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Metabolic disorders are complex conditions that arise from abnormal biochemical reactions, disrupting normal metabolic
processes. The most prevalent metabolic disorders include obesity, Type 2 diabetes mellitus (T2DM), cardiovascular disease
(CVD), nonalcoholic fatty liver disease (NAFLD), and inflammatory bowel disease (IBD). Despite extensive research, no definitive
therapeutic strategy has been established for a complete cure. Emerging evidence suggests that gut microbiome dysbiosis plays
a critical role in the pathogenesis of these disorders, as maintaining microbial homeostasis is essential for metabolic health. Short-
chain fatty acids (SCFAs) are a key metabolite produced by gut microbiota and exhibit significant therapeutic potential by serving
as an energy source for colonocytes, enhancing gut barrier integrity, and modulating inflammation. Our analysis reveals that
targeted microbial modulation—particularly through SCFA-producing probiotics and prebiotics—consistently benefits host
metabolism and reduces systemic inflammation across multiple conditions. Thisreview highlights the importance of gut
microbiota as a viable therapeutic target and underscore the need for further clinical trials to validate microbiome-based in-
terventions in metabolic disease management.
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1. Introduction

Metabolic disorders, including obesity, Type 2 diabetes
mellitus (T2DM), cardiovascular disease (CVD), non-
alcoholic fatty liver disease (NAFLD), and inflammatory
bowel disease (IBD), represent a significant global health
burden, contributing to rising morbidity and mortality rates.
These disorders arise from disruptions in fundamental

metabolic processes, leading to energy dysregulation and
redox imbalance [1]. Key risk factors, collectively referred to
as metabolic syndrome, include dyslipidemia, leptin and
adiponectin dysregulation, insulin resistance, impaired in-
sulin secretion, and glucose intolerance [2]. At the cellular
level, metabolic disorders disrupt essential biochemical
pathways involved in macronutrient metabolism, thereby
impairing homeostasis [3]. The underlying pathophysiology
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is multifaceted, involving impaired insulin sensitivity, ex-
cessive visceral fat accumulation, lipid metabolism distur-
bances, and vascular endothelial impairment, hypertension,
genetic predisposition, and a hypercoagulable state [4].
Despite significant advances in understanding disease
mechanisms, effective long-term management remains
a challenge due to the complex and multifactorial nature of
these conditions. Current therapeutic strategies, such as
pharmacological interventions and lifestyle modifications,
often yield variable outcomes and are limited by poor patient
adherence, side effects, and a lack of personalized treatment
approaches [5, 6]. Although bariatric surgery has shown
promise in severe cases, its accessibility and long-term
sustainability remain concerns [7, 8].

Gut microbiome plays a pivotal role in the treatment of
metabolic disorders, making it a promising candidate for
therapeutic interventions. The adult gut microbiota contains
10-100 trillion micro-organisms, which is equal to ten times
the total amount of human somatic and germ cells [9]. This
microbial ecosystem exerts profound effects on host phys-
iology, influencing immune system development, gut epi-
thelial homeostasis, pathogen defense, and drug metabolism
[10-13]. Despite its vast diversity, gut microbiota is largely
dominated by four major phyla, Firmicutes, Bacteroidetes,
Actinobacteria, and Proteobacteria, with other phyla con-
tributing to a lesser extent [14]. This microbiota influences
host metabolism through various mechanisms, including the
production of SCFAs, bile acid metabolism, regulation of gut
permeability, and modulation of inflammatory pathways
[15]. Given the increasing prevalence of metabolic disorders
such as obesity and T2D, probiotics and prebiotics have
gained considerable attention for their potential in modu-
lating gut microbiota composition and function, particularly
in pediatric populations [16-18]. Probiotic-mediated mod-
ulation of intestinal microbiota has been shown to promote
microbial homeostasis, offering potential benefits as an
adjunctive therapy for T2D and insulin resistance [18, 19].
Additionally, probiotic supplementation has demonstrated
the ability to reduce inflammation in mesenteric adipose
tissue (MAT), thereby mitigating hyperglycemia and insulin
resistance [20, 21]. Furthermore, a recent study underscores
the role of gut microbiota in metabolic dysfunction-
associated fatty liver disease (MAFLD). Abenavoli et al. [22]
reviewed therapeutic approaches of Mediterranean diet,
probiotics, and fecal microbiota transplantation (FMT),
highlighting their potential benefits while also indicating
limitations in clinical studies, due to small sample sizes and
short follow-up durations. However, challenges such as
variability in microbiome responses, the long-term stability
of microbial interventions, and the need for robust clinical
validation must be overcome to maximize the therapeutic
efficacy of gut microbiome in combating metabolic
disorders.

This systematic review critically examines the role of gut
microbiota in mitigating common metabolic disorders. By
synthesizing findings from preclinical and clinical studies,
we aim to delineate the therapeutic potential of targeting gut
microbiota and identify key microbial signatures associated
with metabolic health. Addressing the interaction between
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gut microbiota and the host’s metabolic processes may pave
the way for innovative, microbiome-based strategies to
combat metabolic disorders and improve global health
outcomes.

2. Methodology

2.1. Search Strategy. This systematic review was conducted
following the guidelines set by the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) 2020.
A comprehensive literature search was carried out across
Google Scholar, Web of Science, Scopus, and PubMed da-
tabases to locate relevant studies examining the relationship
between gut microbiota and metabolic disorders, with
a specific focus on the therapeutic role of Lactobacillus spp.

Search terms included “gut microbiota,” “metabolic
disorders,” “obesity,” “T2DM,” “CVD,” “NAFLD,” “IBD,”
“probiotics,” “prebiotics,” “dietary modifications,” “Lacto-
bacillus spp.,” “SCFAs,” “biomarkers” “therapeutic appli-
cations,” “mechanism,” and “clinical evidence.” Boolean
operators (AND and OR) were used to expand the search
strategy. Our search did not impose any language re-
strictions. The studies were thoroughly evaluated, and key
information was extracted, culminating in an overall con-
clusion. The literature search covered relevant studies
published from 2002 to January 2025. All methodologies,
including search terms and inclusion criteria, were based on
PRISMA guidelines. Additional materials such as search
strategy, PRISMA checklist, and extracted data tables are
available upon reasonable request to ensure full trans-
parency and reproducibility.

2.2. Selection of Studies With Inclusion and Exclusion Criteria.
Eligible studies for inclusion were as follows: (i) studies that
were conducted in vitro, ex vivo, or in vivo, or using
mammalian or human models; (ii) studies involving gut
microbiome in relation to one or more of the follo-
wing—obesity, T2DM, CVD, NAFLD, and IBD; (iii) studies
that reported therapeutic interventions or applications (e.g.,
probiotics, prebiotics, dietary modifications); and (iv)
studies that were primary research articles published in
English.

Studies of the following nature were excluded: (i) du-
plicated data, titles, and/or abstracts that did not fulfill the
inclusion criteria; (ii) articles published in languages other
than English; (iii) case reports, letters, editorials, and
commentaries; (iv) studies lacking full-text access; (v)
studies that did not report the therapeutic activity against
common metabolic disorders; and (vi) other metabolic
disorders rather than obesity, T2DM, CVD, NAFLD,
and IBD.

The selection of these five metabolic disorders was based
on their high prevalence, strong association with gut mi-
crobial dysbiosis, and clinical significance. The exclusive
focus on Lactobacillus spp. was justified by its growing
prominence in the recent literature as a key probiotic species
with demonstrated efficacy in modulating host metabolic
functions.
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2.3. Database Reports. A total of 10,573 scientific articles
were retrieved from various databases as of January, 2025.
Subsequently, 97.85% of the articles were excluded due to
duplication, irrelevance, insufficient data, or automation
systems classifying them as unsuitable. Following the in-
clusion criteria, 227 articles on microbiome and metabolic
disorders were identified with desired information. Letter 68
article selected for further study. Final 36 article included for
qualitative synthesis. A PRISMA flow diagram illustrating
the data collection process for microbiome and metabolic
disorders is presented in Figure 1. A purposive sampling
strategy was adopted to ensure the selection of studies with
high methodological quality and clinical relevance. Refer-
ence management was conducted using EndNote, and data
were extracted independently by two authors. Disagree-
ments were resolved through discussion to reduce selection
bias and maintain consistency.

2.4. Risk of Bias Assessment. To assess the reliability of results
from selected studies, we used Cochrane risk-of-bias as-
sessment criteria, specifically the RoB 2 tool version, dated
August 22, 2019. This tool evaluates risk across several
domains: randomization process, deviations from intended
interventions, missing outcome data, outcome measure-
ment, selection of reported results, and other potential
sources of bias. Each category comprised questions across
these domains, with responses categorized as “YES” (in-
dicating low risk of bias, color-coded green), “NO” (in-
dicating high risk of bias, color-coded red), or “Some
Concern” (indicating uncertain risk of bias, color-coded
yellow) (Figure 2). In addition to the summary figure
(Figure 2), per-study risk-of-bias tables were prepared for
each included study to provide a detailed evaluation (see
Supporting Table S3). No formal assessment of reporting
bias or certainty of evidence (GRADE) was performed, as the
review aimed to qualitatively synthesize findings without
statistical pooling.

2.5. Data Items. We sought data on the following primary
outcomes: (i) metabolic outcomes (body weight, BMI, lipid
profile, fasting glucose, HbAlc), (ii) inflammatory markers
(CRP, IL-6, TNF-a), (iii) gut microbiota composition (rel-
ative abundance of key taxa, diversity indices), and (iv)
SCFA concentrations. Secondary variables included study
population characteristics (species, age, sex, health status),
intervention type (probiotic, prebiotic, dietary modifica-
tion), dose and duration, comparator, study design, funding
source, and country of study. Missing or unclear data were
recorded as “NR” (not reported) (see Supporting Table S1).

2.6. Synthesis Methods. As no meta-analysis was conducted,
no statistical effect measures (risk ratios, mean differences)
were calculated; the results are presented narratively. Studies
were grouped by the type of metabolic disorder (obesity,
T2DM, NAFLD, CVD, IBD) and intervention category
(probiotic, prebiotic, dietary modification). Missing or
unclear data were noted as “NR,” and no imputation was

performed. No formal heterogeneity or sensitivity analyses
were undertaken due to the qualitative nature of the
synthesis.

2.7. Ethical Statement. This systematic review did not in-
volve direct experimentation on human or animal subjects
and therefore did not require ethical approval. However, all
original research articles included in this review reported
approval from their respective institutional ethics com-
mittees. No identifiable patient data were used, and the
review strictly adhered to PRISMA guidelines for trans-
parency and reproducibility.

2.8. Review Registration. This review was not registered in
PROSPERO or any other database, and no formal protocol
was prepared prior to commencement. This was due to time
constraints and the narrative synthesis approach adopted.

3. Results and Discussion

3.1. Common Metabolic Disorders. Metabolic disorders en-
compass a broad spectrum of conditions that disrupt the
body’s normal metabolic processes, which are essential for
the conversion of nutrients into energy and synthesis of vital
molecules. These disorders can affect the metabolism of
carbohydrates, fats, proteins, and other crucial substances,
leading to either the overproduction or underproduction of
metabolic products. Such imbalances manifest in a range of
symptoms and contribute to various health complications.
Recent studies highlight the significant role of gut micro-
biome in influencing metabolic health. Dysbiosis, or im-
balance in gut microbial composition, has been linked to
disturbances in metabolic pathways, including insulin re-
sistance, altered lipid metabolism, and chronic in-
flammation. A comprehensive overview of these disorders,
including their pathophysiology, associated microbiome
alterations, and clinical relevance, is summarized in Table 1.

3.1.1. Obesity. Obesity is a chronic, multifactorial, and re-
lapsing noncommunicable disease characterized by an ex-
cessive or abnormal accumulation of body fat, which
significantly increases health risks [37]. It is widely recog-
nized as a major contributing factor to the development of
both noncommunicable and communicable diseases [38-
40]. Since 1999, the prevalence of obesity among U.S. adults,
defined as a body mass index (BMI) of 30 or greater, has
risen from 30% to 42%, with projections indicating that
nearly 50% of adults will be affected by 2030 [41]. Obesity
affects 19% of women and 14% of men globally [42]. It
primarily results from a chronic energy imbalance, where
excessive caloric intake from food and beverages and not
enough energy expenditure through physical activity;
however, additional factors such as microbiome imbalances,
genetic predisposition, health disparities, environmental
influences, and commercial determinants also play a role in
the development of overweight and obesity [43, 44]. Obesity
can influence the gut microbiota both structurally and
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functionally [24], while the gut microbiota, in turn, plays  complications (Figure 3), with evidence indicating that they
a role in regulating nutritional status [45-47]. An increased =~ are major contributors to noncommunicable diseases
abundance and diversity of specific bacterial populations  [49, 50]. For instance, obesity is associated with increased
may contribute to enhanced energy storage and metabolic ~ risks of cardiovascular issues, including obstructive sleep
processes, ultimately leading to obesity [24, 48]. Obesity = apnea, T2D, irregular menstruation in adolescent girls, and
significantly increases the risk of various health  increased cholesterol levels [51, 52].
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FIGURE 3: Schematic representation of obesity-associated complications in the human body. Obesity contributes to a wide spectrum of
systemic disorders, including cardiovascular diseases (hypertension, atherosclerosis, and heart failure), metabolic dysfunctions (T2D and
NAFLD), respiratory impairments (obstructive sleep apnea), and musculoskeletal conditions (osteoarthritis). Moreover, obesity is linked to
an increased risk of certain cancers, neurodegenerative disorders, and immune dysfunction. Several of these complications, particularly
cardiovascular and metabolic disorders, are life-threatening. Created in https://BioRender.com.

3.1.2. T2D. The global burden of T2DM among older adults
is increasing rapidly, largely due to longer life expectancy
and prolonged exposure to cardiometabolic risk factors
including excess body fat, muscle loss, and decreased
physical activity [53-57]. In the time span from 2017 and
2045, the number of adults aged 60years and older with
diabetes approximately rises from 122 million to 253 million,
paralleling the growth of global population of adults aged
65-99 years from 652 million to 1.42 billion [58]. T2DM is
thought to result from the interplay of several risk factors,
including elevated serum uric acid levels, inadequate sleep,
smoking, depression, cardiovascular conditions, lipid im-
balances, high blood pressure, aging, ethnic background,
family history of diabetes, lack of physical activity, and
obesity [59, 60]. The pathophysiology of T2DM involves
insulin resistance and initial hyperinsulinemia, followed by
a progressive decline in pancreatic -cell function (Figure 4)
[61, 62]. Furthermore, emerging studies have highlighted the
relationship between gut microbiota and T2DM [63-66]; for
example, one study identified 43 bacterial taxa showed
significant differences between obese individuals with
T2DM and healthy controls, indicating that Acid-
aminococcales, Bacteroides plebeius, and Phascolarctobacte-
rium sp. CAG207 could serve as potential biomarkers for
T2DM [67].

3.1.3. NAFLD. Over the past four decades, NAFLD has
emerged as the most prevalent chronic liver disorder, af-
fecting approximately 25% of global adult population, and
has a bidirectional relationship with metabolic syndrome,
contributing to its progression [67-69]. Due to its wide-
spread prevalence, NAFLD has become the fastest-growing
contributor to liver-related mortality and a major factor in
end-stage liver disease, primary liver cancer, and liver
transplantation, placing a considerable economic burden on
healthcare systems [70, 71]. Rising incidence of NAFLD is
closely linked to unhealthy lifestyle choices, particularly
poor dietary habits, which also contribute to the increasing
prevalence of cardiometabolic disorders and certain cancers
[72-74]. Emerging evidence from animal models with al-
tered gut microbiota and observational studies in NAFLD
patients suggests a pivotal role of gut dysbiosis in disease
pathogenesis [75]. Therefore, intestinal microbiota in-
fluences NAFLD development through multiple mecha-
nisms, including modulation the of energy homeostasis,
lipid and choline metabolism, ethanol production, immune
regulation, and inflammatory processes [76]. Furthermore,
microbiota-derived metabolites may directly impact hepatic
function, thereby modulating NAFLD susceptibility [77, 78].
NAFLD is histologically classified into two forms: NAFL and
nonalcoholic steatohepatitis (NASH) ([79]. NAFL is
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F1GURE 4: Comparison of glucose uptake in healthy individuals versus those with Type II diabetes. (a) A healthy state where insulin binds to
its receptor, triggering the activation of glucose transporter (GLUT4) to facilitate glucose uptake into the cell. (b) Type II diabetes, where
insulin receptors become desensitized, preventing GLUT4 activation and leading to impaired glucose uptake, resulting in elevated blood

glucose levels. Created in https://BioRender.com.

characterized by fat accumulation in more than 5% of he-
patocytes, affecting 15%-30% of individuals, but remains
reversible with lifestyle modifications [80-82]. Without
proper management, approximately 20% of NAFL cases
advance to NASH, which involves steatosis, inflammation,
hepatocyte ballooning, and fibrosis, but in its early stages,
NASH is still reversible [83-85]. However, progression to
cirrhosis occurs in 15%-25% of NASH patients, leading to
irreversible liver scarring and impaired function [86, 87].
Additionally, hepatocellular carcinoma (HCC) develops in
around 4%-27% of NASH cases, often resulting in liver
failure, where transplantation becomes necessary [88]. Di-
etary habits, particularly high consumption of processed
foods and sugars, contribute to disease progression, while
a balanced diet and lifestyle modifications can help reverse
NAFLD in its early stages (Figure 5) [89]. Notably, the
modulation of the gut microbiome through probiotics,
prebiotics, or symbiotic has demonstrated potential in im-
proving liver phenotype in NAFLD patients.

3.1.4. CVD. CVD remains the leading cause of morbidity
and mortality worldwide, with elevated cholesterol levels
recognized as a key risk factor, biomarker, and predictor due
to their role in obstructing blood flow and oxygen transport
[90-92]. Hypercholesterolemia is strongly associated with an
increased risk of CVD, including atherosclerosis, heart
failure, and hypertension, and also contributes to metabolic
disorders such as diabetes, liver disease, and Alzheimer’s
disease, often leading to organ dysfunction (Figure 6) [93].
Emerging evidence highlights a strong connection between
gut microbiota composition and cholesterol metabolism.
For instance, studies using the hypercholesterolemic mice

model have shown that the antibiotic-induced depletion of
gut microbiota enhances cholesterol absorption and syn-
thesis in hepatic cells, while microbiota transplantation from
hypercholesterolemic human donors induces a similar
dyslipidemic phenotype in recipient mice, reinforcing the
causal link between microbiota composition and lipid ho-
meostasis [92, 94, 95]. Mechanistically, specific microbial
taxa such as Lactobacillus spp., Akkermansia muciniphila,
and Bacteroides spp. influence cholesterol metabolism
through bile salt hydrolase (BSH) activity, the modulation of
SCFA profiles, and the activation of host signaling pathways
including FXR and TGR5 [92, 96, 97]. These findings suggest
that gut microbiota modulation may serve as a promising
therapeutic approach for cholesterol regulation and CVD
prevention. However, further research is needed to fully
elucidate the pathophysiology of CVD and develop targeted
therapeutic strategies for its effective management [98].

3.1.5. IBD. IBD is a chronic, relapsing disorder character-
ized by persistent gastrointestinal inflammation and sig-
nificant morbidity [99]. Its global incidence and prevalence
have increased markedly in recent decades, posing a sig-
nificant public health concerns, particularly in industrialized
nations [100-102]. Pathogenesis of IBD is attributed to
a complex interconnection between gut microbiota and host
immune system, influenced by genetic predisposition and
environmental factors [103-106]. Dysregulation of this in-
teraction leads to aberrant immune activation, contributing
to clinical and endoscopic features of disease [99, 107].
Environmental and lifestyle factors, including excessive
antibiotic use, hygiene practices, and a Western
diet—characterized by low fiber intake and high
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cells, highlighting the systemic consequences of CVD. Created in https://BioRender.com.

consumption of fat and sugar—are linked to gut microbiota
dysbiosis, which may induce chronic inflammation and
metabolic dysfunction [108, 109]. Disruption of the
microbiota can result in the loss of essential microbial
functions, leading to impaired nutrient metabolism, com-
promised intestinal barrier integrity, and the dysregulation
of both types of innate and adaptive immune activities,
ultimately affecting immune system regulation [110, 111].
SCFAs, including butyrate, acetate, and propionate, are
playing a crucial role in maintaining intestinal homeostasis
by promoting the growth of beneficial bacteria, modulating
immune responses, and reinforcing gut barrier integrity

(Figure 7). Additionally, SCFAs stimulate regulatory T cells,
help to reduce inflammatory mediators, and enhance
the consumption of colonic oxygen by epithelial cells, col-
lectively supporting gut health and immune regulation
[112-115]. Collectively, these mechanisms highlight the
therapeutic potential of targeting gut microbiota and its
metabolites for the prevention and management of IBD.

3.2. Therapeutic Potential of Targeting Gut Microbiome.
Gut microbiome is a key regulator of metabolic homeostasis,
influencing energy balance, glucose metabolism, and lipid
regulation through complex host-microbe interactions
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[116]. Disruptions in microbial composition and function,
termed dysbiosis, were responsible behind the development
of common metabolic disorders, including obesity, T2D,
and NAFLD [117-119]. Specific bacterial species, known as
Faecalibacterium prausnitzii and A. muciniphila, play
a protective role and also help to maintain gut barrier in-
tegrity and modulating inflammatory pathways [119].
Emerging research suggests that dietary interventions, along
with the use of prebiotics and probiotics, can reshape the gut
microbiome, enhancing SCFAs’ production and reducing
systemic inflammation, thereby mitigating metabolic dys-
function [120]. Furthermore, FMT has demonstrated po-
tential in restoring microbial diversity and improving
insulin sensitivity in individuals with metabolic syndrome
[121]. Future therapeutic approaches should emphasize
precision microbiome-based interventions tailored to in-
dividual microbial signatures, advancing personalized
medicine in the management of metabolic disorders.

3.2.1. Lactobacillus spp. as Probiotics on Metabolic Disorders.
In 1989, Fuller first defined probiotics as “live microbial
supplements that offer health benefits to the host by en-
hancing intestinal balance” [122]. Since then, extensive re-
search has highlighted the role of gut microbiota in
producing a diverse range of bioactive compounds that
influence both local gut physiology and systemic health
(summarized in Table 2) [160-162]. Among these, SCFAs,
generated through the microbial fermentation of complex
carbohydrates and proteins in colon, have been shown to
support metabolic health by enhancing cholesterol

utilization for bile acid synthesis, thereby reducing the risk of
metabolic disorders [163]. Specific probiotic strains, such as
Lactococcus lactis and Bifidobacterium spp., have demon-
strated the ability to secrete insulin analogs, exerting ben-
eficial metabolic effects in both human and animal models
[164, 165]. Notably, genus Lactobacillus, a key member of
Firmicutes phylum, is one of the most extensively studied
probiotic groups within the gut microbiome described in
Table 2 [166]. These bacteria contribute to metabolic ho-
meostasis by regulating oxidative stress responses and
modulating inflammatory pathways [166]. For instance,
Lactobacillus acidophilus has shown antidiabetic potential by
strengthening epithelial barrier function, reducing systemic
inflammation, and influencing gene expression related to
glucose and lipid metabolism [167]. Given these findings,
probiotics represent a promising avenue for metabolic
disease intervention, warranting further investigation into
their therapeutic applications.

3.2.2. Prebiotics as a Therapeutic Strategy for Metabolic
Disorders. Prebiotics are nondigestible dietary compounds
that selectively enhance the growth and metabolic activity of
beneficial gut microbiota, thereby exerting significant health
benefits [168]. Their role in modulating gut microbiome
composition and specific functions has positioned them as
promising adjuncts in the management of metabolic dis-
orders, shown in Table 3 [185]. Emerging evidence suggests
that prebiotic supplementation can improve metabolic
conditions such as obesity and T2DM by promoting a fa-
vorable microbial environment that influences host

85U80 7 SUOWILLIOD SAIERID 3|qeoljdde ayy Aq peusenob ale S9Ie O ‘85N JO S3|NJ o AReiq1T 8UIUO AB{IM U (SUONIPUOO-PUR-SLLBYWI0D" A3 1M A e.d1jBU [UO//Sthl) SUORIPUOD Pue Swie 1 8y} 88S *[520Z/TT/S0] Uo Ariqiauliuo AB(Im * ASIBAIUN %000 Sewer - Ueleuey Inuezi ‘PIN AQ G28/98E/G10S/SSTT OT/I0PW00" A3 1M Ale.d 1 jpul|uoy/sdiy Wouy pepeoiumod ‘T ‘G202 '89T9


https://BioRender.com

6168, 2025, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1155/sci5/3367875 by Md. Mizanur Rahaman - James Cook University , Wiley Online Library on [05/11/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Scientifica

SPOOJ [eUOT)OUNJ [9AOU SUTLIID 10] uonewweyur ]
yromaureyy fenydeouod e Jurrago pue £1saqo Suiseardsg SZONIA “T-UIPNE “UIpN[I0 ‘1-O7Z ‘AX-IN/FITLL
LLVOA ‘T-dd2dST “o1LdD vdvddl
SDISUDULIYY Y PUR WINLI21OvQopYig ‘Shijionqo1onT
[9€T] “A11s2qo paonpur-qJH Sunnpax 103 onjorqoxd oﬁwEm UWINIPLIISOIIOULIDT PUR ‘DIINGISOY dﬁuaxotﬁ\,@m:mwQa
sadiysi)y pue 4a1ovquiopQ ‘SPUOUIIUIISIIUT
‘spuomAing ‘snoodpuding| 11V D17

[LeT] 1-€7 wnivjup)d snjjovqoionT

OLLYd
wnavjuvld snjjvqQoIIvT

[s€T] Ay1saqo jsureSe s109p0 d1301qUIAS IPIAOIJ dgTIYd ‘dgTasT 1-don o- AN ‘TIwyg xediT S1gy SnsouwvY.L snjjIvqoIIvT
[#€1] 201w £)1S2q0 PAONPUI-JATP ISUTESE SO0 dA1I00IJ . mSWUEm HHESBS . . 87D wnivjuv)d snjjavqoiovT
avaovuoqiaofinsaq] Svd ‘A-gvdd ©-11dD ©P-109dl
suadutifiad
[g€T] £3159q0 paonpul-([JH WOIJ $199101 wniprigso) “dds wingiagovqopifig <dds snjjrovqosonT L2

ajempour ‘A-yydd opred£[Sin qorasajoyd undo] urens winavjuv]d snjjovqoovT

LVM ur uonenyur aSeydorew (SOENT) SOHNT

[zeT1] uonuaadxd £1saqo 103 urexns onorqoid [enualog 08/% pue ‘T-doq 1-331 ‘13eS0IN a3 soyen3ai ooueraOIUT SnsousYL SmifovgoDT
9s0on[3 pue sisojedls oneday| (Ty M WySom ApogT
LSV F-1IT f01-T1] *A £0Dd0D
115900 JO JUdUIRAI) puR UOIUIAdId 10] 21301q01d [R1IUS)0, . m”:« LSV .Hﬁl w T ‘o1 ,AZ . .
(et poa0d preto! FOROICTEREROd 190 -NAIT “O-TIT P-ANLT ‘g1-TIT O-TAH] ‘DL O-1dTOLT winguauiiaf snjj10qoovT
£)152q0 91ENUSE 0} SATIRUId)E [eInje o s2uaf pajeppi-sisayjuds pidiy aunjord> 19sv2v40d Snjj19vqO1Y
[ogT] 15990 % HE 0} SARBUIE [PIMEN Aroyewrwreguroad? QT ‘OpooA[Siy ordisa[oyn 7T 61! 11rqoPv1
[621] uone[NWNIOE JeJ JAAT pue ured JySrom saonpay P-ATLT ‘g T-TIT proe AnesT sl ‘DL OpuadA[SuLT  SITIN 12svovivd snjjiovqopvy
Aranssuas upnsuy 1dDN] fuonemumnooe
[821] pue sisejsoawroy asoon[d saaoxdwr pue erwaprdis4p . o . . 1[ 1403124 Sn]j1PQOIIVT
SIAJI[I ‘ssew Jej sonpar ‘ured JYSom SIUAIJ 2PHABINT (HSMXA] ‘STIDANIXAT 6-4DdD] WXAT
¢ ¢ 17D
[z21] JyS1om £poq Ul JO SSEUr Jej [e30} Ul SUOIINPAY undoy “op11o4[81n [oraysa[oyD T 05y winspuoyd syvgopvT
] . S209 ODIO
[9z1] uonuaAdxd £1s9qo 10§ 23eprpues onorqord Sursrworg Kemyged @i-INT ‘S1SOUIUASOIq SUIPHISIE | snypydopin syovaoPoT
uomouTy urpauodipe £60-01q01g
[sz1] a1oodrpe Furaordur pue \.rauao Sunednru ur aAnoayyg PU® PLATO] ‘T-dDIN Puv ‘UnsISat ‘08/%d ‘TAINV.LS wnaejueld snfpeqoro
‘ : : ‘ ST T D-INL unds] ‘1-1vd] uonisodsp oprraoA[Suiy,T G901qOIJ Toyes sny[eqoloe]
DN ; ($27) ®r011ys
[ve1l juowadeuew Jyom Apoq saoueyuy 9-T117 ‘unosuodrpe pue urjordodry| soon(d pue undo] urens s snpovgoPD
¢ ¢ ¢ ¢ CEOTAN
[e2T] £1152q0 paoNpUI-12Ip ONPAY we o AMOUM NHmU» MW&W %ﬁuuwnw ..m_wmuwzﬁﬁ nsu winivjuv]d snjpovqoIvT
PUe JUTL 9L PANLT “[0I3S(0 [e303 UBAS WMSULT o 0 imo smovgopvy
uonIpuod
SOUIIYY DUIPIAd [ed1TUIpPAId/RdTUI]D $199J9 [euondUN] sapadg

/aseasIp pajadie,

"9JUSPIAS PUB SWISTURYOIW :SI9PIoSIp drjoqelowr Junednrur ut onorqoid e se “dds snjj1ovqozovT Jo sajoy :g 414v],

10



6168, 2025, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1155/sci5/3367875 by Md. Mizanur Rahaman - James Cook University , Wiley Online Library on [05/11/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

11

Scientifica

’ ¢ ¢ L6SOINIIN
[zsTt] WINISS UT S[9AI] [0II)SI[OYD IONPAI 0] ANQLIIU0D) auad Y17 ‘spe ongl “1a1 ‘DLT winuouLLaf SnjIPqOIIYT
¢ P . €9C
[1sT1] Am(ur oerpres jsureSe $109pJ9 2A1103301d UAAID 1dS ‘4D1D T-X0D ‘@-INT AR T —.
wrddd
[osT] smyoid pidip poorq aaoxdur 0y sdjoyg aAd BLI9)0Bq PR 210B[| O-TAH 9-TAH ‘DL [o11s3[0yDT STISOUMmDHL Sl ucMMMMM
SNSOUUDLYL SH]]19DQOIIDT
[6¥1] 9SBISIP JR[NOSBAOIPIEd 20NPal 0} SA[9H] -dds snjjvqopv| ‘OVINLT ¢d'1D wnivjuvid snjavqovT
4de1syy pue ; . . 0106 TAWA
(871] uorjuaAdxd orwdjordysafoydradAy 103 onorqoid Tenuslog SPIO® J[1q] Xoput SISO1APSOIE D-IAT [OIASAOYDT wnivjuv]d snjpovqoivT
Aemyped Burreudis s ¢ ¢ ¢ ‘01 ey 12A17T - SNIADALIDS SN][19Dq03ID
[2¥1] ZIVOTIN/AS-20E T-{TUI BIA PajerAa][e aSeurep 1oATT VA0S ‘TLVOIINL LSV LTV ‘DL Ve I9Ar] 9-)INS sniivai] 1110901077
v ‘sisdjodiy| ¢stsouadodr] ‘saunjoifo 9TTNDN
[ov1] UORIUNy JAY 2103531 03 SAPH ATIVN Aroyewrwrepyuroxd ‘urxojopus ‘uore[nwnode Je | wnivjuv)d snjpovqoivT
SIININULIL] “DIQOIIIULOINAII A
[sp1] dTIVN ‘VILdO 0YVddl T-d9qds DOV ‘SVd T ‘unsauodipe| “T1 8S609IN[IN 1yPs snjj1ovqojov]
Suneany pue Junuaaaid 105 onjoiqoid e se renyuajod smoys ‘ ‘ ’ ‘
' ' T ‘unda] ‘s1s03eals YN ‘NAF DL LSV LTV WSrom 17T
sajerpAyoqres _ P ¢ ’ ¢ ¢ 9¢€LT
vl JO wisfjoqejow paoueyud pue erwadk[S1odAy paonpey P-ANL O~ @A ANT ¢ yog LNV META L %06 TSUI “TSUIT YULSLL 1ainas snjjovqoovT
UotEal ase WNNIDQIIYIaV, ‘SNJJ1IPQOIIVT T 0§I14IS (
o1l -9uIoIqo n3 W n 3« ou DN«W Mm ] orqoxd o 7SUaS WIIPLSOD) “DII2IS0qN] “UpiOU 3vadnIvqLN | SNSOULUDYL SN nMMDM@@N
SUIOIGODIUL e 21Mmny 10§ (roIddr SROIoIC [PHU0d 2190q1i0pQ) “WNLIIIVQIULL0]) Sh22020]AYdvIST SYIDS| HA STHIPPQOPYT
aVpaul $aP1042190qVIV ] | €161DD2D
[ev1] $212qe1p 821 03 s san01qoid [enueiod 9-T] P-IN,L @s00n[3 poo[q] “IQH ‘@oUeId0} 350oN[D) | 1495SV3 SN]J190q019VT
s10308) A1oyewrwreyur ‘§q 17
[z#1] suonoeIa)ul dwolqodrur Ing ySnoayy £5ed1s o1aqeIpiuy ‘PIdD ‘AeIing 9ye1a0e “euaoeq Supnpoid-yads) 710 pue G195 snjjvqoidvT
ejorqororur ng payengar ‘uoroeax 1-d1D-29¢HNd
[171] Jusunean) WAZL, 01 yoeoidde renuatod e Sutay acl Arojewrureyur] cwona1dds urmsur ‘uonjeraford [po-¢| -wnivjuvyd snjjvqovT
SYADS| pue avaovisuvuliayyy |
wsIoqelour PV pue JJINV jo uonedioydsoyd| ‘uorssardxa 10DVH
[o¥1] - : -
asoonid SunemSar £q Nz I, pue eruaoA[31odAy sjerssy VN pue [[90-¢ aanrsod-urmsur| 41-yINOH winavjuvld snjjvqovT
pue 2oueId]0) 2s0on3| OTyqH pue asoon3 poorgT
azl er1)oeq uonpoid
l6¢T] i ) “VADS] fsapnonui ]| sajop10421ovg 1-dTO] 9-11 6TFINIDD 195D SN{[BqOIOT
2roxduit 01 demyyed uopewwreyul-y 4DS-eI0p 108 P12V D- NI, 90UEJSISII UINSUL “DOULII[OIUT 9500N[3 9s0on[HT
NAzL SVADS ‘T-dTO ‘TAVA] $$911S SANEPIXO ‘WSI[0qeIau
[8e1] aroxdwr 0y Aemyyed 1-JTH-7YIVII-VIDS PAYIPOIN pidiy ooue)sisal urnsul pajerorouwre pue asoons poorgT [T 19583 SIDEqO1eT
uonIpuod
SOUIYY DUIPIAd [ed1TurpPId/edTur ) $193J9 [euonduUNg sapadg

Jaseastp pajagdie],

‘panunuo)) :g I14v],



6168, 2025, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1155/sci5/3367875 by Md. Mizanur Rahaman - James Cook University , Wiley Online Library on [05/11/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Scientifica

‘uoneardiaur saneredwod $IIWIl YOTYM @jep JNSTUBYISIW JNOYIIM PIIS] d19M ZEOTAN winivjupid *T se Yons sUrens dWos ISASMOH "UONB[NPOW [JD() pue YXJ Surajoaur wsrueypsw Lemyjednnur e
pamoys [ rarnas T ‘A[qeIoN "saunjolhdo Lrojewrwrepurold pue ‘saprradA[3n ‘undsy ur suononpar se yons ‘sa1pnjs [edrur[ra1d sso1oe s19919 £1159q0-11UL 1UDISISUOD PAIRIISUOWIP SUIRIIS S11]19DQ0IIDT [I9AIS 210N

l6sT] sn1jo> jo juswdoraasp ay) 3qryur o) dppyH ‘ ; o mAoyRres c 0
oS! ‘VawW ‘OdN ‘9-TI ‘01-TI ‘T-XOD D-ANLT  -81SS wnivpuvid snjjiovqosov
(8<1] uonejuawa[ddns Surpnpoo ‘uruayes-gz1d uruares-g 1 €TECEDDILY
8st pooj A[qeiou ‘qg[ I0J JUSUIJEI) SJEUI)[ IPIAOIJ urpne) ‘1-0Z ‘¢ONNW ‘uLayped-g| oINI ‘9-1I ‘g1-11T 149ssD3 SNjJ19DqOIPVT
©IO[ [eUT}SAIUTONISES oY) paIoje o T-6€DINSIN
[2sT] pue uood 3y} ur edwr AIojeurwepur-ue ue JIQIYXy snj(vqo3vT] W-INLT 19s0v40d snjj1vqOIYT
i D- INLT 0-4D,L, “1030e] AI10jRUUUIEj UL ISTNAZ
[9sT] ad1 paonput-gs( jo swordwids aemafre Apuesyrusis adl -pue ‘poe dukng ‘pre oswordoid ‘poe Moy | SNSOUUIDYL SNJ19DQOIIVT
sworqoorur jng $319p1042190g T WNIP1IISOPPOULIDT
[ssT] pue Arunwwr jsoy unempow ydnory) snrod a1edniN ‘sopmopatd €1-TIL ©-ANL ‘91-TI 9-TIT 8600 HasSVB snjio0qo1o0]
er2)oeq Supnpoid-syiDs]
[¥s1] adi yuaaaid o3 yoeoadde pajaSrey e se paziudoooy oSeqdomew 1] ‘G1-1 DN, ‘Uorssordxe W] 100[TD nuosuyol snjjovqoovT
7d-4o.L ‘19-IDL ‘01-TI ‘1-0Z T80NNH
3 3 o}
[est] O] 38214} O} TOIP[NEST BIOIQOINUL 1 [ERURIO] ‘7 UDdNU ‘S[9 39[q08 | ‘gY-IN VDA ‘T-INVDIT SVIDS] winavjuvyd snjjvqoivT
uonIpuod
SIOUIINY JUIPIAD [edturpAId/[edtur) $399p)2 [euondOUNJ saadg

Jaseastp pajadie],

‘panunuo)) :g 414v],

12



6168, 2025, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1155/sci5/3367875 by Md. Mizanur Rahaman - James Cook University , Wiley Online Library on [05/11/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

13

Scientifica

©}01qOIOTII Kemyped
(641 83 £ - IN-88 AN~ - £ 8y/3uw oo 4
adi m3 Sunempow 4q  PA-IN-88AAN-FUTLT P-INL  skep Iz 10 002 ‘001 soyaw Apnis OAIA U] asouryey
STIIOD UT 1092 2ATIOR101  pue ‘g1-T[ ‘9-TI ‘C-TI [01IU0)D
souourioy janyes
I-dTO Pue )OO\ 42190911250 i
[821] £y1saq0 uonengax anaddy sadsiyy ‘vinoyg ‘oyeronsidoyyy Yoom-g OI)IA UI PUE OAIA U] 3001 £1001YD)
JO douBpUNQE PIYIPOIN
Aemyed Surreusis
uonewe[jul MAINV/SYI/IMV payemnaar p 1ad ‘m'q 3y i
[221] sajeqeI(y S[OqEIA 2YE[POIN oSS Drio1vqopYig | SPM 8 S 0071005 OAIA U] saprLIedIeS031[0-ouUeA
IUIIX010PUD 950N T
JdoURIS[OJUT (
£yso SuoRTIAE JfoqeIIw 2s0an3 ‘uopewiwreyul SYoaM Sy/8w OAIA U JBI)Xd AII9QUEID M mvmmuv
[o21] 18290 JO UOTJZI[EWION ansst) JuaAaxd ouepunqe e /e 00z MUl ! uwo e Mu«mo%um-oﬁ %:H\M%
[e11910€q [eDY2USq erking | PHEq fo-oi I
uonemSar ej01qoIdTII PXE} 9D9IDLIAIDOHOD) A[rep 201m)
; : Wn1Ia10vqopLig _
[s.1] £y1saq0 n3 ea syuowasoxdur qunmvgony ‘Txg ), gei sfepp1 Swe/F (M) OAIA UJ asonxapA[od
SI0qEIRW JTWA)SAS [120q0]]y IX]] Jeld ‘9¢pPD 11p IS
‘133 019359[0Yd OpL1ooA[S1n |
SIAT HITISUL I2A0SSOID
suoneIaye - wa1ydosgouadopd
[#21] WAzl PoIqomdIW 13 mﬁSﬁgum 1e BEWWWE | N&«uim P Yoom g Aep/3¢ parfonuos-oqaserd (SOX) soprreydoesodijo-o[Lx
ST : : : ‘pazropuey
SNPQVYL0IIIUT D]]opAVMOL] ]
s[yoixd A10jewruejur-nue
[#L1] adi ue pIemo) suadijo winiia3ovqng | — — oIjA U] unodq
©JOIQOIDIUI SOUL[RqIY
suorpuny sunwiwy pue  spImsul passaxddns - INIT o i
[e2T] aiL ejorqonm g soueyuy  Tg-T[ PUR L1 0T-TIL SAPPOE (54 01 10) T 0T oM uI ueon(s-g 35wk
s100h° A1saqo-Tjue pue CHtAOPYIq
[zL1] £y1s2q0 Pape Missqo-nut p 8025 “dds vringasoy SYoam § (M/M 9%01) — suej{xourqery
spoape Surtomor-prdry
: “dds vjjag0aaig-saproiazong |
vjjas1NSvIV
. ursjoqelau 2soonys ‘sap104210vg “vija30424do]IV | . i
[121] sajoqerp ‘A11saqO pue pidi] saosduwy opLosA(Sin ‘proe Aney] SYooM ¢ OAIA U] (SOD) saprreydoesoijo-ojoe[en)
U219DQI]1950) @V2ID22020UIUNY T
. SONIUNUILIOD PIYIYS
[0£1] agi “4iseqo yyreay g ajowoig pue Ayssoarp vydpe] Vansl y¥e — Surmymo ona ug (SOJ) sopLreydoesodIjo-03onLy
ws[joqejour VaIDS| ‘urnsurl Him 810 3o E:owww%wwuouﬁm
[691] Ausaq0 uewny w>o.&~5 Lepy  <osoon3 ewserd ,monmvio jeqg| sbep s 8 vN\%ﬁwmwmﬁ-D ‘pozrwopuel e
‘Pulq-d[qnoJ
$IOUIIIJI aseasip 3a51e DUIPIAD [edTUT UOIJO. JO WISTURYDI uonvimp - HORLRUIIUOS usisap 31)01G21
1ol Ip Jas1e], PIAD TedIUID noe J ey Apms Jas0Q Apmys/uonusazayuy noigaid

‘uonpoeIdul dworqonmw g ydnoayy sioprosip oroqelow SurSeuew ur o[01 IOY) Pue SOOIQRI] ¢ TT14V],



6168, 2025, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1155/sci5/3367875 by Md. Mizanur Rahaman - James Cook University , Wiley Online Library on [05/11/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Scientifica

'SIJAUIQ WLI)-3UO] ULIJUOD 0) PIPIdU I8 S[eLI) [eDIUI[> pazipIepue)§ Isoy Aq Area Lewr sasuodsax jey) 1sa33ns AJISISAIP [RIqOIDTW UT SUONONPAT pajdadxoun
5UI0G "WIS[[0qe)dW PUE UOTJRWWE[UI SUNBNPOW pue SPAI] VDS Suises1our ((visuvuiioyyy pue winiiajovqopifig “8-9) ssqomdiu [epysuaq Surydrus 4q yireay droqelswr pasordurr sonorqaid 1soN 270N

aworqo o sV40S 2onpoid OI-dgays
[#81] INAZL sojerndax pue uondiosqe -d ‘A-gvdd 21em3a ‘spad] skep gz mq /8w og soyjouwr Apn3s OAIA U] ueuuewoon|d oe(uoy
pidy| Sunqryug urmsur| “IAT “TATA ‘OL OLT
urnsur
pue asoon[3 dzIeurIou gej
[£81] £1saq0 vorqot TOAI[T ungvappod wnpiiso])T  skep 9g — soyjow Apn3s OAIA U] SOPIIBYDOESOSI[0 UBSOITYD)
[eunsajur Sunempoy -
SUNSOWDL WNIPLLISO]D)
‘wnotfindvivd wnipiiso)) |
SWOIqOIDTW
g Sunempowr SINIULIL]
[es1] Anseq0 4q EuEmeﬂmE 5319p1042190g Stﬁuﬁﬁc::u«@ e - poatr oniA Ul sued
jydrom syzoddng
urxojopua] ¢proe ouking
‘poe oruordoxd ‘proe onede|
uonRW WUl 9495SD8 SNJJ19DQOJIVT 12N -
[181] Ay15990 $90NPaI pUE WSI[OqeIoUN snjjvqopvT viydiuonu SPIMOT o od 3 soyjow Apn3s OAIA U] SopLIeYOeSO3I[0 2JeUIS[Y
pidiy saoueyquy vISULULYYY | OT1AD 00T 1od OV 8¢
‘d1TI7 ‘urmsur wmniss| soon[3
souad stsouadod] O-1qT ‘OLT
$912qUIp “UOTR[NPOW BJOIqOIOTUI SopLo41Ive Yoom
[081] pue £1s9qo : : : ‘vynvlg ‘vijar04a.1dopy /8w 0oz soyjouwr Apn3s OAIA U] ueproon,j
S e1A GBI sONPAY IUIIXIS
‘UoTjRWIR[UT ‘opydiudnu pISUPUIINYY |
uoneINp  UOIEIIUIDUOD ugisop
SPUIIY  dseasip 1a8Sre], DUIPIAI [EdTUI]D UoIjOR JO WISTUBYIIN Apms fo50(] Apys/uonuaATaI] smorqaig

‘panunuo)) ¢ FTAV],

14



Scientifica

metabolism [186]. Beyond metabolic regulation, prebiotics
contribute to immune modulation by enhancing immune-
regulatory interleukins and intestinal immunoglobulins
while concurrently reducing proinflammatory cytokines
[187, 188]. Additionally, they stimulate production of key
SCFAs, including acetate, propionate, and butyrate, which
play a critical role in maintaining gut barrier integrity and
systemic metabolic balance [189]. Prebiotics have estab-
lished applications in pharmaceuticals and as natural
sweeteners for individuals with diabetes due to their capacity
to regulate glucose metabolism [190]. Furthermore, accu-
mulating evidence highlights their potential in CVD pre-
vention by lowering total serum cholesterol, reducing low-
density lipoprotein (LDL) cholesterol levels, and mitigating
systemic inflammation [191]. Recent preclinical findings
extend this evidence. Zhang et al. [192] demonstrated that
arabinoxylan  supplementation  alleviates  choline-
diet-induced gut barrier dysfunction by restoring tight
junction proteins (Tjpl-3, Ocln), reducing PERK pathway
activation, and lowering trimethylamine (TMA) accumu-
lation. Notably, coadministration of glycolysis inhibitors,
particularly pyruvate kinase inhibitors, enhanced these
protective effects, suggesting synergistic strategies for
microbiota-targeted interventions. Given their multifaceted
physiological benefits, further research is warranted to ex-
plore the clinical efficacy of prebiotics in disease prevention
and therapeutic interventions.

3.2.3. Dietary Modifications on Metabolic Disorders.
Dietary modifications (summarized in Table 4) play a pivotal
role in managing metabolic disorders, including metabolic
syndrome, which encompasses conditions such as abdom-
inal obesity, dyslipidemia, hypertension, and insulin re-
sistance [197]. A diet rich in whole grains, legumes, fruits,
and vegetables while minimizing the intake of refined sugars
and saturated fats has been associated with significant im-
provements in metabolic health [198]. Notably, Mediter-
ranean diet, characterized by an emphasis on plant-based
foods, healthy fats, and lean proteins, has been widely
recognized for its efficacy in regulating blood glucose levels
and mitigating risk factors associated with metabolic syn-
drome [199]. Additionally, time-restricted eating, a type of
intermittent fasting, has shown promise in enhancing in-
sulin sensitivity and facilitating weight management [200].
When complemented with regular physical activity, these
dietary interventions provide a comprehensive and sus-
tainable approach to managing metabolic disorders and
promoting overall health.

3.2.4. Critical Evaluation of Mixed and Neutral Findings.
Numerous studies highlight the beneficial effects of pro-
biotics, prebiotics, dietary interventions, and FMT on
metabolic disorders [201, 202], but all outcomes are not
consistently positive. Some clinical trials, particularly in
humans, have shown neutral or limited effects, likely due to
varijability in individual microbiome composition, differ-
ences in intervention dosage, and study design [203-205].
For instance, some Lactobacillus and Bifidobacterium strains
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show inconsistent improvements in insulin sensitivity or
lipid profiles, while prebiotic supplementation sometimes
fails to produce significant metabolic benefits despite
promising animal data [203, 204, 206]. FMT outcomes have
been variable across studies, with modest improvements in
glycemic and lipid parameters but limited effects on weight
reduction, and the long-term sustainability of these changes
remains uncertain [207].

These mixed results underscore the complexity of
host-microbiome interactions and the need for rigorous,
well-powered studies that account for individual microbial
signatures and intervention parameters. Considering both
positive and neutral outcomes provides a balanced per-
spective, strengthens scientific rigor, and better understands
to develop future microbiome-targeted therapeutic
strategies.

3.3. Biomarkers for Disease Prediction and Intervention.
Biomarkers have gained significant attention in predicting
metabolic disorders, allowing early diagnosis and enabling
targeted interventions, summarized in Table 5. These bio-
markers can be molecular indicators, such as lipids, peptides,
and specific genes, that reflect metabolic disturbances
[219, 220]. Studies have shown that inflammatory bio-
markers, such as C-reactive protein (CRP) and interleukins,
play a crucial role in assessing the risk of disorders like
diabetes and CVDs [221, 222]. Moreover, adipokines, such
as leptin and adiponectin, are closely associated with insulin
resistance and metabolic syndrome [223, 224]. Emerging
research emphasizes the role of gut microbiota-derived
metabolites as potential biomarkers, linking gut micro-
biome’s impact on metabolic regulation [225]. Advances in
omics technologies, including genomics and proteomics,
have further enhanced the identification of novel biomarkers
for more precise intervention strategies [226, 227]. By in-
tegrating these biomarkers into clinical practice, early di-
agnosis and personalized therapies can be -effectively
implemented for managing metabolic disorders.

3.4. Short-Chain Fatty Acids and Metabolic Disorder
Intervention. Short-chain fatty acids, including acetate,
propionate, and butyrate, are key microbial metabolites
derived from the fermentation of dietary fiber in gut,
exerting profound effects on host metabolism and immune
function [228]. SCFAs stimulate enteroendocrine L cells to
secrete peptide YY (PYY) and glucagon-like peptide-1
(GLP-1), which engage the vagus nerve to enhance sati-
ety, suppress food intake, and mitigate obesity risk
[229, 230]. Additionally, SCFAs activate G-protein—coupled
receptors (GPCRs), notably GPR41 and GPR43, thereby
improving insulin sensitivity and glucose homeostasis, of-
fering protection against T2D [231, 232]. These metabolites
further reinforce intestinal barrier integrity by upregulating
tight junction proteins, limiting lipopolysaccharide (LPS)
translocation and metabolic endotoxemia, mechanisms
implicated in T2D and IBD [15, 233, 234]. SCFAs also
function as histone deacetylase (HDAC) inhibitors, pro-
moting anti-inflammatory gene expression and inducing
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inhibition. These effects reduce food intake, systemic inflammation, and metabolic endotoxemia, mitigating obesity, T2D, NAFLD, IBD, and

CVD. Created in https://BioRender.com.

regulatory T (Treg) cell differentiation, leading to reduced
systemic inflammation via the suppression of TNF-a and IL-
6, thereby conferring protection against IBD and CVD
[15, 231, 235]. Furthermore, SCFAs are able to inhibit
HDAC:s that helps to regulate the inflammatory response
during NAFLD. SCFAs interact with GPR41 and GPR43
receptors to stimulate the secretion of GLP-1 by intestinal
endocrine L cells, helping to reduce hepatic steatosis and
activate brown adipose tissue, thereby improving NAFLD
[236]. These insights underscore the critical role of SCFAs as
metabolic and immunological mediators, linking gut
microbiota function to host health and disease susceptibility
(Figure 8).

3.5. Limitations. While this review provides comprehensive
coverage of current evidence, certain limitations exist.
Heterogeneity among study designs, variations in in-
tervention types, and inconsistent outcome measurements
limit direct comparisons. The predominance of animal
studies reduces the generalizability to human populations,
highlighting the need for more standardized and large-scale
human clinical trials to validate the findings of microbiome-
based interventions. Some studies and clinical trials reported
neutral or limited effects, underscoring that positive findings
are not always consistently replicated in humans (for a more
detailed discussion, see Section 3.2.4). Furthermore, a sub-
stantial proportion of the literature focuses on positive
outcomes, which may reflect publication bias and

overestimation of therapeutic potential. Additionally, the
absence of PROSPERO or equivalent registration, despite
adherence to PRISMA guidelines, limits methodological
transparency, making it harder to assess potential biases and
reproduce the review reliably.

4. Conclusion and Perspectives

Gut microbiota plays an important role in the pathophys-
iology of common metabolic disorders, including obesity,
T2DM, CVD, NAFLD, and IBD. Emerging evidence high-
lights the therapeutic potential of modulating gut microbiota
composition through probiotics, prebiotics, dietary modi-
fications, and microbial metabolites. These strategies have
demonstrated promising outcomes in restoring microbial
balance, improving metabolic markers, and reducing in-
flammation associated with metabolic disorders. However,
current research is largely limited to preclinical and small-
scale human studies, necessitating further large-scale, well-
designed clinical trials to validate efficacy, safety, and long-
term impacts. Additionally, personalized microbiome-based
interventions hold promise for precision medicine ap-
proaches but require deeper mechanistic insights and ad-
vancements in microbiome profiling technologies. Future
research should focus on elucidating host-microbiota in-
teractions, identifying novel therapeutic targets, and in-
tegrating multi-omics approaches to enhance clinical
translation. This review not only consolidates recent ad-
vancements in microbiota-targeted therapy but also
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highlights key research gaps, encouraging the integration of
microbiome science into the development of future pre-
cision medicine strategies for metabolic disorders. By
leveraging gut microbiota modulation as a therapeutic
strategy, we may pave the way for innovative, microbiome-
driven interventions to combat metabolic disorders
effectively.
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