic health. Addressing the interaction between gut microbiota and the host's metabolic processes may pave the way for innovative, microbiome-based strategies to combat metabolic disorders and improve global health outcomes.

2. Methodology

2.1. Search Strategy. This systematic review was conducted following the guidelines set by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020. A comprehensive literature search was carried out across Google Scholar, Web of Science, Scopus, and PubMed databases to locate relevant studies examining the relationship between gut microbiota and metabolic disorders, with a specific focus on the therapeutic role of Lactobacillus spp.

Search terms included "gut microbiota," "metabolic disorders," "obesity," "T2DM," "CVD," "NAFLD," "IBD," "probiotics," "prebiotics," "dietary modifications," "Lactobacillus spp.," "SCFAs," "biomarkers" "therapeutic applications," "mechanism," and "clinical evidence." Boolean operators (AND and OR) were used to expand the search strategy. Our search did not impose any language restrictions. The studies were thoroughly evaluated, and key information was extracted, culminating in an overall conclusion. The literature search covered relevant studies published from 2002 to January 2025. All methodologies, including search terms and inclusion criteria, were based on PRISMA guidelines. Additional materials such as search strategy, PRISMA checklist, and extracted data tables are available upon reasonable request to ensure full transparency and reproducibility.

2.2. Selection of Studies With Inclusion and Exclusion Criteria. Eligible studies for inclusion were as follows: (i) studies that were conducted in vitro, ex vivo, or in vivo, or using mammalian or human models; (ii) studies involving gut microbiome in relation to one or more of the following—obesity, T2DM, CVD, NAFLD, and IBD; (iii) studies that reported therapeutic interventions or applications (e.g., probiotics, prebiotics, dietary modifications); and (iv) studies that were primary research articles published in English.

Studies of the following nature were excluded: (i) duplicated data, titles, and/or abstracts that did not fulfill the inclusion criteria; (ii) articles published in languages other than English; (iii) case reports, letters, editorials, and commentaries; (iv) studies lacking full-text access; (v) studies that did not report the therapeutic activity against common metabolic disorders; and (vi) other metabolic disorders rather than obesity, T2DM, CVD, NAFLD, and IBD.

The selection of these five metabolic disorders was based on their high prevalence, strong association with gut microbial dysbiosis, and clinical significance. The exclusive focus on *Lactobacillus* spp. was justified by its growing prominence in the recent literature as a key probiotic species with demonstrated efficacy in modulating host metabolic functions.

2.3. Database Reports. A total of 10,573 scientific articles were retrieved from various databases as of January, 2025. Subsequently, 97.85% of the articles were excluded due to duplication, irrelevance, insufficient data, or automation systems classifying them as unsuitable. Following the inclusion criteria, 227 articles on microbiome and metabolic disorders were identified with desired information. Letter 68 article selected for further study. Final 36 article included for qualitative synthesis. A PRISMA flow diagram illustrating the data collection process for microbiome and metabolic disorders is presented in Figure 1. A purposive sampling strategy was adopted to ensure the selection of studies with high methodological quality and clinical relevance. Reference management was conducted using EndNote, and data were extracted independently by two authors. Disagreements were resolved through discussion to reduce selection bias and maintain consistency.

2.4. Risk of Bias Assessment. To assess the reliability of results from selected studies, we used Cochrane risk-of-bias assessment criteria, specifically the RoB 2 tool version, dated August 22, 2019. This tool evaluates risk across several domains: randomization process, deviations from intended interventions, missing outcome data, outcome measurement, selection of reported results, and other potential sources of bias. Each category comprised questions across these domains, with responses categorized as "YES" (indicating low risk of bias, color-coded green), "NO" (indicating high risk of bias, color-coded red), or "Some Concern" (indicating uncertain risk of bias, color-coded yellow) (Figure 2). In addition to the summary figure (Figure 2), per-study risk-of-bias tables were prepared for each included study to provide a detailed evaluation (see Supporting Table S3). No formal assessment of reporting bias or certainty of evidence (GRADE) was performed, as the review aimed to qualitatively synthesize findings without statistical pooling.

2.5. Data Items. We sought data on the following primary outcomes: (i) metabolic outcomes (body weight, BMI, lipid profile, fasting glucose, HbA1c), (ii) inflammatory markers (CRP, IL-6, TNF-α), (iii) gut microbiota composition (relative abundance of key taxa, diversity indices), and (iv) SCFA concentrations. Secondary variables included study population characteristics (species, age, sex, health status), intervention type (probiotic, prebiotic, dietary modification), dose and duration, comparator, study design, funding source, and country of study. Missing or unclear data were recorded as "NR" (not reported) (see Supporting Table S1).

2.6. Synthesis Methods. As no meta-analysis was conducted, no statistical effect measures (risk ratios, mean differences) were calculated; the results are presented narratively. Studies were grouped by the type of metabolic disorder (obesity, T2DM, NAFLD, CVD, IBD) and intervention category (probiotic, prebiotic, dietary modification). Missing or unclear data were noted as "NR," and no imputation was

performed. No formal heterogeneity or sensitivity analyses were undertaken due to the qualitative nature of the synthesis.

2.7. Ethical Statement. This systematic review did not involve direct experimentation on human or animal subjects and therefore did not require ethical approval. However, all original research articles included in this review reported approval from their respective institutional ethics committees. No identifiable patient data were used, and the review strictly adhered to PRISMA guidelines for transparency and reproducibility.

2.8. Review Registration. This review was not registered in PROSPERO or any other database, and no formal protocol was prepared prior to commencement. This was due to time constraints and the narrative synthesis approach adopted.

3. Results and Discussion

3.1. Common Metabolic Disorders. Metabolic disorders encompass a broad spectrum of conditions that disrupt the body's normal metabolic processes, which are essential for the conversion of nutrients into energy and synthesis of vital molecules. These disorders can affect the metabolism of carbohydrates, fats, proteins, and other crucial substances, leading to either the overproduction or underproduction of metabolic products. Such imbalances manifest in a range of symptoms and contribute to various health complications. Recent studies highlight the significant role of gut microbiome in influencing metabolic health. Dysbiosis, or imbalance in gut microbial composition, has been linked to disturbances in metabolic pathways, including insulin resistance, altered lipid metabolism, and chronic inflammation. A comprehensive overview of these disorders, including their pathophysiology, associated microbiome alterations, and clinical relevance, is summarized in Table 1.

3.1.1. Obesity. Obesity is a chronic, multifactorial, and relapsing noncommunicable disease characterized by an excessive or abnormal accumulation of body fat, which significantly increases health risks [37]. It is widely recognized as a major contributing factor to the development of both noncommunicable and communicable diseases [38-40]. Since 1999, the prevalence of obesity among U.S. adults, defined as a body mass index (BMI) of 30 or greater, has risen from 30% to 42%, with projections indicating that nearly 50% of adults will be affected by 2030 [41]. Obesity affects 19% of women and 14% of men globally [42]. It primarily results from a chronic energy imbalance, where excessive caloric intake from food and beverages and not enough energy expenditure through physical activity; however, additional factors such as microbiome imbalances, genetic predisposition, health disparities, environmental influences, and commercial determinants also play a role in the development of overweight and obesity [43, 44]. Obesity can influence the gut microbiota both structurally and

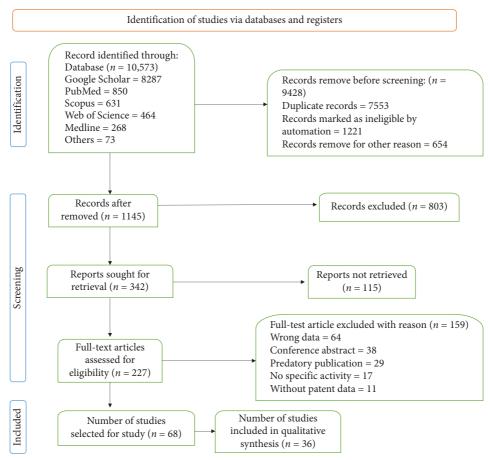


FIGURE 1: PRISMA flow diagram based on data extraction.

FIGURE 2: Risk-of-bias assessment. According to the Cochrane risk-of-bias tool for randomized trials (RoB 2) interventions, +: low risk of bias; -: high risk of bias; !: some concern risk of bias.

functionally [24], while the gut microbiota, in turn, plays a role in regulating nutritional status [45–47]. An increased abundance and diversity of specific bacterial populations may contribute to enhanced energy storage and metabolic processes, ultimately leading to obesity [24, 48]. Obesity significantly increases the risk of various health

complications (Figure 3), with evidence indicating that they are major contributors to noncommunicable diseases [49, 50]. For instance, obesity is associated with increased risks of cardiovascular issues, including obstructive sleep apnea, T2D, irregular menstruation in adolescent girls, and increased cholesterol levels [51, 52].

TABLE 1: Comparative summary of microbiome changes in various metabolic disorders.

	•)		
Metabolic disorder	Key microbiome alterations	Dominant taxa	Clinical insight	References
Obesity	Altered Firmicutes/Bacteroidetes ratio	†Firmicutes, ↓Bacteroidetes	Enhanced energy harvest→ weight gain	[23, 24]
Type 2 diabetes	Dysbiosis, decreased SCFA-producing bacteria	↑Bacteroidetes, ↑Firmicute, ↓Clostridium	Link to insulin resistance and bile acid dysregulation	[25–29]
Nonalcoholic fatty liver disease	Dysbiosis, overgrowth of ethanol-producing bacteria	↑Bacteroides, ↑Ruminococcus, ↓Prevotella	Associated with hepatic steatosis and inflammation	[30, 31]
Cardiovascular disease	Dysbiosis with increased TMAO producers	↑Prevotella, ↑Bacteroides	TMAO promotes atherosclerosis predictive of cardiac risk	[32, 33]
Inflammatory bowel disease	Reduced diversity, increased pathogenic bacteria, decreased beneficial bacteria	↓Bacteroidetes, ↑Proteobacteria, ↑Firmicute	Bacteroidetes, \uparrow Proteobacteria, Imbalanced gut microbiota \longrightarrow chronic inflammation, \uparrow Firmicute impact treatment response	[34–36]

Note: While consistent patterns were observed across disorders (e.g., an increase in Firmicutes in obesity and diabetes), some findings such as the rise in Bacteroidetes in both obesity and T2D appear contradictory to earlier studies. These variations may reflect dietary, genetic, or methodological differences across the included studies.

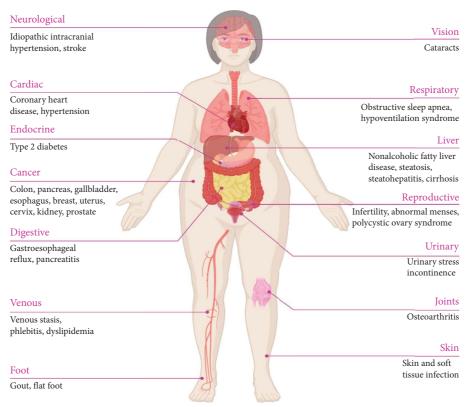


FIGURE 3: Schematic representation of obesity-associated complications in the human body. Obesity contributes to a wide spectrum of systemic disorders, including cardiovascular diseases (hypertension, atherosclerosis, and heart failure), metabolic dysfunctions (T2D and NAFLD), respiratory impairments (obstructive sleep apnea), and musculoskeletal conditions (osteoarthritis). Moreover, obesity is linked to an increased risk of certain cancers, neurodegenerative disorders, and immune dysfunction. Several of these complications, particularly cardiovascular and metabolic disorders, are life-threatening. Created in https://BioRender.com.

3.1.2. T2D. The global burden of T2DM among older adults is increasing rapidly, largely due to longer life expectancy and prolonged exposure to cardiometabolic risk factors including excess body fat, muscle loss, and decreased physical activity [53-57]. In the time span from 2017 and 2045, the number of adults aged 60 years and older with diabetes approximately rises from 122 million to 253 million, paralleling the growth of global population of adults aged 65-99 years from 652 million to 1.42 billion [58]. T2DM is thought to result from the interplay of several risk factors, including elevated serum uric acid levels, inadequate sleep, smoking, depression, cardiovascular conditions, lipid imbalances, high blood pressure, aging, ethnic background, family history of diabetes, lack of physical activity, and obesity [59, 60]. The pathophysiology of T2DM involves insulin resistance and initial hyperinsulinemia, followed by a progressive decline in pancreatic β -cell function (Figure 4) [61, 62]. Furthermore, emerging studies have highlighted the relationship between gut microbiota and T2DM [63-66]; for example, one study identified 43 bacterial taxa showed significant differences between obese individuals with T2DM and healthy controls, indicating that Acidaminococcales, Bacteroides plebeius, and Phascolarctobacterium sp. CAG207 could serve as potential biomarkers for T2DM [67].

3.1.3. NAFLD. Over the past four decades, NAFLD has emerged as the most prevalent chronic liver disorder, affecting approximately 25% of global adult population, and has a bidirectional relationship with metabolic syndrome, contributing to its progression [67-69]. Due to its widespread prevalence, NAFLD has become the fastest-growing contributor to liver-related mortality and a major factor in end-stage liver disease, primary liver cancer, and liver transplantation, placing a considerable economic burden on healthcare systems [70, 71]. Rising incidence of NAFLD is closely linked to unhealthy lifestyle choices, particularly poor dietary habits, which also contribute to the increasing prevalence of cardiometabolic disorders and certain cancers [72-74]. Emerging evidence from animal models with altered gut microbiota and observational studies in NAFLD patients suggests a pivotal role of gut dysbiosis in disease pathogenesis [75]. Therefore, intestinal microbiota influences NAFLD development through multiple mechanisms, including modulation the of energy homeostasis, lipid and choline metabolism, ethanol production, immune regulation, and inflammatory processes [76]. Furthermore, microbiota-derived metabolites may directly impact hepatic function, thereby modulating NAFLD susceptibility [77, 78]. NAFLD is histologically classified into two forms: NAFL and nonalcoholic steatohepatitis (NASH) [79]. NAFL is

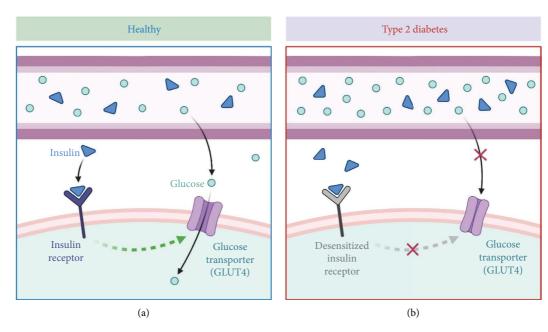


FIGURE 4: Comparison of glucose uptake in healthy individuals versus those with Type II diabetes. (a) A healthy state where insulin binds to its receptor, triggering the activation of glucose transporter (GLUT4) to facilitate glucose uptake into the cell. (b) Type II diabetes, where insulin receptors become desensitized, preventing GLUT4 activation and leading to impaired glucose uptake, resulting in elevated blood glucose levels. Created in https://BioRender.com.

characterized by fat accumulation in more than 5% of hepatocytes, affecting 15%-30% of individuals, but remains reversible with lifestyle modifications [80-82]. Without proper management, approximately 20% of NAFL cases advance to NASH, which involves steatosis, inflammation, hepatocyte ballooning, and fibrosis, but in its early stages, NASH is still reversible [83-85]. However, progression to cirrhosis occurs in 15%-25% of NASH patients, leading to irreversible liver scarring and impaired function [86, 87]. Additionally, hepatocellular carcinoma (HCC) develops in around 4%-27% of NASH cases, often resulting in liver failure, where transplantation becomes necessary [88]. Dietary habits, particularly high consumption of processed foods and sugars, contribute to disease progression, while a balanced diet and lifestyle modifications can help reverse NAFLD in its early stages (Figure 5) [89]. Notably, the modulation of the gut microbiome through probiotics, prebiotics, or symbiotic has demonstrated potential in improving liver phenotype in NAFLD patients.

3.1.4. CVD. CVD remains the leading cause of morbidity and mortality worldwide, with elevated cholesterol levels recognized as a key risk factor, biomarker, and predictor due to their role in obstructing blood flow and oxygen transport [90–92]. Hypercholesterolemia is strongly associated with an increased risk of CVD, including atherosclerosis, heart failure, and hypertension, and also contributes to metabolic disorders such as diabetes, liver disease, and Alzheimer's disease, often leading to organ dysfunction (Figure 6) [93]. Emerging evidence highlights a strong connection between gut microbiota composition and cholesterol metabolism. For instance, studies using the hypercholesterolemic mice

model have shown that the antibiotic-induced depletion of gut microbiota enhances cholesterol absorption and synthesis in hepatic cells, while microbiota transplantation from hypercholesterolemic human donors induces a similar dyslipidemic phenotype in recipient mice, reinforcing the causal link between microbiota composition and lipid homeostasis [92, 94, 95]. Mechanistically, specific microbial taxa such as Lactobacillus spp., Akkermansia muciniphila, and Bacteroides spp. influence cholesterol metabolism through bile salt hydrolase (BSH) activity, the modulation of SCFA profiles, and the activation of host signaling pathways including FXR and TGR5 [92, 96, 97]. These findings suggest that gut microbiota modulation may serve as a promising therapeutic approach for cholesterol regulation and CVD prevention. However, further research is needed to fully elucidate the pathophysiology of CVD and develop targeted therapeutic strategies for its effective management [98].

3.1.5. IBD. IBD is a chronic, relapsing disorder characterized by persistent gastrointestinal inflammation and significant morbidity [99]. Its global incidence and prevalence have increased markedly in recent decades, posing a significant public health concerns, particularly in industrialized nations [100–102]. Pathogenesis of IBD is attributed to a complex interconnection between gut microbiota and host immune system, influenced by genetic predisposition and environmental factors [103–106]. Dysregulation of this interaction leads to aberrant immune activation, contributing to clinical and endoscopic features of disease [99, 107]. Environmental and lifestyle factors, including excessive antibiotic use, hygiene practices, and a Western diet—characterized by low fiber intake and high

8 Scientifica

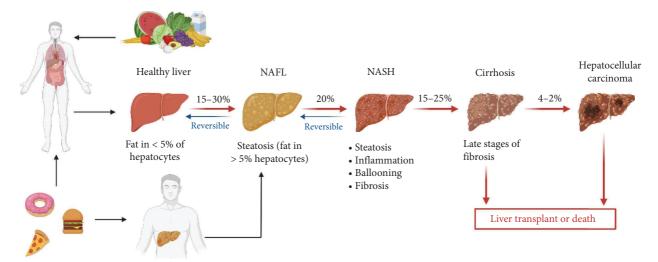


FIGURE 5: The progression of NAFLD from a healthy liver to hepatocellular carcinoma. The initial stages, NAFL (steatosis) and NASH (inflammation and fibrosis), are reversible with proper lifestyle changes. Cirrhosis and hepatocellular carcinoma are advanced stages requiring medical intervention, often leading to liver transplant or death. Poor dietary habits promote disease progression, whereas a healthy diet supports liver recovery. Created in https://BioRender.com.

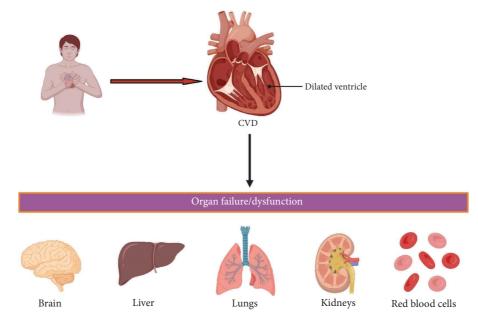
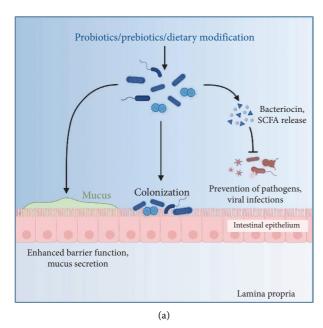



FIGURE 6: Cardiovascular disease (CVD) and its impact on multiple organ systems. The image illustrates a heart with a dilated ventricle, a hallmark of heart failure, leading to organ failure and dysfunction. The affected organs include brain, liver, lungs, kidneys, and red blood cells, highlighting the systemic consequences of CVD. Created in https://BioRender.com.

consumption of fat and sugar—are linked to gut microbiota dysbiosis, which may induce chronic inflammation and metabolic dysfunction [108, 109]. Disruption of the microbiota can result in the loss of essential microbial functions, leading to impaired nutrient metabolism, compromised intestinal barrier integrity, and the dysregulation of both types of innate and adaptive immune activities, ultimately affecting immune system regulation [110, 111]. SCFAs, including butyrate, acetate, and propionate, are playing a crucial role in maintaining intestinal homeostasis by promoting the growth of beneficial bacteria, modulating immune responses, and reinforcing gut barrier integrity

(Figure 7). Additionally, SCFAs stimulate regulatory T cells, help to reduce inflammatory mediators, and enhance the consumption of colonic oxygen by epithelial cells, collectively supporting gut health and immune regulation [112–115]. Collectively, these mechanisms highlight the therapeutic potential of targeting gut microbiota and its metabolites for the prevention and management of IBD.

3.2. Therapeutic Potential of Targeting Gut Microbiome. Gut microbiome is a key regulator of metabolic homeostasis, influencing energy balance, glucose metabolism, and lipid regulation through complex host-microbe interactions

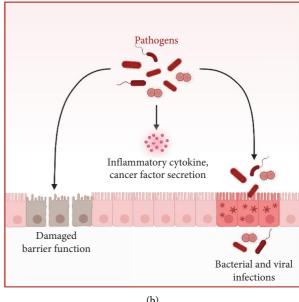


FIGURE 7: Effects of probiotic/prebiotics/dietary modification vs. pathogenic gut microbiota on intestinal barrier function. (a) The beneficial effects of probiotics, prebiotics, and dietary modifications on gut health. It enhances barrier function by promoting mucus secretion, colonizing the intestinal epithelium, and releasing antimicrobial compounds such as bacteriocins and SCFAs, which prevent pathogen colonization and viral infections. (b) The detrimental effects of pathogenic bacteria, which impair gut barrier integrity, leading to increased permeability. Pathogens promote the secretion of inflammatory cytokines and cancer-associated factors, causing barrier dysfunction and facilitating bacterial and viral infections. Created in https://BioRender.com.

[116]. Disruptions in microbial composition and function, termed dysbiosis, were responsible behind the development of common metabolic disorders, including obesity, T2D, and NAFLD [117-119]. Specific bacterial species, known as Faecalibacterium prausnitzii and A. muciniphila, play a protective role and also help to maintain gut barrier integrity and modulating inflammatory pathways [119]. Emerging research suggests that dietary interventions, along with the use of prebiotics and probiotics, can reshape the gut microbiome, enhancing SCFAs' production and reducing systemic inflammation, thereby mitigating metabolic dysfunction [120]. Furthermore, FMT has demonstrated potential in restoring microbial diversity and improving insulin sensitivity in individuals with metabolic syndrome [121]. Future therapeutic approaches should emphasize precision microbiome-based interventions tailored to individual microbial signatures, advancing personalized medicine in the management of metabolic disorders.

3.2.1. Lactobacillus spp. as Probiotics on Metabolic Disorders. In 1989, Fuller first defined probiotics as "live microbial supplements that offer health benefits to the host by enhancing intestinal balance" [122]. Since then, extensive research has highlighted the role of gut microbiota in producing a diverse range of bioactive compounds that influence both local gut physiology and systemic health (summarized in Table 2) [160–162]. Among these, SCFAs, generated through the microbial fermentation of complex carbohydrates and proteins in colon, have been shown to support metabolic health by enhancing cholesterol

utilization for bile acid synthesis, thereby reducing the risk of metabolic disorders [163]. Specific probiotic strains, such as Lactococcus lactis and Bifidobacterium spp., have demonstrated the ability to secrete insulin analogs, exerting beneficial metabolic effects in both human and animal models [164, 165]. Notably, genus Lactobacillus, a key member of Firmicutes phylum, is one of the most extensively studied probiotic groups within the gut microbiome described in Table 2 [166]. These bacteria contribute to metabolic homeostasis by regulating oxidative stress responses and modulating inflammatory pathways [166]. For instance, Lactobacillus acidophilus has shown antidiabetic potential by strengthening epithelial barrier function, reducing systemic inflammation, and influencing gene expression related to glucose and lipid metabolism [167]. Given these findings, probiotics represent a promising avenue for metabolic disease intervention, warranting further investigation into their therapeutic applications.

3.2.2. Prebiotics as a Therapeutic Strategy for Metabolic Disorders. Prebiotics are nondigestible dietary compounds that selectively enhance the growth and metabolic activity of beneficial gut microbiota, thereby exerting significant health benefits [168]. Their role in modulating gut microbiome composition and specific functions has positioned them as promising adjuncts in the management of metabolic disorders, shown in Table 3 [185]. Emerging evidence suggests that prebiotic supplementation can improve metabolic conditions such as obesity and T2DM by promoting a favorable microbial environment that influences host

TABLE 2: Roles of Lactobacillus spp. as a probiotic in mitigating metabolic disorders: mechanisms and evidence.

Species	Functional effects	Targeted disease/ condition	Clinical/preclinical evidence	References
Lactobacillus curvatus HY7601 Lactobacillus plantarum KY1032	↓Insulin, leptin, total cholesterol; ↓TNFα, IL6, IL1β, and MCP1; ↑PGC1α, CPT1, CPT2, ACOX1		Reduce diet-induced obesity	[123]
Lactobacillus casei strain Shirota (LcS)	Leptin and glucose; \uparrow lipoprotein and adiponectin; \downarrow IL-6		Enhances body weight management	[124]
Lactobacillus sakei Probio65 Lactobacillus plantarum Probio-093	Uriglyceride deposition; JPAI-1, leptin, TNF-α, STAMP2, F4/80, resistin, and MCP-1; ↑GLUT4 and adiponectin		Effective in mitigating obesity and improving adipocyte function	[125]
Lactobacillus acidophilus CICC 6075	↑Histidine biosynthesis, ↓NF-кВ pathway		Promising probiotic candidate for obesity prevention	[126]
Lactobacillus plantarum K50 (LPK)	↓Cholesterol, triglyceride, leptin		Reductions in total fat mass or in body weight	[127]
Lactobacillus reuteri J1	↓FXR; ↑GPCRs-5; ↓FXR/FGF15, ↑FXR/SHP; ↓triglyceride accumulation; ↑UCP1		Prevents weight gain, reduces fat mass, relieves dyslipidemia, and improves glucose homeostasis and insulin sensitivity	[128]
Lactobacillus paracasei N1115	Uriglyceride, TC, ↓LDL; ↓fatty acid, ↓IL-1 β, ↓TLR-4		Reduces weight gain and liver fat accumulation	[129]
Lactobacillus paracasei L9	↓Cholesterol, triglyceride, LDL; ↓proinflammatory cytokine, lipid synthesis–related genes		Natural alternative to attenuate obesity	[130]
Lactobacillus fermentum CQPC07	↓TC, LDL-΄C, TG, ↑HDL-ʹC, ↓IL-1β, ↓TNF-α, ↓IL-6, ↓IFN- γ; ↑IL-10; ↓IL-4; ↓ALT, AST, ALP	Obesity	Potential probiotic for prevention and treatment of obesity	[131]
Lactobacillus rhamnosus LRH05 (LRH05)	↓Body weight, WAT; ↑hepatic steatosis and glucose intolerance; regulates the Mogat1, 1gf-1, Mcp-1, and F4/80; ↓macrophage infiltration in WAT		Potential probiotic strain for obesity prevention	[132]
Lactobacillus plantarum strain K21	Leptin, cholesterol, triglyceride, PPAR-y; modulate Lactobacillus spp., Bifidobacterium spp., Clostridium perfrincens		Protects from HFD-induced obesity	[133]
Lactobacillus plantarum KC28	\uparrow PGC1-α, CPT1-α; PPAR-γ; FAS; \uparrow Desulfovibrionaceae, Lactobacillaceae		Protective effects against diet-induced obesity mice	[134]
Lactobacillus rhannosus 4B15	JItgax, Emr1, TNF-α; Ucp-1; JSREBP, chREBP ITGs, ALT: fButyricioccus, Butyricimonas.		Provide symbiotic effects against obesity	[135]
Lactobacillus plantarum FRT10	Intestinimonas, Odoribacter, and Alistipes; Desulfovibrionaceae, Roseburia, and Lachnoclostridium, Lactobacillus, Bifidobacterium, and Akkermansia; DDAD,		Single probiotic for reducing HFD-induced obesity.	[136]
Lactobacillus plantarum 23-1	TLR4/NF-ĸB, ZO-1, occludin, claudin-1, Muc2;		Decreasing obesity and offering a conceptual framework for creating novel functional foods	[137]

6168, 2025, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1155/sci53367875 by Md. Mizanur Rahaman - James Cook University , Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

TABLE 2: Continued.

Species	Functional effects	Targeted disease/ condition	Clinical/preclinical evidence	References
Lactobacillus casei K11	↓Blood glucose and ameliorated insulin resistance; lipid metabolism, oxidative stress; ↑FFAR2, GLP-1, SCFAs		Modified SCFA–FFAR2–GLP-1 pathway to improve T2DM	[138]
Lactobacillus casei CCFM419	↓Glucose, glucose intolerance, insulin resistance; TNF-α, IL-6; ↑GLP-1; Bacteroidetes, ↓Firmicutes, ↑SCFA- producing bacteria		Altered gut flora-SCFA-inflammation pathway to improve T2D	[139]
Lactobacillus plantarum HAC01	JBlood glucose and HbA1c; fglucose tolerance and HOMA-IR; finsulin-positive β-cell and JmRNA expression; fphosphorylation of AMPK and Akt; fakkermansiaceae and fSCFAs		Alleviate hyperglycemia and T2DM by regulating glucose metabolism	[140]
Lactobacillus plantarum- pMG36e-GLP-1	↑β-cell proliferation, insulin secretion; ↓inflammatory reaction; regulated gut microbiota	T2D	Giving a potential approach to T2DM treatment	[141]
Lactobacillus G15 and Q14	†SCFA-producing bacteria, acetate, butyrate, GPR43; _LPS, inflammatory factors		Antidiabetic efficacy through gut microbiome interactions	[142]
Lactobacillus gasseri CKCC1913	fGlucose tolerance, HDL; Jblood glucose, TNF-α, IL-6; ↑Parabacteroides merdae		Potential probiotics effects to treat diabetes	[143]
Lactobacillus rhamnosus ZJUIDS07	↑SCFAs; ↓Staphylococcus, Corynebacterium, Odoribacte; ↑Muribaculaceae norank, Dubosiella, Clostridium sensu stricto 1, Lactobacillus, Faecalibaculum		Potential probiotic approach for future gut microbiome-based T2D treatment	[144]
Lactobacillus reuteri TISTR 2736	\downarrow IRS1, IRS1 Ser307 ; \uparrow PI3K, AKT Ser473 ; \downarrow NF-kB, IL-6, TNF- α		Reduced hyperglycemia and enhanced metabolism of carbohydrates	[144]
Lactobacillus sakei MJM60958	Liver weight, ALT, AST, TG, BUN, UA; steatosis, leptin, Lactobacillus sakei MJM60958 IL; ↑adiponectin; JFAS, ACC, SREBP-1; ↑PPARα, CPT1A; Verrucomicrobia, Firmicutes		Shows potential as a probiotic for preventing and treating NAFLD	[145]
Lactobacillus plantarum NCU116	↓Fat accumulation; endotoxin, proinflammatory cytokines; ↓lipogenesis; ↑lipolysis, FA	NAFLD	Helps to restore liver function	[146]
Lactobacillus salivarius SNK-6	↓Liver fat, TG, ALT, AST; ↑MBOAT2, SCFAs		Liver damage alleviated via miR-130a-5p/MBOAT2 signaling pathway	[147]
Lactobacillus plantarum DMDL 9010	↓Cholesterol, LDL-C, atherosclerosis index; ↑bile acids		Potential probiotic for hypercholesterolemic prevention and therapy	[148]
Lactobacillus plantarum GLP3 Lactobacillus rhamnosus	\downarrow TMAO; \uparrow Lactobacillus spp.		Helps to reduce cardiovascular disease	[149]
SKG34 Lactobacillus rhamnosus FBB42	↓Cholesterol, TG, HDL-c; HDL-c; ↑lactic acid bacteria	CVD	Helps to improve blood lipid profile	[150]
Lactobacillus reuteri GMNL- 263	UNF-ĸB, COX-2, CTGF, SP1		Given protective effects against cardiac injury	[151]
Lactobacillus fermentum MJM60397	↓TC, LDL; ↑Bile acids, LDLR gene		Contribute to reduce cholesterol levels in serum	[152]

Table 2: Continued.

Species	Functional effects	Targeted disease/ condition	Clinical/preclinical evidence	References
Lactobacillus plantarum HNU082	↑SCFAs; ↓ICAM-1, VCAM, NF-kB; ↑goblet cells, mucin 2, ZO-1, IL-10, TGF-β1, TGF-β2		Potential gut microbiota regulator to treat UC	[153]
Lactobacillus johnsonii GLJ001	↓mRNA expression, TNF-α, II-1β, ↓M1 macrophage; ↑SCFAs-producing bacteria		Recognized as a targeted approach to prevent IBD	[154]
Lactobacillus gasseri G098	\downarrow IL-6, IL-1β, TNF-α; \uparrow IL-13; Firmicutes, Lachnoclostridium; \downarrow Bacteroidetes		Mitigate colitis through modulating host immunity and gut microbiome	[155]
Lactobacillus rhamnosus ZFM231	†Acetic acid, propionic acid, butyric acid, anti- inflammatory factor, TGF-α; ↓TNF -α	IBD	Significantly alleviate symptoms of DSS-induced IBD	[156]
Lactobacillus paracasei MSMC39-1	$\downarrow \text{TNF-}\alpha; \uparrow \text{Lactobacillus}$		Exhibit an anti-inflammatory impact in the colon and altered the gastrointestinal flora	[157]
Lactobacillus gasseri ATCC33323	↓IL-1β, IL-6, TNFα; ↑E-cadherin, MUC2, ZO-1, Claudin 1, β-catenin, p120-catenin, occluding		Provide alternate treatment for IBD, notably food supplementation	[158]
Lactobacillus plantarum SS18- 50	UTNF-α, COX-2, IL-10, IL-6, MPO, MDA, ↑SOD, somatostatin		Help to inhibit the development of colitis	[159]

Note: Several Lactobacillus strains demonstrated consistent anti-obesity effects across preclinical studies, such as reductions in leptin, triglycerides, and proinflammatory cytokines. Notably, L. reuteri J1 showed a multipathway mechanism involving FXR and UCP1 modulation. However, some strains such as L. plantarum KY1032 were listed without mechanistic data, which limits comparative interpretation.

6168, 2025, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1155/sci5/3367875 by Md. Mizanur Rahaman - James Cook University , Wiley Online Library on [05/11/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-ad-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

TABLE 3: Prebiotics and their role in managing metabolic disorders through gut microbiome interaction.

Prebiotic	Intervention/study design	Dose/ concentration	Study duration	Mechanism of action	Clinical evidence	Target disease	References
Inulin	Double-blind, randomized, placebo-controlled crossover	0.5 g was U- ¹³ C-inulin/24 g of oral inulin	5 days	↑Fat oxidation, plasma glucose; ↓insulin, ↑SCFA	May improve human metabolism	Obesity	[169]
Fructo-oligosaccharides (FOS)	In vitro culturing	I	24 h	†SCFA; Jalpha diversity and shifted communities	Promote gut health	Obesity, IBD	[170]
Galacto-oligosaccharides (GOS)	In vivo	I	3 weeks		Improve lipid and glucose metabolism	Obesity, diabetes	[171]
Arabinoxylans	I	(10% w/w)	4 weeks	↑Bacteroides-Prevotella spp., Roseburia spp., cecal bifidobacteria	Lipid-lowering effects and anti-obesity effects	Obesity	[172]
Yeast β-glucan	In vivo	100 μL (or 100 μg) o	30 days	↑IL-10, IL-17, and IL-21; ↓TNF-α, suppressed insulitis	Enhance gut microbiota and immune functions	TID	[173]
Pectin	In vitro	I	I	↑Eubacterium eligens	nepalances interobiota toward an anti-inflammatory profile	IBD	[174]
Xylo-oligosaccharides (XOS)	Randomized, placebo-controlled crossover	2 g/day	8 week	↓Howardella, Enterorhabdus, Slackia; ↑Blautia hydrogenotrophica; ↓OGTT 2-h insulin levels	Reversing gut microbiota alterations	T2DM	[174]
Polydextrose	In vivo	Western diet (WD) ±75 mg twice daily	14 days	↓triglyceride, cholesterol, Dgatl, Cd36, Fiaf; ↑Fxr, Allobaculum, Bifidobacterium, Coriobacteriaceae taxa	Systemic metabolic improvements via gut microbiota regulation	Obesity	[175]
Isomalto-oligosaccharides (IMOs) with cranberry extract (CRX)	In vivo	200 mg/kg,	12 weeks	fButyrate, beneficial bacterial abundance; prevent tissue inflammation, glucose intolerance	Normalization of metabolic alterations	Obesity	[176]
Manno-oligosaccharides	In vivo	300–1200 mg per kg b.w. per d	8 weeks	↓Glucose, endotoxemia; ↑Bifidobacteria; ↓Shigella, regulated AKT/IRS/AMPK signaling pathway	Modulate metabolic inflammation	Diabetes	[177]
Chicory root	In vivo and in vitro		5-week	Modified abundance of Alloprevotella, Blautia, Alistipes, Oscillibacter, †CCK and GLP-1	Appetite regulation	Obesity	[178]
Raffinose	In vivo study methos	100, 200, or 400 mg/kg	21 days	β, and NF-κΒ	Protective effect in colitis by modulating gut microbiota	IBD	[179]

TABLE 3: Continued.

Prebiotic	Intervention/study design	Dose/ concentration	Study duration	Mechanism of action	Clinical evidence	Target disease References	References
Fucoidan	In vivo study methos	200 mg/kg	Sixteenth week	↑Akkermansia muciniphila, Alloprevotella, Blautia, Bacteroides	Reduces MetS via gut microbiota modulation.	Inflammation, obesity and diabetes	[180]
Alginate oligosaccharides	In vivo study methos	5g AO per 100 g mice	10 weeks	JTG, LDL-C, lipogenesis genes, glucose; ſserum insulin; ⟨IL1β, CD11c; ſAkkermansia muciniphila, Lactobacillus reuteri, Lactobacillus gasseri; ſacetic acid, propionic acid, butyric acid, endotoxin	Enhances lipid metabolism and reduces inflammation	Obesity	[181]
Dextrins	In vitro method	I	24 h	↑Actinobacteria, Bacteroidetes; ↓Firmicutes	Supports weight management by modulating gut microbiome	Obesity	[182]
Chitosan oligosaccharides	In vivo study methos	I	56 days	†Clostridium paraputrificum, Clostridium ramosum; ↓Clostridium cocleatum; ↓liver fat; normalize glucose and insulin	Modulating intestinal microbiota	Obesity	[183]
Konjac glucomannan	In vivo study methos	80 mg/kg b.w	28 days	↓TC, TG, VLDL, LDL; ↑insulin levels, regulate PPAR-γ, <i>p</i> -SREBP-1C, produce SCFAs	Inhibiting lipid absorption and regulates microbiome	T2DM	[184]

Note: Most prebiotics improved metabolic health by enriching beneficial microbes (e.g., Biftdobacterium and Akkermansia), increasing SCFA levels, and modulating inflammation and metabolism. Some unexpected reductions in microbial diversity suggest that responses may vary by host. Standardized clinical trials are needed to confirm long-term benefits.

metabolism [186]. Beyond metabolic regulation, prebiotics contribute to immune modulation by enhancing immuneregulatory interleukins and intestinal immunoglobulins while concurrently reducing proinflammatory cytokines [187, 188]. Additionally, they stimulate production of key SCFAs, including acetate, propionate, and butyrate, which play a critical role in maintaining gut barrier integrity and systemic metabolic balance [189]. Prebiotics have established applications in pharmaceuticals and as natural sweeteners for individuals with diabetes due to their capacity to regulate glucose metabolism [190]. Furthermore, accumulating evidence highlights their potential in CVD prevention by lowering total serum cholesterol, reducing lowdensity lipoprotein (LDL) cholesterol levels, and mitigating systemic inflammation [191]. Recent preclinical findings extend this evidence. Zhang et al. [192] demonstrated that arabinoxylan supplementation alleviates diet-induced gut barrier dysfunction by restoring tight junction proteins (Tjp1-3, Ocln), reducing PERK pathway activation, and lowering trimethylamine (TMA) accumulation. Notably, coadministration of glycolysis inhibitors, particularly pyruvate kinase inhibitors, enhanced these protective effects, suggesting synergistic strategies for microbiota-targeted interventions. Given their multifaceted physiological benefits, further research is warranted to explore the clinical efficacy of prebiotics in disease prevention and therapeutic interventions.

3.2.3. Dietary Modifications on Metabolic Disorders. Dietary modifications (summarized in Table 4) play a pivotal role in managing metabolic disorders, including metabolic syndrome, which encompasses conditions such as abdominal obesity, dyslipidemia, hypertension, and insulin resistance [197]. A diet rich in whole grains, legumes, fruits, and vegetables while minimizing the intake of refined sugars and saturated fats has been associated with significant improvements in metabolic health [198]. Notably, Mediterranean diet, characterized by an emphasis on plant-based foods, healthy fats, and lean proteins, has been widely recognized for its efficacy in regulating blood glucose levels and mitigating risk factors associated with metabolic syndrome [199]. Additionally, time-restricted eating, a type of intermittent fasting, has shown promise in enhancing insulin sensitivity and facilitating weight management [200]. When complemented with regular physical activity, these dietary interventions provide a comprehensive and sustainable approach to managing metabolic disorders and promoting overall health.

3.2.4. Critical Evaluation of Mixed and Neutral Findings. Numerous studies highlight the beneficial effects of probiotics, prebiotics, dietary interventions, and FMT on metabolic disorders [201, 202], but all outcomes are not consistently positive. Some clinical trials, particularly in humans, have shown neutral or limited effects, likely due to variability in individual microbiome composition, differences in intervention dosage, and study design [203–205]. For instance, some *Lactobacillus* and *Bifidobacterium* strains

show inconsistent improvements in insulin sensitivity or lipid profiles, while prebiotic supplementation sometimes fails to produce significant metabolic benefits despite promising animal data [203, 204, 206]. FMT outcomes have been variable across studies, with modest improvements in glycemic and lipid parameters but limited effects on weight reduction, and the long-term sustainability of these changes remains uncertain [207].

These mixed results underscore the complexity of host-microbiome interactions and the need for rigorous, well-powered studies that account for individual microbial signatures and intervention parameters. Considering both positive and neutral outcomes provides a balanced perspective, strengthens scientific rigor, and better understands to develop future microbiome-targeted therapeutic strategies.

3.3. Biomarkers for Disease Prediction and Intervention. Biomarkers have gained significant attention in predicting metabolic disorders, allowing early diagnosis and enabling targeted interventions, summarized in Table 5. These biomarkers can be molecular indicators, such as lipids, peptides, and specific genes, that reflect metabolic disturbances [219, 220]. Studies have shown that inflammatory biomarkers, such as C-reactive protein (CRP) and interleukins, play a crucial role in assessing the risk of disorders like diabetes and CVDs [221, 222]. Moreover, adipokines, such as leptin and adiponectin, are closely associated with insulin resistance and metabolic syndrome [223, 224]. Emerging research emphasizes the role of gut microbiota-derived metabolites as potential biomarkers, linking gut microbiome's impact on metabolic regulation [225]. Advances in omics technologies, including genomics and proteomics, have further enhanced the identification of novel biomarkers for more precise intervention strategies [226, 227]. By integrating these biomarkers into clinical practice, early diagnosis and personalized therapies can be effectively implemented for managing metabolic disorders.

3.4. Short-Chain Fatty Acids and Metabolic Disorder Intervention. Short-chain fatty acids, including acetate, propionate, and butyrate, are key microbial metabolites derived from the fermentation of dietary fiber in gut, exerting profound effects on host metabolism and immune function [228]. SCFAs stimulate enteroendocrine L cells to secrete peptide YY (PYY) and glucagon-like peptide-1 (GLP-1), which engage the vagus nerve to enhance satiety, suppress food intake, and mitigate obesity risk [229, 230]. Additionally, SCFAs activate G-protein-coupled receptors (GPCRs), notably GPR41 and GPR43, thereby improving insulin sensitivity and glucose homeostasis, offering protection against T2D [231, 232]. These metabolites further reinforce intestinal barrier integrity by upregulating tight junction proteins, limiting lipopolysaccharide (LPS) translocation and metabolic endotoxemia, mechanisms implicated in T2D and IBD [15, 233, 234]. SCFAs also function as histone deacetylase (HDAC) inhibitors, promoting anti-inflammatory gene expression and inducing

Table 4: Dietary modifications and their beneficial effects on metabolic disorders.

Dietary modification	Mechanism of action	Targeted disease/ condition	Clinical/preclinical evidence	References
High-fiber diet	†Glucose homeostasis, altered-serum metabolome, psychiatric comorbidities and systemic inflammation; †beneficial bacteria	T2D	Improves metabolism and emotional health via microbiome modulation	[193]
Polyphenol-rich diet	↓Blood glucose; ↑insulin secretion and sensitivity	T2D, CVD	Enhances early insulin response and reduces postprandial glucose	[194]
Mediterranean diet	↓hs-CRP, IL-6, IL-7, IL-18; ↓insulin resistance	Obesity, T2D, CVD	Reduces metabolic syndrome and lower cardiovascular risk	[195]
Ketogenic diet	↓TG and total cholesterol; ↑HDL levels	T2DM, NAFLD, and CVD	Improves lipid profile and reduces insulin resistance	[196]

Note: Dietary interventions such as high-fiber, polyphenol-rich, Mediterranean, and ketogenic diets exhibit positive effects on glucose regulation, lipid metabolism, and systemic inflammation, primarily via gut microbiota modulation and metabolic reprogramming. However, individual variability and potential adverse effects (e.g., sustainability issues with ketogenic diets) warrant further long-term and personalized clinical studies.

TABLE 5: Biomarkers for disease prediction and intervention: expanded insights from gut microbiome and metabolic disorders.

Biomarker	Disease/condition	Biomarker function	Findings/outcomes	References
Short-chain fatty acids	Obesity, Type 2 diabetes	Modulate insulin sensitivity and inflammation via microbial fermentation of fiber	Elevated SCFAs like butyrate are associated with improved insulin sensitivity and weight regulation	[208]
Fecal microbiota profile	Obesity, metabolic syndrome	Predictive biomarker based on gut microbiota composition	Dysbiosis, particularly a reduction in Firmicutes to Bacteroidetes ratio, is associated with obesity and insulin resistance	[209]
Bile acids	Obesity, Type 2 diabetes, nonalcoholic fatty liver disease	Modulation of lipid metabolism, glucose homeostasis, and inflammation	Altered bile acid profiles, particularly an increase in primary bile acids, may indicate poor metabolic health and liver dysfunction	[210]
LPS (lipopolysaccharide)	Obesity	Marker of low-grade systemic inflammation due to gut permeability	Increased plasma LBP levels are associated with BMI, insulin resistance, and systemic inflammation in overweight/obese adolescents	[211]
Trimethylamine-N-oxide (TMAO)	Atherosclerosis, cardiovascular disease	Indicate gut-derived TMAO production via γ-butyrobetaine (γBB)	Higher plasma yBB levels are associated with increased cardiovascular risk	[212]
Gut microbiome	Type 1 diabetes, Crohn's disease	Microbiome shifts like $\ \ \ $ $Akkermansia$ $muciniphila$ as early biomarkers for disease onset	Sub-clinical changes in the gut microbiome, including reduced <i>A. muciniphila</i> and oxidative stress responses, may precede T2D onset	[213]
Aryl hydrocarbon receptor (AHR)	Gestational diabetes mellitus	Biomarker for persistent organic pollutants (POPs) and risk of gestational diabetes mellitus (GDM) via AhRT activity	Higher serum AhRT activity and lower ATP concentrations are associated with increased GDM risk and correlate with glucose levels during GDM screening	[214]
Circulating miRNAs (micro-RNAs)	Metabolic syndrome, obesity	Reflect adipokines related metabolic dysfunction	Altered miRNA expression correlates with BMI, adipokines, and metabolic syndrome-related biomarkers, including insulin and lipids	[215]
Fecal calprotectin	Inflammatory bowel disease	Marker of neutrophilic intestinal inflammation	Calprotectin correlates with histological inflammation, distinguishes IBD from irritable bowel syndrome, and aids in predicting relapses and monitoring treatment responses in IBD	[216]
Ceramides	Cardiovascular disease	Reflect lipid-mediated cardiovascular risk	concutating ceratifies decreased, white ceratifies ratios and cardiac event risk scores increased in older adults after 5 days of bed rest	[217]
Branched-chain amino acids (BCAAs)	Obesity, insulin resistance	Regulate muscle metabolism and contribute to insulin resistance	Regulate muscle metabolism and contribute to Increased BCAA levels are associated with obesity insulin resistance	[218]
I				

Note: The biomarkers highlighted here provide mechanistic insights into gut-microbiota-related metabolic dysfunctions, including obesity, diabetes, and cardiovascular disease. While many show strong correlations (e.g., SCFAs, calprotectin, and LPS), causal relationships remain to be fully established. Interindividual variability, dietary influences, and methodological differences pose challenges, emphasizing the need for standardized longitudinal studies. 6168, 2025, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1155/sci5.3367875 by Md. Mizanur Rahaman - James Cook University , Wiley Online Library of prules of use; OA articles are governed by the applicable Creative Commons License

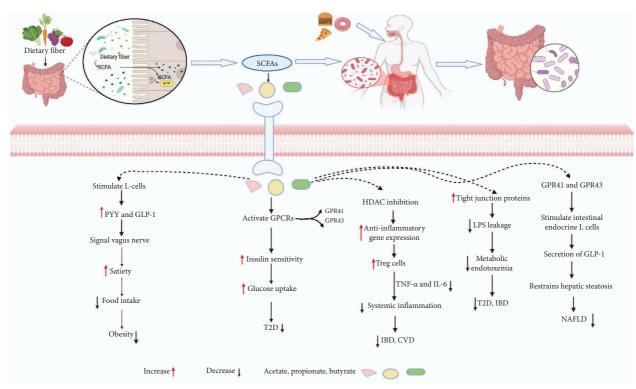


FIGURE 8: SCFA-mediated regulation of host metabolism and inflammation. Microbial fermentation of dietary fiber produces SCFAs (acetate, propionate, butyrate), which enhance insulin sensitivity, satiety, and gut barrier integrity via GPR41/43 activation and HDAC inhibition. These effects reduce food intake, systemic inflammation, and metabolic endotoxemia, mitigating obesity, T2D, NAFLD, IBD, and CVD. Created in https://BioRender.com.

regulatory T (Treg) cell differentiation, leading to reduced systemic inflammation via the suppression of TNF- α and IL-6, thereby conferring protection against IBD and CVD [15, 231, 235]. Furthermore, SCFAs are able to inhibit HDACs that helps to regulate the inflammatory response during NAFLD. SCFAs interact with GPR41 and GPR43 receptors to stimulate the secretion of GLP-1 by intestinal endocrine L cells, helping to reduce hepatic steatosis and activate brown adipose tissue, thereby improving NAFLD [236]. These insights underscore the critical role of SCFAs as metabolic and immunological mediators, linking gut microbiota function to host health and disease susceptibility (Figure 8).

3.5. Limitations. While this review provides comprehensive coverage of current evidence, certain limitations exist. Heterogeneity among study designs, variations in intervention types, and inconsistent outcome measurements limit direct comparisons. The predominance of animal studies reduces the generalizability to human populations, highlighting the need for more standardized and large-scale human clinical trials to validate the findings of microbiome-based interventions. Some studies and clinical trials reported neutral or limited effects, underscoring that positive findings are not always consistently replicated in humans (for a more detailed discussion, see Section 3.2.4). Furthermore, a substantial proportion of the literature focuses on positive outcomes, which may reflect publication bias and

overestimation of therapeutic potential. Additionally, the absence of PROSPERO or equivalent registration, despite adherence to PRISMA guidelines, limits methodological transparency, making it harder to assess potential biases and reproduce the review reliably.

4. Conclusion and Perspectives

Gut microbiota plays an important role in the pathophysiology of common metabolic disorders, including obesity, T2DM, CVD, NAFLD, and IBD. Emerging evidence highlights the therapeutic potential of modulating gut microbiota composition through probiotics, prebiotics, dietary modifications, and microbial metabolites. These strategies have demonstrated promising outcomes in restoring microbial balance, improving metabolic markers, and reducing inflammation associated with metabolic disorders. However, current research is largely limited to preclinical and smallscale human studies, necessitating further large-scale, welldesigned clinical trials to validate efficacy, safety, and longterm impacts. Additionally, personalized microbiome-based interventions hold promise for precision medicine approaches but require deeper mechanistic insights and advancements in microbiome profiling technologies. Future research should focus on elucidating host-microbiota interactions, identifying novel therapeutic targets, and integrating multi-omics approaches to enhance clinical translation. This review not only consolidates recent advancements in microbiota-targeted therapy but also

highlights key research gaps, encouraging the integration of microbiome science into the development of future precision medicine strategies for metabolic disorders. By leveraging gut microbiota modulation as a therapeutic strategy, we may pave the way for innovative, microbiomedriven interventions to combat metabolic disorders effectively.

Data Availability Statement

All data generated or analyzed during this study are included in this published article. Additional materials such as the PRISMA checklist and extracted data tables are available upon reasonable request.

Disclosure

The Australian Government had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflicts of Interest

The authors declare no conflicts of interest.

Author Contributions

Md. Mizanur Rahaman: conceptualization, methodology, software, formal analysis, writing-original draft, preparation, writing-review and editing, and visualization. Phurpa Wangchuk: writing-review and editing and supervision. Subir Sarker: conceptualization, methodology, software, resources, data curation, preparation, writing-review and editing, supervision, project administration, and funding acquisition.

Funding

Subir Sarker is the recipient of an Australian Research Council Discovery Early Career Researcher Award (Grant Number DE200100367) funded by the Australian Government.

Acknowledgments

Sarker is the recipient of an Australian Research Council Discovery Early Career Researcher Award (Grant Number DE200100367) funded by the Australian Government.

Supporting Information

Additional supporting information can be found online in the Supporting Information section.

Supporting Information 1. Supporting File 1: This file contains the completed PRISMA 2020 checklist, which details how each reporting item has been addressed throughout the manuscript. It provides a structured summary of adherence to the PRISMA guidelines for systematic reviews.

Supporting Information 2. Supporting File 2: This table presents the comprehensive dataset extracted from the

included studies, including study characteristics, methodological details, and summary of main findings. It supports the analyses and interpretations discussed in the main text.

References

- [1] V. Rani, G. Deep, R. K. Singh, K. Palle, and U. C. Yadav, "Oxidative Stress and Metabolic Disorders: Pathogenesis and Therapeutic Strategies," *Life Sciences* 148 (2016): 183–193, https://doi.org/10.1016/j.lfs.2016.02.002.
- [2] S. Braun, K. Bitton-Worms, and D. LeRoith, "The Link Between the Metabolic Syndrome and Cancer," *International Journal of Biological Sciences* 7, no. 7 (2011): 1003.
- [3] C. Meisinger, B. Koletzko, and J. Heinrich, "Metabolic Syndrome: Older than Usually Assumed, but Still Too Young to Die," *Clinical Chemistry* 52, no. 5 (2006): 897–898.
- [4] P. K. Mukherjee, R. K. Harwansh, S. Bahadur, J. Chanda, S. Biswas, and S. Banerjee, "Enzyme Inhibition Assay for Metabolic Disorders—Exploring Leads From Medicinal Plants," in *Animal Biotechnology* (Elsevier, 2020), 631–653.
- [5] R. D. Grave, S. Calugi, E. Centis, R. Marzocchi, M. E. Ghoch, and G. Marchesini, "Lifestyle Modification in the Management of the Metabolic Syndrome: Achievements and Challenges," *Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy* (2010): 373–385.
- [6] F. F. Lillich, J. D. Imig, and E. Proschak, "Multi-Target Approaches in Metabolic Syndrome," Frontiers in Pharmacology 11 (2021).
- [7] Y. Ji, H. Lee, S. Kaura, et al., "Effect of Bariatric Surgery on Metabolic Diseases and Underlying Mechanisms," *Bio-molecules* 11, no. 11 (2021): 1582.
- [8] D. Holmberg and J. Lagergren, "What do we Know About Long-Term Effects of Bariatric Surgery?" *British Journal of Surgery* 110, no. 1 (2023): 1–2.
- [9] F. Backhed, R. E. Ley, J. L. Sonnenburg, D. A. Peterson, and J. I. Gordon, "Host-Bacterial Mutualism in the Human Intestine," *Science* 307, no. 5717 (2005): 1915–1920.
- [10] L. V. Hooper, D. R. Littman, and A. J. Macpherson, "Interactions Between the Microbiota and the Immune System," *Science* 336, no. 6086 (2012): 1268–1273.
- [11] S. K. Mazmanian and D. L. Kasper, "The love-hate Relationship Between Bacterial Polysaccharides and the Host Immune System," *Nature Reviews Immunology* 6, no. 11 (2006): 849–858.
- [12] W. Jia, H. Li, L. Zhao, and J. K. Nicholson, "Gut Microbiota: A Potential New Territory for Drug Targeting," *Nature Reviews Drug Discovery* 7, no. 2 (2008): 123–129.
- [13] E. Holmes, J. Kinross, G. R. Gibson, et al., "Therapeutic Modulation of Microbiota-Host Metabolic Interactions," *Science Translational Medicine* 4, no. 137 (2012).
- [14] S. Fukuda and H. Ohno, in Gut Microbiome and Metabolic Diseases (2014).
- [15] D. Zhang, Y.-P. Jian, Y.-N. Zhang, et al., "Short-Chain Fatty Acids in Diseases," *Cell Communication and Signaling* 21, no. 1 (2023): 212.
- [16] P. D. Cani and M. Van Hul, "Novel Opportunities for Next-Generation Probiotics Targeting Metabolic Syndrome," Current Opinion in Biotechnology 32 (2015): 21–27.
- [17] Y. K. Nakamura and S. T. Omaye, "Metabolic Diseases and Pro-and Prebiotics: Mechanistic Insights," *Nutrition and Metabolism* 9 (2012): 1–9.
- [18] M. S. Sekhar and M. Unnikrishnan, "Probiotic Research for Diabetes Prevention," *Nutrition* 31, no. 1 (2015): 248.

[19] C. J. Hulston, A. A. Churnside, and M. C. Venables, "Probiotic Supplementation Prevents High-Fat, Overfeeding-Induced Insulin Resistance in Human Subjects," *British Journal of Nutrition* 113, no. 4 (2015): 596–602.

- [20] J. Amar, C. Chabo, A. Waget, et al., "Intestinal Mucosal Adherence and Translocation of Commensal Bacteria at the Early Onset of Type 2 Diabetes: Molecular Mechanisms and Probiotic Treatment," EMBO Molecular Medicine 3, no. 9 (2011): 559–572.
- [21] E. Schiffrin and S. Blum, "Interactions Between the Microbiota and the Intestinal Mucosa," *European Journal of Clinical Nutrition* 56, no. 3 (2002): S60–S64.
- [22] L. Abenavoli, M. L. Gambardella, G. G. M. Scarlata, I. Lenci, L. Baiocchi, and F. Luzza, "The Many Faces of Metabolic Dysfunction-Associated Fatty Liver Disease Treatment: From the Mediterranean Diet to Fecal Microbiota Transplantation," Medicina 60, no. 4 (2024): 563.
- [23] P. J. Turnbaugh, R. E. Ley, M. A. Mahowald, V. Magrini, E. R. Mardis, and J. I. Gordon, "An obesity-associated Gut Microbiome With Increased Capacity for Energy Harvest," *Nature* 444, no. 7122 (2006): 1027–1031.
- [24] R. E. Ley, P. J. Turnbaugh, S. Klein, and J. I. Gordon, "Human Gut Microbes Associated with Obesity," *Nature* 444, no. 7122 (2006): 1022–1023.
- [25] J. Qin, Y. Li, Z. Cai, et al., "A Metagenome-Wide Association Study of Gut Microbiota in Type 2 Diabetes," *Nature* 490, no. 7418 (2012): 55–60.
- [26] F. H. Karlsson, V. Tremaroli, I. Nookaew, et al., "Gut Metagenome in European Women With Normal, Impaired and Diabetic Glucose Control," *Nature* 498, no. 7452 (2013): 99–103
- [27] F. A. Al-Muhanna, A. K. Dowdell, A. H. Al Eleq, et al., "Gut Microbiota Analyses of Saudi Populations for Type 2 Diabetes-Related Phenotypes Reveals Significant Association," *BMC Microbiology* 22, no. 1 (2022): 301.
- [28] P. D. Cani, J. Amar, M. A. Iglesias, et al., "Metabolic Endotoxemia Initiates Obesity and Insulin Resistance," *Diabetes* 56, no. 7 (2007): 1761–1772.
- [29] M. Gurung, Z. Li, H. You, et al., "Role of Gut Microbiota in Type 2 Diabetes Pathophysiology," *EBioMedicine* 51 (2020).
- [30] K. T. Suk and D. J. Kim, "Gut Microbiota: Novel Therapeutic Target for Nonalcoholic Fatty Liver Disease," *Expert Review* of Gastroenterology & Hepatology 13, no. 3 (2019): 193–204.
- [31] J. Boursier, O. Mueller, M. Barret, et al., "The Severity of Nonalcoholic Fatty Liver Disease is Associated With Gut Dysbiosis and Shift in the Metabolic Function of the Gut Microbiota," *Hepatology* 63, no. 3 (2016): 764–775.
- [32] R. A. Koeth, Z. Wang, B. S. Levison, et al., "Intestinal Microbiota Metabolism of L-carnitine, a Nutrient in Red Meat, Promotes Atherosclerosis," *Nature Medicine* 19, no. 5 (2013): 576–585.
- [33] Z. Wang, E. Klipfell, B. J. Bennett, et al., "Gut Flora Metabolism of Phosphatidylcholine Promotes Cardiovascular Disease," *Nature* 472, no. 7341 (2011): 57–63.
- [34] C. Manichanh, L. Rigottier-Gois, E. Bonnaud, et al., "Reduced Diversity of Faecal Microbiota in Crohn's Disease Revealed by a Metagenomic Approach," *Gut* 55, no. 2 (2006): 205–211.
- [35] H. Sokol, B. Pigneur, L. Watterlot, et al., "Faecalibacterium prausnitzii is an Anti-Inflammatory Commensal Bacterium Identified by Gut Microbiota Analysis of Crohn Disease Patients," *Proceedings of the National Academy of Sciences* 105, no. 43 (2008): 16731–16736.

[36] M. T. Alam, G. C. Amos, A. R. Murphy, S. Murch, E. M. Wellington, and R. P. Arasaradnam, "Microbial Imbalance in Inflammatory Bowel Disease Patients at Different Taxonomic Levels," *Gut Pathogens* 12 (2020): 1–8.

- [37] I. Lingvay, R. V. Cohen, C. W. le Roux, and P. Sumithran, "Obesity in Adults," *The Lancet* 404, no. 10456 (2024): 972–987.
- [38] C. M. Perdomo, M. F. Landecho, V. Valentí, R. Moncada, and G. Frühbeck, "Clinical Perspectives, Eligibility, and Success Criteria for bariatric/metabolic Surgery," *Obesity* and Lipotoxicity (2024): 677–695.
- [39] D. Dicker, S. Bettini, N. Farpour-Lambert, et al., "Obesity and COVID-19: The Two Sides of the Coin," *Obesity Facts* 13, no. 4 (2020): 430–438.
- [40] T. Burki, "European Commission Classifies Obesity as a Chronic Disease," *Lancet Diabetes & Endocrinology* 9, no. 7 (2021): 418.
- [41] Z. J. Ward, S. N. Bleich, A. L. Cradock, et al., "Projected US state-level Prevalence of Adult Obesity and Severe Obesity," New England Journal of Medicine 381, no. 25 (2019): 2440–2450.
- [42] N. H. Phelps, R. K. Singleton, B. Zhou, et al., "Worldwide Trends in Underweight and Obesity from 1990 to 2022: a Pooled Analysis of 3663 population-representative Studies with 222 Million Children, Adolescents, and Adults," *The Lancet* 403, no. 10431 (2024): 1027–1050.
- [43] https://www.aihw.gov.au/reports/overweight-obesity/ove rweight-and-obesity/contents/causes-of-overweight-a nd-obesity.
- [44] C. J. Lee, C. L. Sears, and N. Maruthur, "Gut Microbiome and its Role in Obesity and Insulin Resistance," *Annals of the New York Academy of Sciences* 1461, no. 1 (2020): 37–52.
- [45] A. Aoun, F. Darwish, and N. Hamod, "The Influence of the Gut Microbiome on Obesity in Adults and the Role of Probiotics, Prebiotics, and Synbiotics for Weight Loss," *Preventive nutrition and food science* 25, no. 2 (2020): 113.
- [46] C. Jian, M. P. Silvestre, D. Middleton, et al., "Gut Microbiota Predicts Body Fat Change Following a Low-Energy Diet: A PREVIEW Intervention Study," *Genome Medicine* 14, no. 1 (2022): 54.
- [47] M. Nazmul Huda, J. H. Winnike, J. M. Crowell, A. O'Connor, and B. J. Bennett, "Microbial Modulation of Host Body Composition and Plasma Metabolic Profile," *Scientific Reports* 10, no. 1 (2020): 6545.
- [48] G. Muscogiuri, E. Cantone, S. Cassarano, et al., "Gut Microbiota: A New Path to Treat Obesity," *International Journal of Obesity Supplements* 9, no. 1 (2019): 10–19.
- [49] G. O. Collaborators, "Health Effects of Overweight and Obesity in 195 Countries over 25 Years," New England Journal of Medicine 377, no. 1 (2017): 13–27.
- [50] M. N. Wanjau, L. W. Kivuti-Bitok, L. N. Aminde, and J. L. Veerman, "The Health and Economic Impact and Cost Effectiveness of Interventions for the Prevention and Control of Overweight and Obesity in Kenya: a Stakeholder Engaged Modelling Study," Cost Effectiveness and Resource Allocation 21, no. 1 (2023): 69.
- [51] M. Gurnani, C. Birken, and J. Hamilton, "Childhood Obesity: Causes, Consequences, and Management," *Pediatric Clinics* 62, no. 4 (2015): 821–840.
- [52] X. Jin, T. Qiu, L. Li, et al., "Pathophysiology of Obesity and its Associated Diseases," *Acta Pharmaceutica Sinica B* 13, no. 6 (2023): 2403–2424.
- [53] International Diabetes Federation, *IDF Diabetes Atlas* (2017).

[54] J. A. Salomon, H. Wang, M. K. Freeman, et al., "Healthy Life Expectancy for 187 Countries, 1990–2010: A Systematic Analysis for the Global Burden Disease Study 2010," *The Lancet* 380, no. 9859 (2012): 2144–2162.

- [55] T. Dunning, A. Sinclair, and S. Colagiuri, "New IDF Guideline for Managing Type 2 Diabetes in Older People," *Diabetes Research and Clinical Practice* 103, no. 3 (2014): 538–540.
- [56] S. McLachlan and N. R. F. Collaboration, "Worldwide Trends in Diabetes Since 1980: Pooled Analysis of 751 Population-Based Measurement Studies With Over 4.4 Million Participants," *The Lancet* 387 (2016).
- [57] M. Strati, M. Moustaki, T. Psaltopoulou, A. Vryonidou, and S. A. Paschou, "Early Onset Type 2 Diabetes Mellitus: an Update," *Endocrine* 85, no. 3 (2024): 965–978.
- [58] N. H. Cho, J. E. Shaw, S. Karuranga, et al., "IDF Diabetes Atlas: Global Estimates of Diabetes Prevalence for 2017 and Projections for 2045," *Diabetes Research and Clinical Practice* 138 (2018): 271–281.
- [59] "Complications of Diabetes" (2020).
- [60] M. Randväli, T. Toomsoo, and J. Šteinmiller, "The Main Risk Factors in Type 2 Diabetes for Cognitive Dysfunction, Depression, and Psychosocial Problems: a Systematic Review," *Diabetology* 5, no. 1 (2024): 40–59.
- [61] E. Ahmad, S. Lim, R. Lamptey, D. R. Webb, and M. J. Davies, "Type 2 Diabetes," *The Lancet* 400, no. 10365 (2022): 1803–1820
- [62] X. Lu, Q. Xie, X. Pan, et al., "Type 2 Diabetes Mellitus in Adults: Pathogenesis, Prevention and Therapy," *Signal Transduction and Targeted Therapy* 9, no. 1 (2024): 262.
- [63] D. A. Kashtanova, O. N. Tkacheva, E. N. Doudinskaya, et al., "Gut Microbiota in Patients With Different Metabolic Statuses: Moscow Study," *Microorganisms* 6, no. 4 (2018): 98.
- [64] T. Takagi, Y. Naito, S. Kashiwagi, et al., "Changes in the Gut Microbiota are Associated with Hypertension, Hyperlipidemia, and Type 2 Diabetes Mellitus in Japanese Subjects," *Nutrients* 12, no. 10 (2020): 2996.
- [65] L. Zhang, P. Wang, J. Huang, et al., "Gut Microbiota and Therapy for Obesity and Type 2 Diabetes," Frontiers in Endocrinology 15 (2024).
- [66] D. P. Baars, M. F. Fondevila, A. S. Meijnikman, and M. Nieuwdorp, "The Central Role of the Gut Microbiota in the Pathophysiology and Management of Type 2 Diabetes," *Cell Host & Microbe* 32, no. 8 (2024): 1280–1300.
- [67] T.-Y. Wang, X.-Q. Zhang, A.-L. Chen, et al., "A Comparative Study of Microbial Community and Functions of Type 2 Diabetes Mellitus Patients with Obesity and Healthy People," Applied Microbiology and Biotechnology 104 (2020): 7143–7153.
- [68] Z. Younossi, Q. M. Anstee, M. Marietti, et al., "Global Burden of NAFLD and NASH: Trends, Predictions, Risk Factors and Prevention," *Nature Reviews Gastroenterology & Hepatology* 15, no. 1 (2018): 11–20.
- [69] C. Grander, F. Grabherr, and H. Tilg, "Non-Alcoholic Fatty Liver Disease: Pathophysiological Concepts and Treatment Options," *Cardiovascular Research* 119, no. 9 (2023): 1787–1798.
- [70] J. M. Paik, P. Golabi, Y. Younossi, A. Mishra, and Z. M. Younossi, "Changes in the Global Burden of Chronic Liver Diseases from 2012 to 2017: the Growing Impact of NAFLD," *Hepatology* 72, no. 5 (2020): 1605–1616.
- [71] C. Estes, H. Razavi, R. Loomba, Z. Younossi, and A. J. Sanyal, "Modeling the Epidemic of Nonalcoholic Fatty Liver Disease

- Demonstrates an Exponential Increase in Burden of Disease," *Hepatology* 67, no. 1 (2018): 123–133.
- [72] E. Easl, "EASO. European Association for the Study of the Liver (EASL)-European Association for the Study of Diabetes (EASD)-European Association for the Study of Obesity (EASO): Clinical Practice Guidelines for the Management of Non-Alcoholic Fatty Liver Disease," *Diabetologia* 59 (2016): 1121–1140.
- [73] M. Eslam, P. N. Newsome, S. K. Sarin, et al., "A New Definition for Metabolic dysfunction-associated Fatty Liver Disease: an International Expert Consensus Statement," *Journal of Hepatology* 73, no. 1 (2020): 202–209.
- [74] L. Rong, J. Zou, W. Ran, et al., "Advancements in the Treatment of Non-Alcoholic Fatty Liver Disease (NAFLD)," Frontiers in Endocrinology 13 (2023).
- [75] C. Leung, L. Rivera, J. B. Furness, and P. W. Angus, "The Role of the Gut Microbiota in NAFLD," *Nature Reviews Gastroenterology & Hepatology* 13, no. 7 (2016): 412–425.
- [76] E. Lau, D. Carvalho, and P. Freitas, "Gut Microbiota: Association with NAFLD and Metabolic Disturbances," BioMed Research International 2015, no. 1 (2015).
- [77] Z. Safari and P. Gérard, "The Links Between the Gut Microbiome and Non-alcoholic Fatty Liver Disease (NAFLD)," Cellular and Molecular Life Sciences 76 (2019): 1541–1558.
- [78] M. Jayachandran and S. Qu, "Non-Alcoholic Fatty Liver Disease and Gut Microbial dysbiosis-underlying Mechanisms and Gut Microbiota Mediated Treatment Strategies," *Reviews in Endocrine & Metabolic Disorders* 24, no. 6 (2023): 1189–1204.
- [79] N. Stefan, H.-U. Häring, and K. Cusi, "Non-Alcoholic Fatty Liver Disease: Causes, Diagnosis, Cardiometabolic Consequences, and Treatment Strategies," *Lancet Diabetes & En*docrinology 7, no. 4 (2019): 313–324.
- [80] M.-S. Kwak and D. Kim, "Non-Alcoholic Fatty Liver Disease and Lifestyle Modifications, Focusing on Physical Activity," *The Korean Journal of Internal Medicine* 33, no. 1 (2017): 64.
- [81] B. Sharma and S. John, "Nonalcoholic Steatohepatitis (NASH)," in *Statpearls [Internet]* (2023).
- [82] Z. M. Younossi, A. B. Koenig, D. Abdelatif, Y. Fazel, L. Henry, and M. Wymer, "Global Epidemiology of Nonalcoholic Fatty Liver Disease—Meta-Analytic Assessment of Prevalence, Incidence, and Outcomes," *Hepatology* 64, no. 1 (2016): 73–84.
- [83] M. Kawanaka, K. Nishino, Y. Morimoto, et al., "Progression from Nonalcoholic Fatty Liver to Nonalcoholic Steatohepatitis Cirrhosis Confirmed by Liver Histology After 14 Years," *Internal Medicine* 60, no. 9 (2021): 1397–1401.
- [84] Y. Shi and W. Qi, "Histone Modifications in NAFLD: Mechanisms and Potential Therapy," *International Journal of Molecular Sciences* 24, no. 19 (2023).
- [85] A. M. Diehl and C. Day, "Cause, Pathogenesis, and Treatment of Nonalcoholic Steatohepatitis," New England Journal of Medicine 377, no. 21 (2017): 2063–2072.
- [86] J. L. Temple, P. Cordero, J. Li, V. Nguyen, and J. A. Oben, "A Guide to Non-alcoholic Fatty Liver Disease in Childhood and Adolescence," *International Journal of Molecular Sci*ences 17, no. 6 (2016): 947.
- [87] C. Estes, Q. M. Anstee, M. T. Arias-Loste, et al., "Modeling Nafld Disease Burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the Period 2016–2030," *Journal of Hepatology* 69, no. 4 (2018): 896–904.

[88] E. Dhamija, S. B. Paul, and S. Kedia, "Non-Alcoholic Fatty Liver Disease Associated with Hepatocellular Carcinoma: an Increasing Concern," *Indian Journal of Medical Research* 149, no. 1 (2019): 9–17.

- [89] P. Vancells Lujan, E. Vinas Esmel, and E. Sacanella Meseguer, "Overview of Non-alcoholic Fatty Liver Disease (NAFLD) and the Role of Sugary Food Consumption and Other Dietary Components in Its Development," Nutrients 13, no. 5 (2021): 1442.
- [90] S. S. Virani, A. Alonso, H. J. Aparicio, et al., "Heart Disease and Stroke Statistics-2021 Update: a Report from the American Heart Association," *Circulation* 143, no. 8 (2021): e254–e743.
- [91] J. L. Goldstein and M. S. Brown, "A Century of Cholesterol and Coronaries: from Plaques to Genes to Statins," *Cell* 161, no. 1 (2015): 161–172.
- [92] B. Jia, Y. Zou, X. Han, J.-W. Bae, and C. O. Jeon, "Gut microbiome-mediated Mechanisms for Reducing Cholesterol Levels: Implications for Ameliorating Cardiovascular Disease," *Trends in Microbiology* 31, no. 1 (2023): 76–91.
- [93] Y. Song, J. Liu, K. Zhao, L. Gao, and J. Zhao, "Cholesterol-Induced Toxicity: an Integrated View of the Role of Cholesterol in Multiple Diseases," *Cell Metabolism* 33, no. 10 (2021): 1911–1925.
- [94] J. M. Brown and S. L. Hazen, "Microbial Modulation of Cardiovascular Disease," *Nature Reviews Microbiology* 16, no. 3 (2018): 171–181.
- [95] T. Le Roy, E. Lécuyer, B. Chassaing, et al., "The Intestinal Microbiota Regulates Host Cholesterol Homeostasis," BMC Biology 17 (2019): 1–18.
- [96] Z. He, T. Wang, S. Zhang, et al., "Evaluation of Cholesterol Transformation Abilities and Probiotic Properties of Bacteroides dorei YGMCC0564," *Frontiers in Microbiology* 14 (2023).
- [97] A. Nesci, C. Carnuccio, V. Ruggieri, et al., "Gut Microbiota and Cardiovascular Disease: Evidence on the Metabolic and Inflammatory Background of a Complex Relationship," *International Journal of Molecular Sciences* 24, no. 10 (2023): 9087.
- [98] H. Zhang and N. S. Dhalla, "The Role of Pro-inflammatory Cytokines in the Pathogenesis of Cardiovascular Disease," International Journal of Molecular Sciences 25, no. 2 (2024): 1082
- [99] G. P. Ramos and K. A. Papadakis, in *Mechanisms of Disease: Inflammatory Bowel Diseases* (2019).
- [100] H. Zheng, M. Chen, Y. Li, et al., "Modulation of Gut Microbiome Composition and Function in Experimental Colitis Treated with Sulfasalazine," *Frontiers in Microbiology* 8 (2017): 1703.
- [101] J. W. Windsor and G. G. Kaplan, "Evolving Epidemiology of IBD," *Current Gastroenterology Reports* 21 (2019): 1–9.
- [102] G. G. Kaplan and J. W. Windsor, "The Four Epidemiological Stages in the Global Evolution of Inflammatory Bowel Disease," *Nature Reviews Gastroenterology & Hepatology* 18, no. 1 (2021): 56–66.
- [103] Y. Ma, X. Xu, M. Li, J. Cai, Q. Wei, and H. Niu, "Gut Microbiota Promote the Inflammatory Response in the Pathogenesis of Systemic Lupus Erythematosus," *Molec-ular Medicine* 25 (2019): 1–16.
- [104] S. O'Donnell, K. Borowski, O. Espin-Garcia, et al., "The Unsolved Link of Genetic Markers and Crohn's Disease Progression: a North American Cohort Experience," *In-flammatory Bowel Diseases* 25, no. 9 (2019): 1541–1549.

[105] J. X. Pang, H. Kheirkhahrahimabadi, S. Bindra, et al., "Differential Effect of Genetic Burden on Disease Phenotypes in Crohn's Disease and Ulcerative Colitis in a Canadian Cohort," *Journal of the Canadian Association of Gastroen*terology 4, no. 2 (2021): 65–72.

- [106] M. M. Rahaman, P. Wangchuk, and S. Sarker, "A Systematic Review on the Role of Gut Microbiome in Inflammatory Bowel Disease: Spotlight on Virome and Plant Metabolites," *Microbial Pathogenesis* (2025).
- [107] D. Zheng, T. Liwinski, and E. Elinav, "Interaction Between Microbiota and Immunity in Health and Disease," *Cell Research* 30, no. 6 (2020): 492–506.
- [108] A. N. Thorburn, L. Macia, and C. R. Mackay, "Diet, Metabolites, and "western-lifestyle" Inflammatory Diseases," *Immunity* 40, no. 6 (2014): 833–842.
- [109] F. Sommer and F. Bäckhed, "The Gut Microbiota—Masters of Host Development and Physiology," *Nature Reviews Microbiology* 11, no. 4 (2013): 227–238.
- [110] M. Levy, A. A. Kolodziejczyk, C. A. Thaiss, and E. Elinav, "Dysbiosis and the Immune System," *Nature Reviews Immunology* 17, no. 4 (2017): 219–232.
- [111] M. M. Rahaman, K. Yeshi, M. H. Bappi, M. Z. Islam, P. Wangchuk, and S. Sarker, "Novel plant-derived Compounds Modulate Gut Microbiome Dysbiosis in Colitis Mice: a Potential Therapeutic Avenue for Inflammatory Bowel Disease," Microbiological Research 302 (2026).
- [112] A. Nishida, R. Inoue, O. Inatomi, S. Bamba, Y. Naito, and A. Andoh, "Gut Microbiota in the Pathogenesis of Inflammatory Bowel Disease," *Clinical Journal of Gastroen*terology 11 (2018): 1–10.
- [113] L. Almeida-Junior, T. Curimbaba, A. Chagas, A. Quaglio, and L. Di Stasi, "Dietary Intervention with Green Dwarf Banana Flour (Musa Sp. AAA) Modulates Oxidative Stress and Colonic Scfas Production in the TNBS Model of Intestinal Inflammation," *Journal of Functional Foods* 38 (2017): 497–504.
- [114] T. Curimbaba, L. Almeida-Junior, A. Chagas, A. Quaglio, A. Herculano, and L. Di Stasi, "Prebiotic, Antioxidant and Anti-inflammatory Properties of Edible Amazon Fruits," Food Bioscience 36 (2020).
- [115] S. Mills, C. Stanton, J. A. Lane, G. J. Smith, and R. P. Ross, "Precision Nutrition and the Microbiome, Part I: Current State of the Science," *Nutrients* 11, no. 4 (2019): 923.
- [116] Y. Fan and O. Pedersen, "Gut Microbiota in Human Metabolic Health and Disease," *Nature Reviews Microbiology* 19, no. 1 (2021): 55–71.
- [117] D. Patra, D. Banerjee, P. Ramprasad, S. Roy, D. Pal, and S. Dasgupta, "Recent Insights of obesity-induced Gut and Adipose Tissue Dysbiosis in Type 2 Diabetes," Frontiers in Molecular Biosciences 10 (2023).
- [118] J. Aron-Wisnewsky, C. Vigliotti, J. Witjes, et al., "Gut Microbiota and Human NAFLD: Disentangling Microbial Signatures from Metabolic Disorders," *Nature Reviews Gastroenterology & Hepatology* 17, no. 5 (2020): 279–297.
- [119] A. Khan, Z. Ding, M. Ishaq, et al., "Understanding the Effects of Gut Microbiota Dysbiosis on Nonalcoholic Fatty Liver Disease and the Possible Probiotics Role: Recent Updates," *International Journal of Biological Sciences* 17, no. 3 (2021): 818.
- [120] O. V. Obayomi, A. F. Olaniran, and S. O. Owa, "Unveiling the Role of Functional Foods with Emphasis on Prebiotics and Probiotics in Human Health: A Review," *Journal of Functional Foods* 119 (2024).

[121] P. F. De Groot, M. Frissen, N. De Clercq, and M. Nieuwdorp, "Fecal Microbiota Transplantation in Metabolic Syndrome: History, Present and Future," *Gut Microbes* 8, no. 3 (2017): 253–267.

- [122] T. K. Das, S. Pradhan, S. Chakrabarti, K. C. Mondal, and K. Ghosh, "Current Status of Probiotic and Related Health Benefits," *Applied Food Research* 2, no. 2 (2022).
- [123] D.-Y. Park, Y.-T. Ahn, S.-H. Park, et al., "Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in diet-induced Obese Mice is Associated with Gut Microbial Changes and Reduction in Obesity," *PLoS One* 8, no. 3 (2013).
- [124] G. Karimi, M. R. Sabran, R. Jamaluddin, et al., "The Antiobesity Effects of Lactobacillus casei Strain Shirota Versus Orlistat on High Fat diet-induced Obese Rats," Food & Nutrition Research 59, no. 1 (2015).
- [125] A. Gulnaz, L.-C. Lew, Y.-H. Park, et al., "Efficacy of Probiotic Strains Lactobacillus sakei Probio65 and Lactobacillus plantarum Probio-093 in Management of Obesity: an in Vitro and in Vivo Analysis," *Pharmaceuticals* 17, no. 6 (2024): 676.
- [126] Y. Zhuang, S. Yang, D. Yang, et al., "Lactobacillus acidophilus CICC 6075 Attenuates HFD-Induced Obesity by Improving Gut Microbiota Composition and Histidine Biosynthesis," *Bioscience of Microbiota, Food and Health* 43, no. 4 (2024): 367–380.
- [127] M. Sohn, G. Y. Na, J. Chu, H. Joung, B.-K. Kim, and S. Lim, "Efficacy and Safety of Lactobacillus plantarum K50 on Lipids in Koreans with Obesity: a Randomized, double-blind Controlled Clinical Trial," Frontiers in Endocrinology 12 (2022).
- [128] C. Zhang, R. Fang, X. Lu, et al., "Lactobacillus reuteri J1 Prevents Obesity by Altering the Gut Microbiota and Regulating Bile Acid Metabolism in Obese Mice," Food & Function 13, no. 12 (2022): 6688–6701.
- [129] Y. Sun, S. Chen, F. Ren, and Y. Li, "Lactobacillus paracasei N1115 Attenuates Obesity in High-Fat Diet-Induced Obese Mice," Food Science and Nutrition 11, no. 1 (2023): 418–427.
- [130] N. Y. Sun, S. Chen, and Y. Li, "Lactobacillus paracasei L9 Ameliorated obesity-associated Metabolic Parameters and Relevant Gut Microbiota in Mice Fed a high-fat Diet," Nutrition Research 115 (2023): 26–37.
- [131] Y. Wu, X. Li, F. Tan, X. Zhou, J. Mu, and X. Zhao, "Lactobacillus fermentum CQPC07 Attenuates Obesity, Inflammation and Dyslipidemia by Modulating the Antioxidant Capacity and Lipid Metabolism in high-fat Diet Induced Obese Mice," *Journal of Inflammation* 18 (2021): 1–11.
- [132] Y. T. Chen, S. Y. Chiou, A. H. Hsu, Y. C. Lin, and J. S. Lin, "Lactobacillus rhamnosus Strain LRH05 Intervention Ameliorated Body Weight Gain and Adipose Inflammation via Modulating the Gut Microbiota in High-Fat Diet-Induced Obese Mice," *Molecular Nutrition & Food Research* 66, no. 1 (2022).
- [133] C.-C. Wu, W.-L. Weng, W.-L. Lai, et al., "Effect of Lacto-bacillus plantarum Strain K21 on High-Fat Diet-Fed Obese Mice," Evidence-Based Complementary and Alternative Medicine 2015, no. 1 (2015).
- [134] E. Huang, S. Kim, H. Park, et al., "Modulation of the Gut Microbiome and Obesity Biomarkers by Lactobacillus plantarum KC28 in a diet-induced Obesity Murine Model," *Probiotics and Antimicrobial Proteins* 13 (2021): 677–697.
- [135] S. Kim, J. Y. Joung, D.-K. Kang, N. S. Oh, and Y. Yoon, "Anti-Obesity Effects of Lactobacillus rhamnosus 4B15, and

- Its Synergy with Hydrolysed Lactose Skim Milk Powder," *International Dairy Journal* 123 (2021).
- [136] H. Cai, Z. Wen, X. Li, K. Meng, and P. Yang, "Lactobacillus plantarum FRT10 Alleviated high-fat diet-induced Obesity in Mice Through Regulating the Pparα Signal Pathway and Gut Microbiota," Applied Microbiology and Biotechnology 104 (2020): 5959–5972.
- [137] Z. Liu, J. Zhao, R. Sun, et al., "Lactobacillus plantarum 23-1 Improves Intestinal Inflammation and Barrier Function Through the TLR4/NF-κB Signaling Pathway in Obese Mice," Food & Function 13, no. 11 (2022): 5971–5986.
- [138] Z. Zhang, L. Bai, M. Guan, et al., "Potential Probiotics Lactobacillus casei K11 Combined with Plant Extracts Reduce Markers of Type 2 Diabetes Mellitus in Mice," *Journal* of Applied Microbiology 131, no. 4 (2021): 1970–1982.
- [139] G. Wang, X. Li, J. Zhao, H. Zhang, and W. Chen, "Lactobacillus casei CCFM419 Attenuates Type 2 Diabetes via a Gut Microbiota Dependent Mechanism," *Food & Function* 8, no. 9 (2017): 3155–3164.
- [140] Y. S. Lee, D. Lee, G. S. Park, et al., "Lactobacillus plantarum HAC01 Ameliorates Type 2 Diabetes in high-fat Diet and streptozotocin-induced Diabetic Mice in Association with Modulating the Gut Microbiota," Food & Function 12, no. 14 (2021): 6363–6373.
- [141] H. Hu, J. Luo, Y. Liu, et al., "Improvement Effect of a nextgeneration Probiotic L. plantarum-pMG36e-GLP-1 on Type 2 Diabetes Mellitus via the gut-pancreas-liver Axis," Food & Function 14, no. 7 (2023): 3179–3195.
- [142] K.-K. Li, P.-J. Tian, S.-D. Wang, et al., "Targeting Gut Microbiota: Lactobacillus Alleviated Type 2 Diabetes via Inhibiting LPS Secretion and Activating GPR43 Pathway," *Journal of Functional Foods* 38 (2017): 561–570.
- [143] S. Jiang, A. Liu, W. Ma, et al., "Lactobacillus gasseri CKCC1913 Mediated Modulation of the gut-liver Axis Alleviated Insulin Resistance and Liver Damage Induced by Type 2 Diabetes," *Food & Function* 14, no. 18 (2023): 8504–8520.
- [144] Z. Wu, J. Gao, C. Yu, et al., "Lactobacillus rhamnosus ZJUIDS07 Ameliorates Type 2 Diabetes in Mice Through the microbiome-gut-pancreas Axis," Food Bioscience 62 (2024).
- [145] H. T. Nguyen, M. Gu, P. Werlinger, J.-H. Cho, J. Cheng, and J.-W. Suh, "Lactobacillus sakei MJM60958 as a Potential Probiotic Alleviated Non-alcoholic Fatty Liver Disease in Mice Fed a high-fat Diet by Modulating Lipid Metabolism, Inflammation, and Gut Microbiota," *International Journal of Molecular Sciences* 23, no. 21 (2022).
- [146] C. Li, S.-P. Nie, K.-X. Zhu, et al., "Lactobacillus plantarum NCU116 Improves Liver Function, Oxidative Stress and Lipid Metabolism in Rats with High Fat Diet Induced Nonalcoholic Fatty Liver Disease," Food & Function 5, no. 12 (2014): 3216–3223.
- [147] L. Zhu, R. Liao, J. Huang, et al., "Lactobacillus salivarius SNK-6 Regulates Liver Lipid Metabolism Partly via the miR-130a-5p/MBOAT2 Pathway in a NAFLD Model of Laying Hens," Cells 11, no. 24 (2022): 4133.
- [148] D.-M. Liu, J. Guo, X.-A. Zeng, et al., "The Probiotic Role of Lactobacillus plantarum in Reducing Risks Associated with Cardiovascular Disease," *International Journal of Food Science and Technology* 52, no. 1 (2017): 127–136.
- [149] N. Spasova, D. Somleva, B. Krastev, et al., "Effect of Lactobacillus plantarum Supplementation on trimethylamine-N-oxide Levels in 30 Patients with Atherosclerotic Cardiovascular Disease: a double-blind Randomized Controlled Trial," Folia Medica 66, no. 5 (2024): 682–691.

Scientifica Scientifica

[150] K. Nocianitri, N. Antara, I. Sugitha, I. Sukrama, Y. Ramona, and I. Sujaya, "The Effect of Two Lactobacillus rhamnosus Strains on the Blood Lipid Profile of Rats Fed with High Fat Containing Diet," *International Food Research Journal* 24, no. 2 (2017): 795.

- [151] P.-H. Liao, W.-W. Kuo, C.-H. Kuo, et al., "Lactobacillus reuteri GMNL-263 Reduces Hyperlipidaemia and the Heart Failure Process in high-calorie diet-fed Induced Heart Dysfunction in Rats," *Journal of Functional Foods* 20 (2016): 226–235.
- [152] S. A. Palaniyandi, K. Damodharan, J.-W. Suh, and S. H. Yang, "Probiotic Characterization of cholesterollowering Lactobacillus fermentum MJM60397," *Probiotics and Antimicrobial Proteins* 12 (2020): 1161–1172.
- [153] Y. Wu, R. Jha, A. Li, et al., "Probiotics (Lactobacillus plantarum HNU082) Supplementation Relieves Ulcerative Colitis by Affecting Intestinal Barrier Functions, Immunity-Related Gene Expression, Gut Microbiota, and Metabolic Pathways in Mice," Microbiology Spectrum 10, no. 6 (2022).
- [154] Y. Cai, Y. Huang, Y. Wang, C. Lin, L. Qiu, and H. Wei, "Lactobacillus johnsonii GLJ001 Prevents DSS-Induced Colitis in Mice by Inhibiting M1 Macrophage Polarization via Gut microbiota-SCFAs Axis," *International Immuno-pharmacology* 144 (2025).
- [155] W.-Q. Zhang, K.-Y. Quan, C.-J. Feng, et al., "The Lacto-bacillus gasseri G098 Strain Mitigates Symptoms of DSS-Induced Inflammatory Bowel Disease in Mice," *Nutrients* 14, no. 18 (2022): 3745.
- [156] C. Wan, W. W. Qian, W. Liu, et al., "Exopolysaccharide from Lactobacillus rhamnosus ZFM231 Alleviates Dss-Induced Colitis in Mice by Regulating Gut Microbiota," *Journal of the Science of Food and Agriculture* 102, no. 15 (2022): 7087–7097.
- [157] B. Ladda, C. Jantararussamee, W. Pradidarcheep, A. Kasorn, U. Matsathit, and M. Taweechotipatr, "Anti-Inflammatory and Gut Microbiota Modulating Effects of Probiotic Lactobacillus paracasei MSMC39-1 on Dextran Sulfate sodiuminduced Colitis in Rats," Nutrients 15, no. 6 (2023): 1388.
- [158] G. Qian, H. Zang, J. Tang, et al., "Lactobacillus gasseri ATCC33323 Affects the Intestinal Mucosal Barrier to Ameliorate DSS-Induced Colitis Through the NR113mediated Regulation of E-cadherin," PLoS Pathogens 20, no. 9 (2024).
- [159] D. Wang, T. Zhang, L. Qiu, and C. Zhao, "The Potential of the Probiotic Isolate Lactobacillus plantarum SS18-50 to Prevent Colitis in Mice," *Food Science and Nutrition* 13, no. 1 (2025).
- [160] J. Patterson and K. Burkholder, "Application of Prebiotics and Probiotics in Poultry Production," *Poultry Science* 82, no. 4 (2003): 627–631.
- [161] M. M. Ritzi, W. Abdelrahman, M. Mohnl, and R. A. Dalloul, "Effects of Probiotics and Application Methods on Performance and Response of Broiler Chickens to an Eimeria Challenge," *Poultry Science* 93, no. 11 (2014): 2772–2778.
- [162] K. M. Tuohy, H. M. Probert, C. W. Smejkal, and G. R. Gibson, "Using Probiotics and Prebiotics to Improve Gut Health," *Drug Discovery Today* 8, no. 15 (2003): 692–700.
- [163] J. M. Wong, R. De Souza, C. W. Kendall, A. Emam, and D. J. Jenkins, "Colonic Health: Fermentation and Short Chain Fatty Acids," *Journal of Clinical Gastroenterology* 40, no. 3 (2006): 235–243.
- [164] H. Ejtahed, J. Mohtadi-Nia, A. Homayouni-Rad, et al., "Effect of Probiotic Yogurt Containing Lactobacillus acidophilus and Bifidobacterium lactis on Lipid Profile in

- Individuals with Type 2 Diabetes Mellitus," *Journal of Dairy Science* 94, no. 7 (2011): 3288–3294.
- [165] E. Naito, Y. Yoshida, K. Makino, et al., "Beneficial Effect of Oral Administration of Lactobacillus casei Strain Shirota on Insulin Resistance in Diet-Induced Obesity Mice," *Journal of Applied Microbiology* 110, no. 3 (2011): 650–657.
- [166] S. Rastogi and A. Singh, "Gut Microbiome and Human Health: Exploring How the Probiotic Genus Lactobacillus Modulate Immune Responses," Frontiers in Pharmacology 13 (2022).
- [167] F. Yan, N. Li, J. Shi, et al., "Lactobacillus acidophilus Alleviates Type 2 Diabetes by Regulating Hepatic Glucose, Lipid Metabolism and Gut Microbiota in Mice," Food & Function 10, no. 9 (2019): 5804–5815.
- [168] T. F. da Silva, S. N. Casarotti, G. L. V. de Oliveira, and A. L. B. Penna, "The Impact of Probiotics, Prebiotics, and Synbiotics on the Biochemical, Clinical, and Immunological Markers, as Well as on the Gut Microbiota of Obese Hosts," Critical Reviews in Food Science and Nutrition 61, no. 2 (2021): 337–355.
- [169] C. M. van der Beek, E. E. Canfora, A. M. Kip, et al., "The Prebiotic Inulin Improves Substrate Metabolism and Promotes short-chain Fatty Acid Production in Overweight to Obese Men," *Metabolism* 87 (2018): 25–35.
- [170] K. K. Mahalak, J. Firrman, A. B. Narrowe, et al., "Fructooligosaccharides (FOS) Differentially Modifies the in Vitro Gut Microbiota in an Age-dependent Manner," Frontiers in Nutrition 9 (2023).
- [171] W. Cheng, J. Lu, W. Lin, et al., "Effects of a galacto-oligosaccharide-rich Diet on Fecal Microbiota and Metabolite Profiles in Mice," *Food & Function* 9, no. 3 (2018): 1612–1620.
- [172] A. M. Neyrinck, S. Possemiers, C. Druart, et al., "Prebiotic Effects of Wheat Arabinoxylan Related to the Increase in Bifidobacteria, Roseburia and Bacteroides/Prevotella in dietinduced Obese Mice," *PLoS One* 6, no. 6 (2011).
- [173] H. B. Taylor and C. Vasu, "Impact of Prebiotic β-glucan Treatment at Juvenile Age on the Gut Microbiota Composition and the Eventual Type 1 Diabetes Onset in Non-obese Diabetic Mice," Frontiers in Nutrition 8 (2021).
- [174] W. S. F. Chung, M. Meijerink, B. Zeuner, et al., "Prebiotic Potential of Pectin and Pectic Oligosaccharides to Promote Anti-inflammatory Commensal Bacteria in the Human Colon," *FEMS Microbiology Ecology* 93, no. 11 (2017).
- [175] G. S. Raza, H. Putaala, A. A. Hibberd, et al., "Polydextrose Changes the Gut Microbiome and Attenuates Fasting Triglyceride and Cholesterol Levels in Western Diet Fed Mice," *Scientific Reports* 7, no. 1 (2017): 5294.
- [176] D. P. Singh, S. Singh, V. Bijalwan, et al., "Co-supplementation of isomalto-oligosaccharides Potentiates Metabolic Health Benefits of polyphenol-rich Cranberry Extract in High Fat diet-fed Mice via Enhanced Gut Butyrate Production," European Journal of Nutrition 57 (2018): 2897–2911.
- [177] C. Wu, J. Liu, Y. Li, N. Wang, Q. Yan, and Z. Jiang, "Manno-Oligosaccharides from Cassia Seed Gum Ameliorate Inflammation and Improve Glucose Metabolism in Diabetic Rats," Food & Function 13, no. 12 (2022): 6674–6687.
- [178] M. Foure, C. Dugardin, B. Foligne, et al., "Chicory Roots for Prebiotics and Appetite Regulation: a Pilot Study in Mice," *Journal of Agricultural and Food Chemistry* 66, no. 25 (2018): 6439–6449.
- [179] P. Zhang, Y. Xue, Z. Cao, et al., "Raffinose Ameliorates DSSinduced Colitis in Mice by Modulating Gut Microbiota and

Targeting the Inflammatory TLR4–MyD88–NF-κB Signaling Pathway," *Foods* 13, no. 12 (2024): 1849.

- [180] Q. Shang, G. Song, M. Zhang, et al., "Dietary Fucoidan Improves Metabolic Syndrome in Association with Increased Akkermansia Population in the Gut Microbiota of high-fat diet-fed Mice," *Journal of Functional Foods* 28 (2017): 138–146.
- [181] Y. Wang, L. Li, C. Ye, J. Yuan, and S. Qin, "Alginate Oligosaccharide Improves Lipid Metabolism and Inflammation by Modulating Gut Microbiota in high-fat Diet Fed Mice," *Applied Microbiology and Biotechnology* 104 (2020): 3541–3554.
- [182] R. Barczynska, J. Kapusniak, M. Litwin, K. Slizewska, and M. Szalecki, "Dextrins from Maize Starch as Substances Activating the Growth of Bacteroidetes and Actinobacteria Simultaneously Inhibiting the Growth of Firmicutes, Responsible for the Occurrence of Obesity," *Plant Foods for Human Nutrition* 71 (2016): 190–196.
- [183] Y. Wang, S. Liu, D. Tang, R. Dong, and Q. Feng, "Chitosan Oligosaccharide Ameliorates Metabolic Syndrome Induced by Overnutrition via Altering Intestinal Microbiota," Frontiers in Nutrition 8 (2021).
- [184] M. Jayachandran, S. Christudas, X. Zheng, and B. Xu, "Dietary Fiber konjac Glucomannan Exerts an Antidiabetic Effect via Inhibiting Lipid Absorption and Regulation of PPAR-y and Gut Microbiome," Food Chemistry 403 (2023).
- [185] J. Y. Yoo and S. S. Kim, "Probiotics and Prebiotics: Present Status and Future Perspectives on Metabolic Disorders," Nutrients 8, no. 3 (2016): 173.
- [186] L. Huang, C. Thonusin, N. Chattipakorn, and S. C. Chattipakorn, "Impacts of Gut Microbiota on Gestational Diabetes Mellitus: a Comprehensive Review," *Euro*pean Journal of Nutrition 60 (2021): 2343–2360.
- [187] R. Pluta, M. Ułamek-Kozioł, S. Januszewski, and S. J. Czuczwar, "Gut Microbiota and Pro/prebiotics in Alzheimer's Disease," *Aging* 12, no. 6 (2020): 5539.
- [188] P. Shokryazdan, M. Faseleh Jahromi, B. Navidshad, and J. B. Liang, "Effects of Prebiotics on Immune System and Cytokine Expression," *Medical Microbiology and Immu*nology 206 (2017): 1–9.
- [189] G. T. Macfarlane and S. Macfarlane, "Fermentation in the Human Large Intestine: Its Physiologic Consequences and the Potential Contribution of Prebiotics," *Journal of Clinical Gastroenterology* 45 (2011): S120–S127.
- [190] S. Hanau, S. H. Almugadam, E. Sapienza, et al., "Schematic Overview of Oligosaccharides, with Survey on Their Major Physiological Effects and a Focus on Milk Ones," Carbohydrate Polymer Technologies and Applications 1 (2020).
- [191] M. Roller, G. Rechkemmer, and B. Watzl, "Prebiotic Inulin Enriched with Oligofructose in Combination with the Probiotics Lactobacillus rhamnosus and Bifidobacterium lactis Modulates Intestinal Immune Functions in Rats," *The Journal of Nutrition* 134, no. 1 (2004): 153–156.
- [192] L. Zhang, Y. Song, Y. Chen, Q. Li, and M. Zhang, "Arabinoxylan and Glycolysis Inhibitors Alleviate Trimethylamine Accumulation and Gut Barrier Impairment by Inhibiting the PERK Pathway," Food & Function (2025).
- [193] L. Chen, B. Liu, L. Ren, et al., "High-Fiber Diet Ameliorates Gut Microbiota, Serum Metabolism and Emotional Mood in Type 2 Diabetes Patients," *Frontiers in Cellular and Infection Microbiology* 13 (2023).
- [194] L. Bozzetto, G. Annuzzi, G. Pacini, et al., "Polyphenol-Rich Diets Improve Glucose Metabolism in People at High

- Cardiometabolic Risk: a Controlled Randomised Intervention Trial," *Diabetologia* 58 (2015): 1551–1560.
- [195] K. Esposito, R. Marfella, M. Ciotola, et al., "Effect of a Mediterranean-style Diet on Endothelial Dysfunction and Markers of Vascular Inflammation in the Metabolic Syndrome: a Randomized Trial," *JAMA* 292, no. 12 (2004): 1440–1446.
- [196] T. Baylie, T. Ayelgn, M. Tiruneh, and K. H. Tesfa, "Effect of Ketogenic Diet on Obesity and Other Metabolic Disorders: Narrative Review," *Diabetes, Metabolic Syndrome and Obesity* (2024): 1391–1401.
- [197] S. Castro-Barquero, A. M. Ruiz-León, M. Sierra-Pérez, R. Estruch, and R. Casas, "Dietary Strategies for Metabolic Syndrome: a Comprehensive Review," *Nutrients* 12, no. 10 (2020): 2983.
- [198] D. Mozaffarian, "Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity: a Comprehensive Review," Circulation 133, no. 2 (2016): 187–225.
- [199] S. Scaglione, T. Di Chiara, M. Daidone, and A. Tuttolomondo, "Effects of the Mediterranean Diet on the Components of Metabolic Syndrome Concerning the Cardiometabolic Risk," *Nutrients* 17, no. 2 (2025): 358.
- [200] S. Msane, A. Khathi, and A. Sosibo, "Therapeutic Potential of Various Intermittent Fasting Regimens in Alleviating Type 2 Diabetes Mellitus and Prediabetes: a Narrative Review," Nutrients 16, no. 16 (2024): 2692.
- [201] M.-Y. Cho, J.-H. Eom, E.-M. Choi, et al., "Recent Advances in Therapeutic Probiotics: Insights from Human Trials," *Clinical Microbiology Reviews* 38, no. 2 (2025): e00240–24.
- [202] D. Xavier-Santos, R. Bedani, E. D. Lima, and S. M. I. Saad, "Impact of Probiotics and Prebiotics Targeting Metabolic Syndrome," *Journal of Functional Foods* 64 (2020).
- [203] N. J. Kellow, M. T. Coughlan, and C. M. Reid, "Metabolic Benefits of Dietary Prebiotics in Human Subjects: a Systematic Review of Randomised Controlled Trials," *British Journal of Nutrition* 111, no. 7 (2014): 1147–1161.
- [204] B. I. M. Salles, D. Cioffi, and S. R. G. Ferreira, "Probiotics Supplementation and Insulin Resistance: a Systematic Review," *Diabetology & Metabolic Syndrome* 12, no. 1 (2020): 98.
- [205] E. W. Yu, L. Gao, P. Stastka, et al., "Fecal Microbiota Transplantation for the Improvement of Metabolism in Obesity: the FMT-TRIM double-blind placebo-controlled Pilot Trial," *PLoS Medicine* 17, no. 3 (2020).
- [206] N. Kobyliak, T. Falalyeyeva, G. Mykhalchyshyn, D. Kyriienko, and I. Komissarenko, "Effect of Alive Probiotic on Insulin Resistance in Type 2 Diabetes Patients: Randomized Clinical Trial," *Diabetes & Metabolic Syndrome:* Clinical Research Reviews 12, no. 5 (2018): 617–624.
- [207] B. Qiu, J. Liang, and C. Li, "Effects of Fecal Microbiota Transplantation in Metabolic Syndrome: a meta-analysis of Randomized Controlled Trials," PLoS One 18, no. 7 (2023).
- [208] E. E. Canfora, J. W. Jocken, and E. E. Blaak, "Short-Chain Fatty Acids in Control of Body Weight and Insulin Sensitivity," *Nature Reviews Endocrinology* 11, no. 10 (2015): 577–591.
- [209] V. K. Ridaura, J. J. Faith, F. E. Rey, et al., "Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice," *Science* 341, no. 6150 (2013).
- [210] L. Qi and Y. Chen, "Circulating Bile Acids as Biomarkers for Disease Diagnosis and Prevention," *The Journal of Clinical Endocrinology & Metabolism* 108, no. 2 (2023): 251–270.
- [211] K. E. Kim, Y. S. Cho, K. S. Baek, et al., "Lipopolysaccharide-Binding Protein Plasma Levels as a Biomarker of obesity-

related Insulin Resistance in Adolescents," *Korean Journal of Pediatrics* 59, no. 5 (2016): 231.

- [212] R. A. Koeth, Z. Wang, R. Levia, J. C. Garcia-Garcia, W. W. Tang, and S. Hazen, "Gut Microbiota Metabolism of L-Carnitine, a Nutrient in Red Meat, and the Atherogenic Metabolites γ-Gammabutyrobetaine and TMAO in Humans," Circulation 136, no. suppl_1 (2017).
- [213] M. Yassour, M. Y. Lim, H. S. Yun, et al., "Sub-Clinical Detection of Gut Microbial Biomarkers of Obesity and Type 2 Diabetes," *Genome Medicine* 8 (2016): 1–14.
- [214] S. Park, S. Chon, S. Y. Park, et al., "Association of Aryl Hydrocarbon Receptor Transactivating Activity, a Potential Biomarker for Persistent Organic Pollutants, with the Risk of Gestational Diabetes Mellitus," *Scientific Reports* 11, no. 1 (2021): 3185.
- [215] H. A. Al-Rawaf, "Circulating Micrornas and Adipokines as Markers of Metabolic Syndrome in Adolescents with Obesity," *Clinical Nutrition* 38, no. 5 (2019): 2231–2238.
- [216] M. R. Konikoff and L. A. Denson, "Role of Fecal Calprotectin as a Biomarker of Intestinal Inflammation in Inflammatory Bowel Disease," *Inflammatory Bowel Diseases* 12, no. 6 (2006): 524–534.
- [217] J. J. Petrocelli, A. I. McKenzie, Z. S. Mahmassani, et al., "Ceramide Biomarkers Predictive of Cardiovascular Disease Risk Increase in Healthy Older Adults After Bed Rest," *The Journals of Gerontology: Series A* 75, no. 9 (2020): 1663–1670.
- [218] C. B. Newgard, J. An, J. R. Bain, et al., "A Branched-Chain Amino acid-related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance," *Cell Metabolism* 9, no. 4 (2009): 311–326.
- [219] D. R. Goldsmith, M. Bekhbat, N.-A. Le, et al., "Protein and Gene Markers of Metabolic Dysfunction and Inflammation Together Associate with Functional Connectivity in Reward and Motor Circuits in Depression," *Brain, Behavior, and Immunity* 88 (2020): 193–202.
- [220] S. Monnerie, B. Comte, D. Ziegler, J. A. Morais, E. Pujos-Guillot, and P. Gaudreau, "Metabolomic and Lipidomic Signatures of Metabolic Syndrome and Its Physiological Components in Adults: a Systematic Review," Scientific Reports 10, no. 1 (2020): 669.
- [221] J. Stanimirovic, J. Radovanovic, K. Banjac, et al., "Role of C-Reactive Protein in Diabetic Inflammation," *Mediators of Inflammation* 2022, no. 1 (2022).
- [222] P. M. Ridker, "C-reactive Protein and the Prediction of Cardiovascular Events Among Those at Intermediate Risk: Moving an Inflammatory Hypothesis Toward Consensus," *Journal of the American College of Cardiology* 49, no. 21 (2007): 2129–2138.
- [223] J. Zhang, K. Pronyuk, O. Kuliesh, and S. Chenghe, "Adiponectin, Resistin and Leptin: Possible Markers of Metabolic Syndrome," *Endocrinology & Metabolic Syndrome* 4, no. 212 (2015): 2161–1017.
- [224] O. Mojiminiyi, N. Abdella, M. Al Arouj, and N. Ben, "Adiponectin, Insulin Resistance and Clinical Expression of the Metabolic Syndrome in Patients with Type 2 Diabetes," *International Journal of Obesity* 31, no. 2 (2007): 213–220.
- [225] A. Agus, K. Clément, and H. Sokol, "Gut microbiota-derived Metabolites as Central Regulators in Metabolic Disorders," *Gut* 70, no. 6 (2021): 1174–1182.
- [226] A. Zeljkovic, M. Mihajlovic, S. Vujcic, et al., "The Prospect of Genomic, Transcriptomic, Epigenetic and Metabolomic Biomarkers for the Personalized Prevention of Type 2 Diabetes and Cardiovascular Diseases," Current Vascular Pharmacology 21, no. 3 (2023): 185–196.

- [227] M. d. P. Chantada-Vázquez, S. B. Bravo, S. Barbosa-Gouveia, J. V. Alvarez, and M. L. Couce, "Proteomics in Inherited Metabolic Disorders," *International Journal of Molecular Sciences* 23, no. 23 (2022).
- [228] A. Koh, F. De Vadder, P. Kovatcheva-Datchary, and F. Bäckhed, "From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites," *Cell* 165, no. 6 (2016): 1332–1345.
- [229] A. Psichas, M. Sleeth, K. Murphy, et al., "The Short Chain Fatty Acid Propionate Stimulates GLP-1 and PYY Secretion via Free Fatty Acid Receptor 2 in Rodents," *International Journal of Obesity* 39, no. 3 (2015): 424–429.
- [230] S. Longo, S. Rizza, and M. Federici, "Microbiota-Gut-Brain Axis: Relationships Among the Vagus Nerve, Gut Microbiota, Obesity, and Diabetes," *Acta Diabetologica* 60, no. 8 (2023): 1007–1017.
- [231] N. Arpaia, C. Campbell, X. Fan, et al., "Metabolites Produced by Commensal Bacteria Promote Peripheral Regulatory Tcell Generation," *Nature* 504, no. 7480 (2013): 451–455.
- [232] G. Tolhurst, H. Heffron, Y. S. Lam, et al., "Short-Chain Fatty Acids Stimulate Glucagon-like peptide-1 Secretion via the Gprotein-coupled Receptor FFAR2," *Diabetes* 61, no. 2 (2012): 364–371.
- [233] Y. Feng, Y. Wang, P. Wang, Y. Huang, and F. Wang, "Short-Chain Fatty Acids Manifest Stimulative and Protective Effects on Intestinal Barrier Function Through the Inhibition of NLRP3 Inflammasome and Autophagy," Cellular Physiology and Biochemistry 49, no. 1 (2018): 190–205.
- [234] Y. H. Xu, C. L. Gao, H. L. Guo, et al., "Sodium Butyrate Supplementation Ameliorates Diabetic Inflammation in db/ db Mice," *Journal of Endocrinology* 238, no. 3 (2018): 231–244.
- [235] M. A. Vinolo, H. G. Rodrigues, R. T. Nachbar, and R. Curi, "Regulation of Inflammation by Short Chain Fatty Acids," *Nutrients* 3, no. 10 (2011): 858–876.
- [236] X. Li, M. He, X. Yi, et al., "Short-Chain Fatty Acids in Nonalcoholic Fatty Liver Disease: New Prospects for Short-Chain Fatty Acids as Therapeutic Targets," *Heliyon* 10, no. 6 (2024).