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Metabolic disorders are complex conditions that arise from abnormal biochemical reactions, disrupting normal metabolic
processes. Te most prevalent metabolic disorders include obesity, Type 2 diabetes mellitus (T2DM), cardiovascular disease
(CVD), nonalcoholic fatty liver disease (NAFLD), and infammatory bowel disease (IBD). Despite extensive research, no defnitive
therapeutic strategy has been established for a complete cure. Emerging evidence suggests that gut microbiome dysbiosis plays
a critical role in the pathogenesis of these disorders, as maintaining microbial homeostasis is essential for metabolic health. Short-
chain fatty acids (SCFAs) are a key metabolite produced by gut microbiota and exhibit signifcant therapeutic potential by serving
as an energy source for colonocytes, enhancing gut barrier integrity, and modulating infammation. Our analysis reveals that
targeted microbial modulation—particularly through SCFA-producing probiotics and prebiotics—consistently benefts host
metabolism and reduces systemic infammation across multiple conditions. Tisreview highlights the importance of gut
microbiota as a viable therapeutic target and underscore the need for further clinical trials to validate microbiome-based in-
terventions in metabolic disease management.
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1. Introduction

Metabolic disorders, including obesity, Type 2 diabetes
mellitus (T2DM), cardiovascular disease (CVD), non-
alcoholic fatty liver disease (NAFLD), and infammatory
bowel disease (IBD), represent a signifcant global health
burden, contributing to rising morbidity and mortality rates.
Tese disorders arise from disruptions in fundamental

metabolic processes, leading to energy dysregulation and
redox imbalance [1]. Key risk factors, collectively referred to
as metabolic syndrome, include dyslipidemia, leptin and
adiponectin dysregulation, insulin resistance, impaired in-
sulin secretion, and glucose intolerance [2]. At the cellular
level, metabolic disorders disrupt essential biochemical
pathways involved in macronutrient metabolism, thereby
impairing homeostasis [3]. Te underlying pathophysiology
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is multifaceted, involving impaired insulin sensitivity, ex-
cessive visceral fat accumulation, lipid metabolism distur-
bances, and vascular endothelial impairment, hypertension,
genetic predisposition, and a hypercoagulable state [4].
Despite signifcant advances in understanding disease
mechanisms, efective long-term management remains
a challenge due to the complex and multifactorial nature of
these conditions. Current therapeutic strategies, such as
pharmacological interventions and lifestyle modifcations,
often yield variable outcomes and are limited by poor patient
adherence, side efects, and a lack of personalized treatment
approaches [5, 6]. Although bariatric surgery has shown
promise in severe cases, its accessibility and long-term
sustainability remain concerns [7, 8].

Gut microbiome plays a pivotal role in the treatment of
metabolic disorders, making it a promising candidate for
therapeutic interventions. Te adult gut microbiota contains
10–100 trillion micro-organisms, which is equal to ten times
the total amount of human somatic and germ cells [9]. Tis
microbial ecosystem exerts profound efects on host phys-
iology, infuencing immune system development, gut epi-
thelial homeostasis, pathogen defense, and drug metabolism
[10–13]. Despite its vast diversity, gut microbiota is largely
dominated by four major phyla, Firmicutes, Bacteroidetes,
Actinobacteria, and Proteobacteria, with other phyla con-
tributing to a lesser extent [14]. Tis microbiota infuences
host metabolism through various mechanisms, including the
production of SCFAs, bile acid metabolism, regulation of gut
permeability, and modulation of infammatory pathways
[15]. Given the increasing prevalence of metabolic disorders
such as obesity and T2D, probiotics and prebiotics have
gained considerable attention for their potential in modu-
lating gut microbiota composition and function, particularly
in pediatric populations [16–18]. Probiotic-mediated mod-
ulation of intestinal microbiota has been shown to promote
microbial homeostasis, ofering potential benefts as an
adjunctive therapy for T2D and insulin resistance [18, 19].
Additionally, probiotic supplementation has demonstrated
the ability to reduce infammation in mesenteric adipose
tissue (MAT), thereby mitigating hyperglycemia and insulin
resistance [20, 21]. Furthermore, a recent study underscores
the role of gut microbiota in metabolic dysfunction–
associated fatty liver disease (MAFLD). Abenavoli et al. [22]
reviewed therapeutic approaches of Mediterranean diet,
probiotics, and fecal microbiota transplantation (FMT),
highlighting their potential benefts while also indicating
limitations in clinical studies, due to small sample sizes and
short follow-up durations. However, challenges such as
variability in microbiome responses, the long-term stability
of microbial interventions, and the need for robust clinical
validation must be overcome to maximize the therapeutic
efcacy of gut microbiome in combating metabolic
disorders.

Tis systematic review critically examines the role of gut
microbiota in mitigating common metabolic disorders. By
synthesizing fndings from preclinical and clinical studies,
we aim to delineate the therapeutic potential of targeting gut
microbiota and identify key microbial signatures associated
with metabolic health. Addressing the interaction between

gut microbiota and the host’s metabolic processes may pave
the way for innovative, microbiome-based strategies to
combat metabolic disorders and improve global health
outcomes.

2. Methodology

2.1. Search Strategy. Tis systematic review was conducted
following the guidelines set by the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) 2020.
A comprehensive literature search was carried out across
Google Scholar, Web of Science, Scopus, and PubMed da-
tabases to locate relevant studies examining the relationship
between gut microbiota and metabolic disorders, with
a specifc focus on the therapeutic role of Lactobacillus spp.

Search terms included “gut microbiota,” “metabolic
disorders,” “obesity,” “T2DM,” “CVD,” “NAFLD,” “IBD,”
“probiotics,” “prebiotics,” “dietary modifcations,” “Lacto-
bacillus spp.,” “SCFAs,” “biomarkers” “therapeutic appli-
cations,” “mechanism,” and “clinical evidence.” Boolean
operators (AND and OR) were used to expand the search
strategy. Our search did not impose any language re-
strictions. Te studies were thoroughly evaluated, and key
information was extracted, culminating in an overall con-
clusion. Te literature search covered relevant studies
published from 2002 to January 2025. All methodologies,
including search terms and inclusion criteria, were based on
PRISMA guidelines. Additional materials such as search
strategy, PRISMA checklist, and extracted data tables are
available upon reasonable request to ensure full trans-
parency and reproducibility.

2.2. Selection of StudiesWith Inclusion and ExclusionCriteria.
Eligible studies for inclusion were as follows: (i) studies that
were conducted in vitro, ex vivo, or in vivo, or using
mammalian or human models; (ii) studies involving gut
microbiome in relation to one or more of the follo-
wing—obesity, T2DM, CVD, NAFLD, and IBD; (iii) studies
that reported therapeutic interventions or applications (e.g.,
probiotics, prebiotics, dietary modifcations); and (iv)
studies that were primary research articles published in
English.

Studies of the following nature were excluded: (i) du-
plicated data, titles, and/or abstracts that did not fulfll the
inclusion criteria; (ii) articles published in languages other
than English; (iii) case reports, letters, editorials, and
commentaries; (iv) studies lacking full-text access; (v)
studies that did not report the therapeutic activity against
common metabolic disorders; and (vi) other metabolic
disorders rather than obesity, T2DM, CVD, NAFLD,
and IBD.

Te selection of these fve metabolic disorders was based
on their high prevalence, strong association with gut mi-
crobial dysbiosis, and clinical signifcance. Te exclusive
focus on Lactobacillus spp. was justifed by its growing
prominence in the recent literature as a key probiotic species
with demonstrated efcacy in modulating host metabolic
functions.
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2.3. Database Reports. A total of 10,573 scientifc articles
were retrieved from various databases as of January, 2025.
Subsequently, 97.85% of the articles were excluded due to
duplication, irrelevance, insufcient data, or automation
systems classifying them as unsuitable. Following the in-
clusion criteria, 227 articles on microbiome and metabolic
disorders were identifed with desired information. Letter 68
article selected for further study. Final 36 article included for
qualitative synthesis. A PRISMA fow diagram illustrating
the data collection process for microbiome and metabolic
disorders is presented in Figure 1. A purposive sampling
strategy was adopted to ensure the selection of studies with
high methodological quality and clinical relevance. Refer-
ence management was conducted using EndNote, and data
were extracted independently by two authors. Disagree-
ments were resolved through discussion to reduce selection
bias and maintain consistency.

2.4.Risk ofBiasAssessment. To assess the reliability of results
from selected studies, we used Cochrane risk-of-bias as-
sessment criteria, specifcally the RoB 2 tool version, dated
August 22, 2019. Tis tool evaluates risk across several
domains: randomization process, deviations from intended
interventions, missing outcome data, outcome measure-
ment, selection of reported results, and other potential
sources of bias. Each category comprised questions across
these domains, with responses categorized as “YES” (in-
dicating low risk of bias, color-coded green), “NO” (in-
dicating high risk of bias, color-coded red), or “Some
Concern” (indicating uncertain risk of bias, color-coded
yellow) (Figure 2). In addition to the summary fgure
(Figure 2), per-study risk-of-bias tables were prepared for
each included study to provide a detailed evaluation (see
Supporting Table S3). No formal assessment of reporting
bias or certainty of evidence (GRADE) was performed, as the
review aimed to qualitatively synthesize fndings without
statistical pooling.

2.5. Data Items. We sought data on the following primary
outcomes: (i) metabolic outcomes (body weight, BMI, lipid
profle, fasting glucose, HbA1c), (ii) infammatory markers
(CRP, IL-6, TNF-α), (iii) gut microbiota composition (rel-
ative abundance of key taxa, diversity indices), and (iv)
SCFA concentrations. Secondary variables included study
population characteristics (species, age, sex, health status),
intervention type (probiotic, prebiotic, dietary modifca-
tion), dose and duration, comparator, study design, funding
source, and country of study. Missing or unclear data were
recorded as “NR” (not reported) (see Supporting Table S1).

2.6. Synthesis Methods. As no meta-analysis was conducted,
no statistical efect measures (risk ratios, mean diferences)
were calculated; the results are presented narratively. Studies
were grouped by the type of metabolic disorder (obesity,
T2DM, NAFLD, CVD, IBD) and intervention category
(probiotic, prebiotic, dietary modifcation). Missing or
unclear data were noted as “NR,” and no imputation was

performed. No formal heterogeneity or sensitivity analyses
were undertaken due to the qualitative nature of the
synthesis.

2.7. Ethical Statement. Tis systematic review did not in-
volve direct experimentation on human or animal subjects
and therefore did not require ethical approval. However, all
original research articles included in this review reported
approval from their respective institutional ethics com-
mittees. No identifable patient data were used, and the
review strictly adhered to PRISMA guidelines for trans-
parency and reproducibility.

2.8. Review Registration. Tis review was not registered in
PROSPERO or any other database, and no formal protocol
was prepared prior to commencement. Tis was due to time
constraints and the narrative synthesis approach adopted.

3. Results and Discussion

3.1. Common Metabolic Disorders. Metabolic disorders en-
compass a broad spectrum of conditions that disrupt the
body’s normal metabolic processes, which are essential for
the conversion of nutrients into energy and synthesis of vital
molecules. Tese disorders can afect the metabolism of
carbohydrates, fats, proteins, and other crucial substances,
leading to either the overproduction or underproduction of
metabolic products. Such imbalances manifest in a range of
symptoms and contribute to various health complications.
Recent studies highlight the signifcant role of gut micro-
biome in infuencing metabolic health. Dysbiosis, or im-
balance in gut microbial composition, has been linked to
disturbances in metabolic pathways, including insulin re-
sistance, altered lipid metabolism, and chronic in-
fammation. A comprehensive overview of these disorders,
including their pathophysiology, associated microbiome
alterations, and clinical relevance, is summarized in Table 1.

3.1.1. Obesity. Obesity is a chronic, multifactorial, and re-
lapsing noncommunicable disease characterized by an ex-
cessive or abnormal accumulation of body fat, which
signifcantly increases health risks [37]. It is widely recog-
nized as a major contributing factor to the development of
both noncommunicable and communicable diseases [38–
40]. Since 1999, the prevalence of obesity among U.S. adults,
defned as a body mass index (BMI) of 30 or greater, has
risen from 30% to 42%, with projections indicating that
nearly 50% of adults will be afected by 2030 [41]. Obesity
afects 19% of women and 14% of men globally [42]. It
primarily results from a chronic energy imbalance, where
excessive caloric intake from food and beverages and not
enough energy expenditure through physical activity;
however, additional factors such as microbiome imbalances,
genetic predisposition, health disparities, environmental
infuences, and commercial determinants also play a role in
the development of overweight and obesity [43, 44]. Obesity
can infuence the gut microbiota both structurally and
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functionally [24], while the gut microbiota, in turn, plays
a role in regulating nutritional status [45–47]. An increased
abundance and diversity of specifc bacterial populations
may contribute to enhanced energy storage and metabolic
processes, ultimately leading to obesity [24, 48]. Obesity
signifcantly increases the risk of various health

complications (Figure 3), with evidence indicating that they
are major contributors to noncommunicable diseases
[49, 50]. For instance, obesity is associated with increased
risks of cardiovascular issues, including obstructive sleep
apnea, T2D, irregular menstruation in adolescent girls, and
increased cholesterol levels [51, 52].

Identification of studies via databases and registers

Records after
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Figure 1: PRISMA fow diagram based on data extraction.
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3.1.2. T2D. Te global burden of T2DM among older adults
is increasing rapidly, largely due to longer life expectancy
and prolonged exposure to cardiometabolic risk factors
including excess body fat, muscle loss, and decreased
physical activity [53–57]. In the time span from 2017 and
2045, the number of adults aged 60 years and older with
diabetes approximately rises from 122million to 253million,
paralleling the growth of global population of adults aged
65–99 years from 652 million to 1.42 billion [58]. T2DM is
thought to result from the interplay of several risk factors,
including elevated serum uric acid levels, inadequate sleep,
smoking, depression, cardiovascular conditions, lipid im-
balances, high blood pressure, aging, ethnic background,
family history of diabetes, lack of physical activity, and
obesity [59, 60]. Te pathophysiology of T2DM involves
insulin resistance and initial hyperinsulinemia, followed by
a progressive decline in pancreatic β-cell function (Figure 4)
[61, 62]. Furthermore, emerging studies have highlighted the
relationship between gut microbiota and T2DM [63–66]; for
example, one study identifed 43 bacterial taxa showed
signifcant diferences between obese individuals with
T2DM and healthy controls, indicating that Acid-
aminococcales, Bacteroides plebeius, and Phascolarctobacte-
rium sp. CAG207 could serve as potential biomarkers for
T2DM [67].

3.1.3. NAFLD. Over the past four decades, NAFLD has
emerged as the most prevalent chronic liver disorder, af-
fecting approximately 25% of global adult population, and
has a bidirectional relationship with metabolic syndrome,
contributing to its progression [67–69]. Due to its wide-
spread prevalence, NAFLD has become the fastest-growing
contributor to liver-related mortality and a major factor in
end-stage liver disease, primary liver cancer, and liver
transplantation, placing a considerable economic burden on
healthcare systems [70, 71]. Rising incidence of NAFLD is
closely linked to unhealthy lifestyle choices, particularly
poor dietary habits, which also contribute to the increasing
prevalence of cardiometabolic disorders and certain cancers
[72–74]. Emerging evidence from animal models with al-
tered gut microbiota and observational studies in NAFLD
patients suggests a pivotal role of gut dysbiosis in disease
pathogenesis [75]. Terefore, intestinal microbiota in-
fuences NAFLD development through multiple mecha-
nisms, including modulation the of energy homeostasis,
lipid and choline metabolism, ethanol production, immune
regulation, and infammatory processes [76]. Furthermore,
microbiota-derived metabolites may directly impact hepatic
function, thereby modulating NAFLD susceptibility [77, 78].
NAFLD is histologically classifed into two forms: NAFL and
nonalcoholic steatohepatitis (NASH) [79]. NAFL is

Coronary heart
disease, hypertension

Cardiac

Gastroesophageal
reflux, pancreatitis

Digestive

Endocrine

Venous stasis,
phlebitis, dyslipidemia

Venous

VisionIdiopathic intracranial
hypertension, stroke

Obstructive sleep apnea,
hypoventilation syndrome
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Respiratory

Nonalcoholic fatty liver
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Figure 3: Schematic representation of obesity-associated complications in the human body. Obesity contributes to a wide spectrum of
systemic disorders, including cardiovascular diseases (hypertension, atherosclerosis, and heart failure), metabolic dysfunctions (T2D and
NAFLD), respiratory impairments (obstructive sleep apnea), and musculoskeletal conditions (osteoarthritis). Moreover, obesity is linked to
an increased risk of certain cancers, neurodegenerative disorders, and immune dysfunction. Several of these complications, particularly
cardiovascular and metabolic disorders, are life-threatening. Created in https://BioRender.com.
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characterized by fat accumulation in more than 5% of he-
patocytes, afecting 15%–30% of individuals, but remains
reversible with lifestyle modifcations [80–82]. Without
proper management, approximately 20% of NAFL cases
advance to NASH, which involves steatosis, infammation,
hepatocyte ballooning, and fbrosis, but in its early stages,
NASH is still reversible [83–85]. However, progression to
cirrhosis occurs in 15%–25% of NASH patients, leading to
irreversible liver scarring and impaired function [86, 87].
Additionally, hepatocellular carcinoma (HCC) develops in
around 4%–27% of NASH cases, often resulting in liver
failure, where transplantation becomes necessary [88]. Di-
etary habits, particularly high consumption of processed
foods and sugars, contribute to disease progression, while
a balanced diet and lifestyle modifcations can help reverse
NAFLD in its early stages (Figure 5) [89]. Notably, the
modulation of the gut microbiome through probiotics,
prebiotics, or symbiotic has demonstrated potential in im-
proving liver phenotype in NAFLD patients.

3.1.4. CVD. CVD remains the leading cause of morbidity
and mortality worldwide, with elevated cholesterol levels
recognized as a key risk factor, biomarker, and predictor due
to their role in obstructing blood fow and oxygen transport
[90–92]. Hypercholesterolemia is strongly associated with an
increased risk of CVD, including atherosclerosis, heart
failure, and hypertension, and also contributes to metabolic
disorders such as diabetes, liver disease, and Alzheimer’s
disease, often leading to organ dysfunction (Figure 6) [93].
Emerging evidence highlights a strong connection between
gut microbiota composition and cholesterol metabolism.
For instance, studies using the hypercholesterolemic mice

model have shown that the antibiotic-induced depletion of
gut microbiota enhances cholesterol absorption and syn-
thesis in hepatic cells, while microbiota transplantation from
hypercholesterolemic human donors induces a similar
dyslipidemic phenotype in recipient mice, reinforcing the
causal link between microbiota composition and lipid ho-
meostasis [92, 94, 95]. Mechanistically, specifc microbial
taxa such as Lactobacillus spp., Akkermansia muciniphila,
and Bacteroides spp. infuence cholesterol metabolism
through bile salt hydrolase (BSH) activity, the modulation of
SCFA profles, and the activation of host signaling pathways
including FXR and TGR5 [92, 96, 97].Tese fndings suggest
that gut microbiota modulation may serve as a promising
therapeutic approach for cholesterol regulation and CVD
prevention. However, further research is needed to fully
elucidate the pathophysiology of CVD and develop targeted
therapeutic strategies for its efective management [98].

3.1.5. IBD. IBD is a chronic, relapsing disorder character-
ized by persistent gastrointestinal infammation and sig-
nifcant morbidity [99]. Its global incidence and prevalence
have increased markedly in recent decades, posing a sig-
nifcant public health concerns, particularly in industrialized
nations [100–102]. Pathogenesis of IBD is attributed to
a complex interconnection between gut microbiota and host
immune system, infuenced by genetic predisposition and
environmental factors [103–106]. Dysregulation of this in-
teraction leads to aberrant immune activation, contributing
to clinical and endoscopic features of disease [99, 107].
Environmental and lifestyle factors, including excessive
antibiotic use, hygiene practices, and a Western
diet—characterized by low fber intake and high

Glucose

Insulin

Insulin
receptor

Glucose
transporter
(GLUT4)

Healthy

(a)

Desensitized
insulin

receptor

Glucose
transporter
(GLUT4)

Type 2 diabetes

(b)

Figure 4: Comparison of glucose uptake in healthy individuals versus those with Type II diabetes. (a) A healthy state where insulin binds to
its receptor, triggering the activation of glucose transporter (GLUT4) to facilitate glucose uptake into the cell. (b) Type II diabetes, where
insulin receptors become desensitized, preventing GLUT4 activation and leading to impaired glucose uptake, resulting in elevated blood
glucose levels. Created in https://BioRender.com.
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consumption of fat and sugar—are linked to gut microbiota
dysbiosis, which may induce chronic infammation and
metabolic dysfunction [108, 109]. Disruption of the
microbiota can result in the loss of essential microbial
functions, leading to impaired nutrient metabolism, com-
promised intestinal barrier integrity, and the dysregulation
of both types of innate and adaptive immune activities,
ultimately afecting immune system regulation [110, 111].
SCFAs, including butyrate, acetate, and propionate, are
playing a crucial role in maintaining intestinal homeostasis
by promoting the growth of benefcial bacteria, modulating
immune responses, and reinforcing gut barrier integrity

(Figure 7). Additionally, SCFAs stimulate regulatory T cells,
help to reduce infammatory mediators, and enhance
the consumption of colonic oxygen by epithelial cells, col-
lectively supporting gut health and immune regulation
[112–115]. Collectively, these mechanisms highlight the
therapeutic potential of targeting gut microbiota and its
metabolites for the prevention and management of IBD.

3.2. Terapeutic Potential of Targeting Gut Microbiome.
Gut microbiome is a key regulator of metabolic homeostasis,
infuencing energy balance, glucose metabolism, and lipid
regulation through complex host–microbe interactions

Healthy liver

15–30%

Reversible Reversible

20% 15–25%

• Steatosis
• Inflammation
• Ballooning
• Fibrosis

Late stages of
fibrosis

Steatosis (fat in
> 5% hepatocytes)

Fat in < 5% of
hepatocytes

4–2%

NAFL NASH Cirrhosis
Hepatocellular

carcinoma

Liver transplant or death

Figure 5: Te progression of NAFLD from a healthy liver to hepatocellular carcinoma. Te initial stages, NAFL (steatosis) and NASH
(infammation and fbrosis), are reversible with proper lifestyle changes. Cirrhosis and hepatocellular carcinoma are advanced stages
requiringmedical intervention, often leading to liver transplant or death. Poor dietary habits promote disease progression, whereas a healthy
diet supports liver recovery. Created in https://BioRender.com.

CVD

Dilated ventricle

Brain Liver Lungs Kidneys Red blood cells

Organ failure/dysfunction

Figure 6: Cardiovascular disease (CVD) and its impact on multiple organ systems. Te image illustrates a heart with a dilated ventricle,
a hallmark of heart failure, leading to organ failure and dysfunction. Te afected organs include brain, liver, lungs, kidneys, and red blood
cells, highlighting the systemic consequences of CVD. Created in https://BioRender.com.
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[116]. Disruptions in microbial composition and function,
termed dysbiosis, were responsible behind the development
of common metabolic disorders, including obesity, T2D,
and NAFLD [117–119]. Specifc bacterial species, known as
Faecalibacterium prausnitzii and A. muciniphila, play
a protective role and also help to maintain gut barrier in-
tegrity and modulating infammatory pathways [119].
Emerging research suggests that dietary interventions, along
with the use of prebiotics and probiotics, can reshape the gut
microbiome, enhancing SCFAs’ production and reducing
systemic infammation, thereby mitigating metabolic dys-
function [120]. Furthermore, FMT has demonstrated po-
tential in restoring microbial diversity and improving
insulin sensitivity in individuals with metabolic syndrome
[121]. Future therapeutic approaches should emphasize
precision microbiome-based interventions tailored to in-
dividual microbial signatures, advancing personalized
medicine in the management of metabolic disorders.

3.2.1. Lactobacillus spp. as Probiotics on Metabolic Disorders.
In 1989, Fuller frst defned probiotics as “live microbial
supplements that ofer health benefts to the host by en-
hancing intestinal balance” [122]. Since then, extensive re-
search has highlighted the role of gut microbiota in
producing a diverse range of bioactive compounds that
infuence both local gut physiology and systemic health
(summarized in Table 2) [160–162]. Among these, SCFAs,
generated through the microbial fermentation of complex
carbohydrates and proteins in colon, have been shown to
support metabolic health by enhancing cholesterol

utilization for bile acid synthesis, thereby reducing the risk of
metabolic disorders [163]. Specifc probiotic strains, such as
Lactococcus lactis and Bifdobacterium spp., have demon-
strated the ability to secrete insulin analogs, exerting ben-
efcial metabolic efects in both human and animal models
[164, 165]. Notably, genus Lactobacillus, a key member of
Firmicutes phylum, is one of the most extensively studied
probiotic groups within the gut microbiome described in
Table 2 [166]. Tese bacteria contribute to metabolic ho-
meostasis by regulating oxidative stress responses and
modulating infammatory pathways [166]. For instance,
Lactobacillus acidophilus has shown antidiabetic potential by
strengthening epithelial barrier function, reducing systemic
infammation, and infuencing gene expression related to
glucose and lipid metabolism [167]. Given these fndings,
probiotics represent a promising avenue for metabolic
disease intervention, warranting further investigation into
their therapeutic applications.

3.2.2. Prebiotics as a Terapeutic Strategy for Metabolic
Disorders. Prebiotics are nondigestible dietary compounds
that selectively enhance the growth and metabolic activity of
benefcial gut microbiota, thereby exerting signifcant health
benefts [168]. Teir role in modulating gut microbiome
composition and specifc functions has positioned them as
promising adjuncts in the management of metabolic dis-
orders, shown in Table 3 [185]. Emerging evidence suggests
that prebiotic supplementation can improve metabolic
conditions such as obesity and T2DM by promoting a fa-
vorable microbial environment that infuences host

Colonization

Probiotics/prebiotics/dietary modification

Bacteriocin,
SCFA release

Prevention of pathogens,
viral infections

Lamina propria

Mucus

Enhanced barrier function,
mucus secretion

Intestinal epithelium

(a)

Pathogens

Damaged
barrier function

Inflammatory cytokine,
cancer factor secretion

Bacterial and viral
infections

(b)

Figure 7: Efects of probiotic/prebiotics/dietary modifcation vs. pathogenic gut microbiota on intestinal barrier function. (a)Te benefcial
efects of probiotics, prebiotics, and dietary modifcations on gut health. It enhances barrier function by promoting mucus secretion,
colonizing the intestinal epithelium, and releasing antimicrobial compounds such as bacteriocins and SCFAs, which prevent pathogen
colonization and viral infections. (b) Te detrimental efects of pathogenic bacteria, which impair gut barrier integrity, leading to increased
permeability. Pathogens promote the secretion of infammatory cytokines and cancer-associated factors, causing barrier dysfunction and
facilitating bacterial and viral infections. Created in https://BioRender.com.
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metabolism [186]. Beyond metabolic regulation, prebiotics
contribute to immune modulation by enhancing immune-
regulatory interleukins and intestinal immunoglobulins
while concurrently reducing proinfammatory cytokines
[187, 188]. Additionally, they stimulate production of key
SCFAs, including acetate, propionate, and butyrate, which
play a critical role in maintaining gut barrier integrity and
systemic metabolic balance [189]. Prebiotics have estab-
lished applications in pharmaceuticals and as natural
sweeteners for individuals with diabetes due to their capacity
to regulate glucose metabolism [190]. Furthermore, accu-
mulating evidence highlights their potential in CVD pre-
vention by lowering total serum cholesterol, reducing low-
density lipoprotein (LDL) cholesterol levels, and mitigating
systemic infammation [191]. Recent preclinical fndings
extend this evidence. Zhang et al. [192] demonstrated that
arabinoxylan supplementation alleviates choline-
diet–induced gut barrier dysfunction by restoring tight
junction proteins (Tjp1–3, Ocln), reducing PERK pathway
activation, and lowering trimethylamine (TMA) accumu-
lation. Notably, coadministration of glycolysis inhibitors,
particularly pyruvate kinase inhibitors, enhanced these
protective efects, suggesting synergistic strategies for
microbiota-targeted interventions. Given their multifaceted
physiological benefts, further research is warranted to ex-
plore the clinical efcacy of prebiotics in disease prevention
and therapeutic interventions.

3.2.3. Dietary Modifcations on Metabolic Disorders.
Dietary modifcations (summarized in Table 4) play a pivotal
role in managing metabolic disorders, including metabolic
syndrome, which encompasses conditions such as abdom-
inal obesity, dyslipidemia, hypertension, and insulin re-
sistance [197]. A diet rich in whole grains, legumes, fruits,
and vegetables while minimizing the intake of refned sugars
and saturated fats has been associated with signifcant im-
provements in metabolic health [198]. Notably, Mediter-
ranean diet, characterized by an emphasis on plant-based
foods, healthy fats, and lean proteins, has been widely
recognized for its efcacy in regulating blood glucose levels
and mitigating risk factors associated with metabolic syn-
drome [199]. Additionally, time-restricted eating, a type of
intermittent fasting, has shown promise in enhancing in-
sulin sensitivity and facilitating weight management [200].
When complemented with regular physical activity, these
dietary interventions provide a comprehensive and sus-
tainable approach to managing metabolic disorders and
promoting overall health.

3.2.4. Critical Evaluation of Mixed and Neutral Findings.
Numerous studies highlight the benefcial efects of pro-
biotics, prebiotics, dietary interventions, and FMT on
metabolic disorders [201, 202], but all outcomes are not
consistently positive. Some clinical trials, particularly in
humans, have shown neutral or limited efects, likely due to
variability in individual microbiome composition, difer-
ences in intervention dosage, and study design [203–205].
For instance, some Lactobacillus and Bifdobacterium strains

show inconsistent improvements in insulin sensitivity or
lipid profles, while prebiotic supplementation sometimes
fails to produce signifcant metabolic benefts despite
promising animal data [203, 204, 206]. FMToutcomes have
been variable across studies, with modest improvements in
glycemic and lipid parameters but limited efects on weight
reduction, and the long-term sustainability of these changes
remains uncertain [207].

Tese mixed results underscore the complexity of
host–microbiome interactions and the need for rigorous,
well-powered studies that account for individual microbial
signatures and intervention parameters. Considering both
positive and neutral outcomes provides a balanced per-
spective, strengthens scientifc rigor, and better understands
to develop future microbiome-targeted therapeutic
strategies.

3.3. Biomarkers for Disease Prediction and Intervention.
Biomarkers have gained signifcant attention in predicting
metabolic disorders, allowing early diagnosis and enabling
targeted interventions, summarized in Table 5. Tese bio-
markers can bemolecular indicators, such as lipids, peptides,
and specifc genes, that refect metabolic disturbances
[219, 220]. Studies have shown that infammatory bio-
markers, such as C-reactive protein (CRP) and interleukins,
play a crucial role in assessing the risk of disorders like
diabetes and CVDs [221, 222]. Moreover, adipokines, such
as leptin and adiponectin, are closely associated with insulin
resistance and metabolic syndrome [223, 224]. Emerging
research emphasizes the role of gut microbiota-derived
metabolites as potential biomarkers, linking gut micro-
biome’s impact on metabolic regulation [225]. Advances in
omics technologies, including genomics and proteomics,
have further enhanced the identifcation of novel biomarkers
for more precise intervention strategies [226, 227]. By in-
tegrating these biomarkers into clinical practice, early di-
agnosis and personalized therapies can be efectively
implemented for managing metabolic disorders.

3.4. Short-Chain Fatty Acids and Metabolic Disorder
Intervention. Short-chain fatty acids, including acetate,
propionate, and butyrate, are key microbial metabolites
derived from the fermentation of dietary fber in gut,
exerting profound efects on host metabolism and immune
function [228]. SCFAs stimulate enteroendocrine L cells to
secrete peptide YY (PYY) and glucagon-like peptide-1
(GLP-1), which engage the vagus nerve to enhance sati-
ety, suppress food intake, and mitigate obesity risk
[229, 230]. Additionally, SCFAs activate G-protein–coupled
receptors (GPCRs), notably GPR41 and GPR43, thereby
improving insulin sensitivity and glucose homeostasis, of-
fering protection against T2D [231, 232]. Tese metabolites
further reinforce intestinal barrier integrity by upregulating
tight junction proteins, limiting lipopolysaccharide (LPS)
translocation and metabolic endotoxemia, mechanisms
implicated in T2D and IBD [15, 233, 234]. SCFAs also
function as histone deacetylase (HDAC) inhibitors, pro-
moting anti-infammatory gene expression and inducing
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regulatory T (Treg) cell diferentiation, leading to reduced
systemic infammation via the suppression of TNF-α and IL-
6, thereby conferring protection against IBD and CVD
[15, 231, 235]. Furthermore, SCFAs are able to inhibit
HDACs that helps to regulate the infammatory response
during NAFLD. SCFAs interact with GPR41 and GPR43
receptors to stimulate the secretion of GLP-1 by intestinal
endocrine L cells, helping to reduce hepatic steatosis and
activate brown adipose tissue, thereby improving NAFLD
[236]. Tese insights underscore the critical role of SCFAs as
metabolic and immunological mediators, linking gut
microbiota function to host health and disease susceptibility
(Figure 8).

3.5. Limitations. While this review provides comprehensive
coverage of current evidence, certain limitations exist.
Heterogeneity among study designs, variations in in-
tervention types, and inconsistent outcome measurements
limit direct comparisons. Te predominance of animal
studies reduces the generalizability to human populations,
highlighting the need for more standardized and large-scale
human clinical trials to validate the fndings of microbiome-
based interventions. Some studies and clinical trials reported
neutral or limited efects, underscoring that positive fndings
are not always consistently replicated in humans (for a more
detailed discussion, see Section 3.2.4). Furthermore, a sub-
stantial proportion of the literature focuses on positive
outcomes, which may refect publication bias and

overestimation of therapeutic potential. Additionally, the
absence of PROSPERO or equivalent registration, despite
adherence to PRISMA guidelines, limits methodological
transparency, making it harder to assess potential biases and
reproduce the review reliably.

4. Conclusion and Perspectives

Gut microbiota plays an important role in the pathophys-
iology of common metabolic disorders, including obesity,
T2DM, CVD, NAFLD, and IBD. Emerging evidence high-
lights the therapeutic potential of modulating gut microbiota
composition through probiotics, prebiotics, dietary modi-
fcations, and microbial metabolites. Tese strategies have
demonstrated promising outcomes in restoring microbial
balance, improving metabolic markers, and reducing in-
fammation associated with metabolic disorders. However,
current research is largely limited to preclinical and small-
scale human studies, necessitating further large-scale, well-
designed clinical trials to validate efcacy, safety, and long-
term impacts. Additionally, personalized microbiome-based
interventions hold promise for precision medicine ap-
proaches but require deeper mechanistic insights and ad-
vancements in microbiome profling technologies. Future
research should focus on elucidating host–microbiota in-
teractions, identifying novel therapeutic targets, and in-
tegrating multi-omics approaches to enhance clinical
translation. Tis review not only consolidates recent ad-
vancements in microbiota-targeted therapy but also
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Figure 8: SCFA-mediated regulation of host metabolism and infammation. Microbial fermentation of dietary fber produces SCFAs
(acetate, propionate, butyrate), which enhance insulin sensitivity, satiety, and gut barrier integrity via GPR41/43 activation and HDAC
inhibition.Tese efects reduce food intake, systemic infammation, andmetabolic endotoxemia, mitigating obesity, T2D, NAFLD, IBD, and
CVD. Created in https://BioRender.com.
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highlights key research gaps, encouraging the integration of
microbiome science into the development of future pre-
cision medicine strategies for metabolic disorders. By
leveraging gut microbiota modulation as a therapeutic
strategy, we may pave the way for innovative, microbiome-
driven interventions to combat metabolic disorders
efectively.
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